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Abstract— Accurately predicting ocean subsurface temper-
ature is vital for advancing ocean and climate research,
particularly given the sparse and costly nature of subsurface
observations. This study introduces sparse-to-dense prediction
of ocean subsurface temperature using multilevel spatiotemporal
(ST) information fusion. The framework integrates interpretable
ST decoupling, adaptive feature updating, and sparse-to-dense
information fusion modules to address the challenge of sparse
observations and ever-evolving dynamic environments. Compre-
hensive experiments focused on the Pacific demonstrate the
superiority of the proposed methodology over peer methods. The
proposed methodology achieves high-resolution predictions with
a root mean square error (RMSE) of 0.2230, an accuracy of
0.9846, and point-wise prediction errors below 0.5 ◦C under 10%
online random sparse observations (ORSOs). Analyses of spatial
and temporal temperature dynamics reveal long-term warming
trends in the Pacific, including a temperature rise of up to
2.8 ◦C at −100 m in low-latitude regions over the past 40 years,
and identify the latitudinal slope of thermocline dynamics. This
study advances the understanding of multiscale thermal processes
and variability in the Pacific, demonstrating the potential of
application in climate studies, marine resource management, and
environmental monitoring.

Index Terms— Global warming, information fusion, Pacific
Ocean, remote sensing, subsurface temperature.

I. INTRODUCTION

AS THE largest heat sink in the global climate system,
the ocean absorbs over 90% of excess atmospheric

heat. Recent studies have revealed record-high ocean heat
content, with the Pacific Ocean identified as the largest heat
reservoir due to its vast surface area [1], [2]. This heat
absorption occurs unevenly, both horizontally and vertically,
leading to a heterogeneous distribution of water properties.
While sea surface temperature dynamics have been extensively
studied [3], the ocean subsurface remains less understood
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due to extreme environmental conditions. Subsurface thermal
dynamics are critical for the marine physical, chemical, and
biological processes [4].

Ocean dynamics have been studied using numerical mod-
eling and data learning approaches. Traditional numerical
models can effectively simulate subsurface ocean dynam-
ics [5], [6], but are often difficult to model accurately due
to the gap between actual processes and ideal knowledge [7].
Observations provide foundational and reliable information
for data learning approaches. Satellite remote sensing has
revolutionized sea surface monitoring [8], while subsurface
areas remain poorly observed. The deep ocean remote sensing
technologies have shown potential for inferring the internal
structure of the ocean from satellite surface observations [9].
However, the uncertain relationship between surface obser-
vations and subsurface features limits the accuracy and
efficiency. The Argo program, initiated in 2004, has sig-
nificantly enhanced vertical temperature monitoring, but its
spatial coverage remains limited, with sparse observations in
tropical and low-latitude areas [10]. Other platforms, such
as bathythermographs [11] and survey ships [12], face chal-
lenges, including uneven spatial distribution and temporal
discontinuities. In the Pacific, the vast and spatiotemporal
(ST) heterogeneous nature of the ocean, coupled with strong
thermal stratification and dynamic currents, poses signifi-
cant challenges for subsurface data collection [13]. These
observational gaps lead to considerable information loss [14],
hindering the ability to accurately study the ST dynamics of
the ocean.

Data learning methods show great potential in revealing
ocean dynamics due to the improvement of observational data
collection and computing power. Statistical approaches [15]
have achieved success in simple regression tasks. Machine
learning methods, including support vector machines, random
forests, and perceptrons [16], [17], offer tools for analyzing
straightforward ocean dynamics but often fail to capture the
intricate ST dependencies. Recently, deep learning has made
significant advancements in ocean modeling [18], [19], with
architectures such as convolutional neural networks (CNNs),
long short-term memory (LSTM) networks, and Transform-
ers [20], [21], [22]. However, these models face several critical
challenges. One major issue is the “non-transparent system”
nature of deep learning [23], which limits interpretability and
acceptance in remote sensing research. Understanding the
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internal mechanisms driving model predictions is crucial
for validating results and ensuring reliability. In addition,
these models often struggle to generalize to new and unseen
data [24], [25], particularly in dynamic and evolving sub-
surface environments where real-time processes may differ
significantly from the training data. Feature disentanglement
(FD) offers a promising solution, demonstrating superior fea-
ture interpretability and predictive accuracy [26], [27]. Studies
have further shown that stable and dynamic features hidden
in systems evolve at different rates, underscoring the need
for adaptive approaches to capture these distinct processes
effectively [28].

