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Abstract 

Recent advances in artificial intelligence (AI) and cyber-physical systems have fostered innovative 

approaches to performance assessment and management of existing building stock. This study 

presents an AI-assisted digital twin (DT) framework for the automated and high-precision detection 

of façade defects in large-scale buildings. Leveraging unmanned aerial vehicles (UAVs) for visual 

data acquisition, the proposed framework integrates building information modeling (BIM) and 

geographic information systems (GIS) into a GeoBIM-assisted DT environment. An end-to-end 

pipeline is developed for defect localization and semantic registration, in which a virtual building 

model and camera geometry are constructed using geographic metadata. Synthetic views are 

generated to simulate real image capture conditions, enabling depth-based inference of each 

defect’s spatial location. This facilitates the projection of defect data into georeferenced DT 

models. A dual-verification method combining image and geographic features is employed to 

eliminate duplicate detection across overlapping images, and structural context is retrieved via 

GeoBIM for semantic enrichment of defect information. The proposed system exemplifies the 

fusion of DT technologies with deep learning and cyber intelligence to enhance defect detection 

accuracy, resilience optimization, and timely building health monitoring. Experimental validation 

on a high-rise building in Hong Kong demonstrates the robustness and scalability of the framework, 

indicating strong potential for