Furthermore, existing deep learning approaches often rely
on dense and structured datasets [29], which are scarce in
subsurface research due to the high cost and difficulty of
acquiring in situ observations. Reconstructing dense spatial
fields from limited local sensor information poses a significant
challenge. Geometric [30] and interpolation [31], [32] methods
have been used to embed unstructured information into CNN
architectures to improve prediction accuracy under sparse
observation conditions. Cross-attention mechanisms encoded
arbitrarily sized sparse input sets into latent spaces, achieving
high-precision reconstruction of high-dimensional fields [33],
[34]. However, the prediction accuracy of unobserved areas
still depends heavily on the distribution density and geometric
characteristics of the observation points. Compressed sensing
theory has been used to assist the mapping from the original
space to the sparse space, improving the robustness of the
encoding and decoding processes [35], [36]. This approach
emphasizes the crucial role of finding the optimal sparse basis
in the decoding or feature extraction process.

Information fusion addresses these challenges by combining
data from multiple sources to reduce information loss and
enhance accuracy. Previous studies have primarily focused on
addressing information loss in remote sensing imagery [37],
[38], but little attention has been given to the application
of fusion techniques for subsurface temperature. Information
fusion can be applied at data, feature, and decision levels,
as shown in Fig. 1. Data-level fusion combines raw observa-
tions from various sources, such as integrating multispectral
sensors with high spectral resolution and narrow spectral
bandwidth [39]. However, this approach demands rigorous
pre-processing to address ST inconsistencies and observa-
tion noise, and missing data. Feature-level fusion integrates
extracted complementary features, such as domain-specific
descriptors [40], [41]. However, it risks losing subtle informa-
tion during feature selection, potentially limiting the ability to
capture finer patterns. Decision-level fusion combines outputs
from multiple local models, providing robustness and scala-
bility for large-scale data scenarios [42]. However, it leads to
severe information loss due to its post-processing nature and
is most suitable for applications involving massive datasets.
A multilevel fusion approach integrates these levels, leveraging
their complementary strengths to create a more comprehensive
and accurate framework. This holistic strategy is particularly
advantageous for reconstructing subsurface ocean temperature
fields, which face challenges such as sparse observations,
ST heterogeneity, and complex thermal dynamics. By combin-

Fig. 1. Information fusion at the data, feature, and decision levels.

ing data, features, and decisions, multilevel fusion can mitigate
information loss, improve spatial and temporal resolution, and
enhance predictive accuracy.

Within this context, this article proposes a multilevel ST
information fusion framework for sparse-to-dense prediction
of subsurface temperature in the Pacific Ocean. The primary
innovations of this research are: 1) develop and implement a
novel multilevel ST information fusion framework to address
sparse observational gaps and enhance prediction resolution;
2) design a hierarchical adaptive feature updating model to
capture real-time subsurface thermal structure and changes;
and 3) uncover and analyze long-term trends and temperature
anomalies in the Pacific Ocean to advance subsurface ocean
monitoring. This study aims to improve prediction accu-
racy under sparse observations while uncovering the deeper
mechanisms of Pacific subsurface temperature changes. The
proposed framework is expected to produce more accurate and
high-resolution subsurface temperature prediction products
compared to existing methods.

II. STUDY AREA AND DATA

The Pacific plays a critical role in regulating global climate
variability due to its vast expanse and complex interactions
between the atmosphere and ocean. In recent years, Pacific
Ocean heat content has reached record levels, with the region
projected to remain the most significant heat sink due to
its immense area [2]. The Pacific’s influence extends to
global weather patterns, including El Niñ(o) and La Niña
events [43], which drive precipitation anomalies, temperature
variability, and shifts in atmospheric circulation. In addition,
remote climate systems, such as the Arctic sea ice and the
Arctic Oscillation [44], [45], can influence Pacific temper-
ature anomalies through atmospheric teleconnections. These
dynamics underscore the need for a detailed understanding
and monitoring of the thermal structure, particularly in its
subsurface layers, which remain less explored compared to
the surface.

The dataset is sourced from the National Marine Data
Center of China [46] and provides comprehensive subsurface
temperature observations in the Pacific. The original dataset
spans a horizontal area from 99◦E to 150◦E in longitude and
from 10◦S to 50◦N in latitude, with a spatial resolution of
0.5◦ × 0.5◦. Vertically, it includes 35 layers at depths ranging
from 7.5 m per layer near the surface to 100 m per layer
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TABLE I
DETAILS OF THE PACIFIC OCEAN TEMPERATURE DATASET

Fig. 2. Pacific Ocean. (a) Study area. (b) Temperature snapshots at
t = 500, 600, 700 months. (c) Random sparse observations. (d) Uniform
sparse observations.

in deeper regions. The dataset covers a 64-year period with
monthly temporal resolution, making it suitable for study-
ing long-term subsurface temperature dynamics. To balance
computational efficiency and regional representativeness, this
article focuses on a subset, as shown in Fig. 2(a) and detailed
in Table I. The selected area spans 140◦E–149◦E in longitude,
0◦N to 30◦N in latitude, and depths from −2.5 to −1000 m.
This low-latitude to mid-latitude region is particularly suitable
for studying subsurface temperature dynamics, given its pro-
nounced thermal gradients, seasonal variability, and relevance
to global heat transport. The resulting dataset consists of
24 339 spatial observations per time step across 753 monthly
snapshots, offering a robust basis for analysis.

Fig. 2(b) visualizes three representative temperature snap-
shots, revealing slow 3-D temperature variations over time.
Surface temperatures are warmer, decreasing sharply with
depth. The thermocline located between −100 and −500 m
exhibits the steepest temperature gradient. Below the thermo-
cline, temperature change becomes more uniform, averaging
4 ◦C–6 ◦C at −1000 m. ST variability in the thermocline
is driven by factors such as sea surface heating, ocean
circulation, and climate events. To simulate sparse observa-
tional challenges, the study incorporates random and uniform

Fig. 3. Framework of the proposed methodology.

sparse distributions ranging from 1% to 10%, as illustrated in
Fig. 2(c) and (d). Historical data are treated as dense, providing
a rich foundation for analysis, while online observations
adopt sparse distributions, reflecting constraints such as limited
sensor networks and the high cost of deploying instruments in
remote ocean regions.

III. METHODOLOGY DESIGN

A. Framework

Fig. 3 illustrates the proposed methodology, consisting of
three key modules designed to address the challenges of
sparse observations and ever-evolving dynamic subsurface
environments. First, the Pacific temperature data is divided
into historical dense data T d and online sparse observations
T s , which are connected by the observation matrix O. The
high-dimensional temperature field T s is decoupled by the ST
decoupling approach into interpretable stable spatial represen-
tations φ and dynamic temporal behaviors A. After that, with
real-time observations B arrive, the adaptive feature updating
strategy is scheduled by the confidence factor β to update
spatial φ̂ and temporal Â features at different frequencies.
Finally, the sparse-to-dense prediction T̂ d integrates the online
sparse prediction T̂ s and the dense prediction from the sparse
observation T̂ s→d . The resolution of the prediction field T̂ d

matches that of the original dense observations T d , achieving
high-resolution predictions and facilitating a deeper under-
standing of subsurface dynamic processes.

B. Interpretable ST Decoupling

Accurately modeling ocean dynamics requires reducing the
dimensionality of the high-dimensional temperature field while
retaining key features. The temperature field T (x, t) ∈ RN×S

can be decomposed into stable spatial representations φ(x)

and dynamic temporal behaviors A(t)

T (x, t) = φ(x)A(t) ≈
r∑

i=1

ϕi ai (1)
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where r is the model rank, and ϕi are sparse and orthogonal
basis that satisfy 〈

ϕi , ϕ j
〉
= δi j (2)

where ⟨·, ·⟩ denotes the inner product and δi j is the Kronecker
delta.

The decoupling solution is derived by solving the eigenvalue
problem ∫

�

C
(
x j , xk

)
ϕi (xk)dx = λiϕi

(
x j

)
(3)

where λi and ϕi are the eigenvalues and eigenvectors of the
temperature field T , C(x j , xk) is the correlation function of
two points j and k, and � is the spatial domain.

To capture key spatial and temporal features, an energy
criterion is defined as follows:∑r

i=0 λi∑
∞

i=0 λi
≥ ϵ (4)

where ϵ ∈ [0.99, 1] is the predefined energy threshold. The
r dominant eigenvectors φ(x) = [ϕ1, . . . ,ϕr ] and corre-
sponding A(t) = [a1, . . . , ar ]

T can be selected to retain the
dominant modes.

C. Adaptive Feature Updating

After ST decoupling of the initial online sparse data T s ,
an adaptive feature update strategy dynamically adjusts the
update interval of spatial and temporal features according to
the prediction error. High-frequency dynamic behaviors are
updated at regular intervals 1t , while stable representations
are updated slowly when the error exceeds a predefined
threshold Lr .

The confidence factor β governs the updating of stable
representations

β =

∫ Lr

0
(p)(ω)dω (5)

where p(ω) is the error density function derived from predic-
tion errors L1 using a Gaussian kernel G(·)

p(ω) =
1

bta

ta∑
k=1

G
(

ω − L1(k)

b

)
(6)

where b is the bandwidth, ta is the update interval for stable
representations, and L1 is the mean square error (mse) between
the prediction and truth. Stable representations are updated
only when L1 > Lr , ensuring model accuracy. If L1 ≤

Lr , dynamic behaviors are updated to reduce computational
overhead while maintaining accuracy.

During this process, real-time data vs is aligned with the
incremental matrix B ∈ RN×ta . After each ta steps, the matrix
is updated, and the initial online sparse data T s is updated
using the bundle matrix

T s+← T s + B PT (7)

where P =
[
0 I

]T
∈ RS×ts integrates new information into

the initial data, and I is the identity matrix.

The initial temperature field T s , incremental matrix B, and
updated temperature field T s+ are decoupled via singular value
decomposition and Q R decomposition [47], respectively

T s = φ6V T (8)

Q R =
(
I − φφT)

B (9)

T s+ =
[
φ6V T B

]
=

[
φ Q

][ 6 φT B
0 R

][
V 0
0 I

]T

= φ̂6̂V̂ T (10)

where Q ∈ RN×q is the orthogonal matrix, R ∈ Rq×ts is the

upper triangular matrix,
[

6 φT B
0 R

]
= φ′6′V ′T.

The updated stable representations φ̂ combine initial and
incremental information

φ̂ =
[
φ, Q

]
φ′. (11)

Dynamic behaviors capture nonlinear, rapid changes and are
computed as follows:

A(t) = φ̂
TT s+. (12)

Dynamic behaviors are modeled using a retrospective batch
process, where the current signal A(t) depends on p time-
lagged states. The neural network is used to capture nonlinear
temporal dependencies, with the prediction given by the fol-
lowing equation:

Â(t) = WT
t−1ht−1(A(t −1t), . . . , A(t − p1t)) (13)

where W is the weight matrix, updated by Lyapunov-based
weight rule [48], and h is the activation function.

D. Sparse-to-Dense Information Fusion

The framework combines historical dense data with online
sparse observations to solve the problem of information loss
caused by sparse observations. The spatial observation matrix
O is used to project the historical dense data T d onto the
sparse observation grid

T d→s = OT d (14)

where T d→s is the historical dense data restricted to the sparse
observation grid.

The online sparse prediction and historical dense data are
separated to obtain stable spatial representations and dynamic
temporal behaviors

T̂ s = φ̂ Â (15)
T d = φd Ad . (16)

The online sparse prediction is expended to the dense field

T̂ s→d = φd Âd (17)

where T̂ s→d is the dense prediction from the sparse observa-
tions, and Âd is the dense dynamic behavior derived from
the online sparse dynamic behavior via the pseudo-inverse
operation (·)†

Âd =

(
φ̂

T Oφd

)†
Â. (18)
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By combining the online predictions from the sparse
observation with the dense expanded predictions from the
pseudo-inverse operation, the sparse-to-dense predictions can
be reconstructed

T̂ d =

 T̂ s = φ̂ Â, observed

T̂ s→d = φd

(
φ̂

T Oφd

)†
Â, otherwise.

(19)

E. Model Implementation

The implementation process of the proposed methodology
is detailed in Algorithm 1, which outlines the workflow for
sparse-to-dense prediction of ocean subsurface temperature
using multilevel ST information fusion. The process begins
with ST decoupling, extracting stable spatial representations
and dynamic temporal behaviors from historical dense data
and initial online sparse observations. Stable representations
capture persistent spatial features, while dynamic behaviors
model temporal uncertainties in the data. To ensure adaptabil-
ity, adaptive feature updating is incorporated to dynamically
refine stable representations and update dynamic behaviors
to adjust to evolving subsurface conditions efficiently. The
adaptive feature updating strategy ensures computational effi-
ciency by selectively updating features based on prediction
error thresholds. Finally, the ST information fusion is utilized
to reconstruct and forecast the dense subsurface temperature
field, combining the strengths of sparse observations and
historical dense data.

Algorithm 1 Sparse-to-Dense Prediction of Ocean Subsurface
Temperature Using Multilevel ST Information Fusion
Require: Historical dense data T d , initial online sparse obser-

vations T s

Ensure: Sparse-to-dense prediction T̂ d

1: Initialization:
2: Extract φd and Ad from T d using Eq. (16)
3: Extract φ and A from T s using Eq. (1)
4: Randomly initialize LSTM weights
5: Set time step t ← 0
6: while Real-time monitoring is active do
7: Obtain real-time sparse data vs

8: Append vs to the incremental matrix B
9: Update online sparse observations T s+ using Eq. (7)

10: Calculate prediction error L1 and threshold Lr using
Eq. (5)

11: if L1 > Lr then
12: Fine-tune stable representations φ̂ using Eq. (11)
13: else
14: Compute dynamic behaviors A using Eq. (12)
15: Update LSTM weights
16: Predict future dynamic behaviors Â using Eq. (13)
17: end if
18: Compute dense dynamic behaviors Âd using Eq. (18)
19: Fuse φ̂ and Â for T̂ s using Eq. (15)
20: Fuse φd and Âd for T̂ s→d using Eq. (17)
21: Perform information fusion T̂ d using Eq. (19)
22: Advance time t ← t +1t
23: end while

IV. EXPERIMENTAL STUDIES

A. Experimental Setting

The energy threshold is set to ϵ = 0.99, and the confidence
factor for feature updating is set to β = 0.95. The input
has a dimension of [r, 12], where r denotes the model rank
(r = 15 and 16 for Âd and Â, respectively), and 12 represents
the number of past time steps used for prediction. The histor-
ical dense data consists of the first 50% of the dataset, while
the last 50% is configured with sparse observations distributed
either uniformly or randomly.

The proposed methods are compared with five peer methods
used in environment prediction. For the comparison under
original dense observations, Conv-LSTM [20] integrates CNN
with LSTM, making it well suited for modeling spatial
and temporal dependencies in sequence data. 3D-CNN [21]
extends CNN to three dimensions, enabling modeling of
spatial relationships in 3-D data, thereby enhancing its ability
to capture complex patterns of ocean temperature distribution
over time. In addition, FD [27] uses Tucker decomposition
for feature extraction and a probabilistic incremental learning
method to update the temporal signal. For the comparison
under sparse observations, Voronoi tessellation [30] com-
bined with CNN can significantly improve the prediction
accuracy under sparse conditions. Senseiver [33] uses an
encoder–decoder structure with a cross-attention mechanism to
achieve high-precision reconstruction of sparse observations.

To evaluate the performance of the proposed methodology
and benchmark models, seven widely adopted evaluation met-
rics are used: root mse (RMSE), mean absolute error (MAE),
accuracy (ACC), coefficient of determination (R2), average
error (Avg error), percent bias, and point-wise prediction error
distribution

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2
(20)

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (21)

ACC = 1−
1
n

n∑
i=1

(∣∣yi − ŷi
∣∣

yi

)
(22)

R2
= 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1

(
yi − ȳ

)2 (23)

Avg error =
1
n

n∑
i=1

(
yi − ŷi

)
(24)

Percent bias =
∑n

i=1

(
yi − ŷi

)∑n
i=1 yi

× 100 (25)

where yi and ŷi are the observed and predicted values, ȳ is
the mean, and n is the number of samples.

B. Spatial and Temporal Features

Fig. 4 visualizes the decoupled spatial and temporal features
under 10% online random sparse observation (ORSO), high-
lighting the first three features. The ST decoupling method
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Fig. 4. Spatial and temporal features under 10% ORSO. (a) Adaptive
feature updating based on confidence evaluation, (b) stable #1, (c) stable #2,
(d) stable #3, and (e) dynamic #1–#3.

effectively separates the observation into interpretable stable
representations and dynamic behaviors. Fig. 4(a) illustrates
the adaptive feature updating process triggered by confidence
evaluation. Specifically, when the mse exceeds the 95% confi-
dence threshold, a stable spatial feature update is triggered to
enhance the accuracy of model predictions. The dynamic tem-
poral features are updated continuously at regular intervals to
maintain predictive reliability. Stable #1 in Fig. 4(b) captures
persistent and large-scale spatial features, such as temperature
gradients that vary with depth, reflecting stable ocean structure.
Subsequent stable #2 and #3 in Fig. 4(c) and (d) reveal
more subtle phenomena, such as thermoclines and bound-
ary effects, highlighting local variations. The slow updates
to these features, especially the nearly constant nature of
stable #1, emphasize the robustness and reliability of the
decoupled process in representing stable environmental struc-
tures. Dynamic #1 in Fig. 4(e) shows that the dominant modes
have higher amplitudes and contribute significantly to the
system dynamics. Minor modes reflect local or transient effects
and require more frequent updates to track real-time changes.

Table II evaluates the contribution of each module
in the proposed methodology under 10% ORSO. First,

TABLE II
ABLATION EXPERIMENTS UNDER 10% ORSO

TABLE III
SPARSE-TO-DENSE PREDICTION PERFORMANCE UNDER

DIFFERENT SPARSITY LEVELS

ST decoupling alone is not sufficient to capture the sys-
tem dynamics, resulting in not applicable (N/A). Adaptive
feature updating is crucial to capture the evolution of the
system, achieving an RMSE of 0.5492. The sparse-to-dense
information fusion module is essential to address the chal-
lenges of information loss, missing data, and environmental
uncertainties. This module enables the model to accurately
infer unobserved data points by combining historical data
with online observations. When sparse-to-dense information
fusion is activated, the model performs best, with the RMSE
further reduced to 0.2230. Each module plays a unique and
complementary role in accurately modeling and predicting
subsurface dynamics, even under sparse observations.

C. Sparse-to-Dense Prediction

Table III summarizes the sparse-to-dense prediction results
under different sparsity levels and distributions. The results
demonstrate a clear improvement in prediction accuracy as
the sparsity level decreases and more observation points.
For example, under a uniform sparsity of 1%, the model
achieves an RMSE of 0.2536, an MAE of 0.2276, an ACC of
0.9827, and an R2 score of 0.9992. When the uniform sparsity
increases to 10%, the prediction performance improves sig-
nificantly, with the RMSE dropping to 0.2473 and the ACC
reaching 0.9834, demonstrating the benefits of having more
observation points to enhance spatial coverage. The prediction
performance under online dense observations wins the best,
with an RMSE of 0.1321 and an ACC of 0.9879. In addition,
at the same sparsity level, the random distribution consistently
outperforms the uniform distribution. Under a random sparsity
of 10%, the model achieves an RMSE of 0.2230 and an ACC
of 0.9846. The random distribution provides a more diverse
and representative sampling than the uniform distribution.

Fig. 5 presents the sparse-to-dense prediction fitting per-
formance under different random sparsity levels. The results
show that the high-temperature regions near the surface and
the low-temperature regions at deeper depths are relatively
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Fig. 5. Sparse-to-dense prediction fitting at t = 500, 600, 700 months.
(a) Dense prediction under 5% ORSO. (b) Dense prediction under 10% ORSO.
(c) Dense prediction under online dense observations.

well represented because they are more uniform and stable.
However, the thermocline with higher variability and steeper
temperature gradients is more sensitive to observation sparsity,
and incorporating more observations provides better spatial
representation and prediction reliability. For example, under
5% and 10% ORSO in Fig. 5(a) and (b), the dense predic-
tion shows noticeable deviations in thermocline regions with
complex thermal gradients. Under online dense observations in
Fig. 5(c), the model achieves the highest accuracy and captures
detailed thermal structures with negligible errors. In addition,
the adaptive feature updating strategy continuously integrates
new observations, enabling the model to adapt and improve
its predictions over time.

Fig. 6 further demonstrates the significant impact of reso-
lution on the quality and accuracy of temperature predictions.
In Fig. 6(a), under 1% ORSO, the same resolution of sparse
prediction exhibits severe information loss and distortion,
with minimal spatial variation and failure to capture fine
structures such as local anomalies or detailed gradients. As the
number of observation points increases in Fig. 6(b) and (c),
the sparse prediction shows clear spatial trends, such as
temperature gradients. However, the sparse prediction still
lacks finer details, with local anomalies and precise tempera-
ture transitions difficult to resolve. In contrast, the proposed
sparse-to-dense prediction in Fig. 6(d) provides a detailed and
accurate representation of the temperature field. It effectively
captures the horizontal variation and temperature gradients
along the latitude line, ranging from 30 ◦C to 26 ◦C. This
high-resolution forecast reveals subtle features such as sharp
gradients, local thermal anomalies, and the complex interplay

Fig. 6. Prediction resolution comparison at a depth of −10 m. (a) Sparse
prediction under 1% ORSO. (b) Sparse prediction under 5% ORSO. (c) Sparse
prediction under 10% ORSO. (d) Dense prediction under 10% ORSO.

of environmental factors that shape the subsurface thermal
structure.
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TABLE IV
COMPARISON WITH DIFFERENT PREDICTION METHODS

The comparative results in Table IV demonstrate the
superior performance of the proposed methodology across
all evaluation metrics. Under dense observations, Conv-
LSTM [20] and 3D-CNN [21] lack support for incremental
updates, limiting their applicability in dynamic environments.
FD [27] incorporates Tucker decomposition and incremental
learning and demonstrates improved adaptability and perfor-
mance, with an RMSE of 0.3991 and an ACC of 0.9857. These
methods for dense observations are difficult to directly apply
to learning with sparse observation data. Under 10% ORSO,
Voronoi [30] and Senseiver [33] show some effectiveness in
handling sparse observations and generating dense predictions.
However, both methods primarily focus on spatial modeling
while neglecting temporal dependencies and system evolution,
which significantly hinders their ability to adapt to dynamic
environments. In summary, the proposed methodology effec-
tively integrates interpretable ST modeling, adaptive feature
updating, and multilevel information fusion, with an RMSE
of 0.1321 and an ACC of 0.9879 under dense observations
and an RMSE of 0.2230 and an ACC of 0.9946 under 10%
ORSO, demonstrating its robustness and scalability across
diverse scenarios.

D. Spatial and Temporal Dynamics

Fig. 7 illustrates the seasonal variation of subsurface tem-
peratures at different depths, showcasing the intricate ST
dynamics of the subsurface thermal structure. The predictions
align closely with the truth, with most errors remaining within
0.5 ◦C. In the upper layers shown in Fig. 7(a) and (b),
seasonal fluctuations are more pronounced, primarily driven
by changes in solar radiation, wind stress, and atmospheric
conditions, resulting in significant temperature variability and
a highly dynamic thermal structure. At greater depths in
Fig. 7(c) and (d), temperature variations diminish, and stability
increases. Below −500 m, the thermal structure remains
relatively consistent throughout the year, highlighting the
insulating effect of ocean depth. Spatially, upper-layer temper-
atures are highest at low latitudes, where solar heating is most
intense. However, deeper layers exhibit a temperature peak
at mid-latitudes, likely influenced by ocean currents and the
gradual progression of temperature gradients. This latitudinal
difference and vertical temperature dynamics create a complex
thermal structure shaped by the interplay of multiple phys-
ical processes, including circulation patterns, stratification,
and heat transport. Despite these complexities, the proposed
methodology accurately predicts subsurface temperatures.

Fig. 7. Temperature seasonal variation in 2021 across different depths under
10% ORSO. (a) Depth −100 m. (b) Depth −200 m. (c) Depth −500 m.
(d) Depth −1000 m.

Fig. 8 illustrates the long-term variation of subsurface tem-
peratures across different depths, revealing significant spatial
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Fig. 8. Long-term variation of subsurface temperatures under 10% ORSO
(July 1989 to December 2021). (a) Location (140◦E, 30◦N). (b) Location
(140◦E, 15◦N). (c) Location (140◦E, 0◦).

and temporal heterogeneity in ocean warming trends. For
example, at mid-latitude regions in Fig. 8(a), water warming is
less pronounced, reflecting the moderating influence of atmo-
spheric variability, wind-driven mixing, and ocean currents in
subtropical regions. These factors distribute heat more evenly,
reducing localized temperature increases. However, at low-
latitude −100 m in Fig. 8(c), long-term monitoring indicates
a temperature rise of approximately 2.8 ◦C over the past
40 years. Such trends align with broader global patterns of
ocean warming, emphasizing the role of the Pacific Ocean
subsurface in storing heat and buffering atmospheric tem-
perature changes. Overall, the observed differences between
low-latitude and mid-latitude regions underscore the spatial
heterogeneity in the ocean’s thermal response. Low-latitude
regions, being closer to the equator, experience intense solar
radiation and stronger stratification, which amplify surface
warming and limit heat penetration to deeper layers. Mid-
latitude regions, influenced by more variable atmospheric
conditions and stronger ocean currents, exhibit a more bal-
anced thermal response, with less surface warming and
localized cooling at greater depths.

Moreover, Fig. 9 illustrates the prediction performance
across different depths (with 95% confidence intervals).

Fig. 9. Prediction performance under 10% ORSO (July 1989 to December
2021). (a) Location (140◦E, 30◦N). (b) Location (140◦E, 15◦N). (c) Location
(140◦E, 0◦).

The results show that the model maintains consistent accuracy,
as indicated by the limited range of prediction errors and
tight confidence intervals at different latitudes and depths. Pre-
diction performance increases toward stable deep layers and
decreases at thermoclines with transient features. For example,
at all locations, metrics such as RMSE and MAE increase
toward the upper layers between 0 and −500 m and decrease
toward the deep layers. Average error and percent bias further
highlight the modeling accuracy. The percent bias reveals
regional differences, with low-latitude regions showing higher
biases, reflecting challenges in capturing thermal fluctuations.

E. Temperature Anomaly Analysis

Fig. 10 presents the Pacific OTA over the past 40 years,
calculated relative to the mean temperature at each spatial
point over time. The close alignment between the truth in
Fig. 10(a) and predicted OTA in Fig. 10(b) highlights the
modeling accuracy and robustness for capturing complex sub-
surface temperature dynamics. Mid-latitude regions (140◦E,
30◦N) exhibit fewer anomalies. This stability can be attributed
to the moderating effects of stronger wind-driven mixing and
ocean currents, which help distribute heat more evenly and
dampen localized fluctuations. Significant periodic OTA is
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Fig. 10. Pacific OTA analysis over the past 40 years. (a) Truth. (b) Prediction
under 10% ORSO. (c) Pacific subsurface temperature oscillations analysis.

observed in the upper layers between 0 and −300 m, with the
most pronounced anomalies occurring in low-latitude regions
(140◦E, 0◦) and (140◦E, 15◦N). These anomalies are primarily
driven by intensified solar heating, reduced vertical mixing,
and the overarching effects of global warming, which amplify
temperature variability in the upper ocean. Interannual oscil-
lations of subsurface temperatures, particularly those linked
to El Niñ(o)-Southern Oscillation (ENSO) events, further
contribute to the observed peaks and fluctuations, reflecting the
dynamic interplay between atmospheric and oceanic processes.
Fig. 10(c) displays the OTA time series averaged over the
upper 0 to −300 m at (140◦E, 0◦) from 1980 to 2023. The
model accurately captures both the positive OTA peaks and
the negative OTA troughs. There are partial discrepancies
between the OTA peaks/troughs in Fig. 10(c) and the canon-
ical ENSO signal in the traditional monitoring region, due
to the geographic separation and distinct ocean-atmosphere
dynamics [49]. At greater depths beyond −300 m, tempera-
ture distributions remain relatively stable across all regions,
with no significant anomalies. This stability underscores the
insulating effects of vertical stratification, which inhibits the
rapid propagation of surface heat into deeper layers.

V. CONCLUSION

In this study, we propose a novel multilevel ST information
fusion framework for sparse-to-dense prediction of subsurface
temperature, with a focus on the Pacific Ocean. The framework
effectively decouples high-dimensional subsurface temperature
fields into interpretable low-dimensional spatial and temporal
features. Using a confidence-driven scheduling mechanism,
stable spatial representations are updated incrementally to
capture gradual changes, while dynamic temporal behaviors
are updated more frequently to reflect fast-varying uncer-
tainties. In addition, the incorporation of the sparse-to-dense
information fusion module compensates for the limitations of
online sparse observations, significantly improving predictive
accuracy, resolution, and robustness.

Comprehensive experiments demonstrate the superiority of
the proposed methodology over peer methods. The proposed
methodology consistently achieves high performance across
varying sparsity levels and spatial distributions, with an RMSE
of 0.2230 and an ACC of 0.9846 under 10% ORSO. The model
successfully captures long-term warming trends in the Pacific
and depth-dependent dynamics, including the latitudinal slope
of the thermocline and localized cooling at −1000 m in
mid-latitudes. Moreover, the Pacific OTA analysis revealed
drastic temperature changes in low-latitude regions and sig-
nificant mid-latitude warming. These findings highlight the
ST heterogeneity of ocean subsurface temperature and the
dynamic interplay between atmospheric and oceanic processes.
In summary, the proposed methodology exhibits excellent
ability to reconstruct and analyze subsurface temperature fields
even under sparse observations. It holds significant potential
for advancing remote sensing applications in climate studies,
marine resource management, and oceanographic research.

In the future, the framework can be extended to predict other
important ocean parameters with similar ST dynamics. More-
over, analyzing global subsurface temperature anomalies and
inter-basin interactions will further advance the interpretability
of ocean ST dynamics.
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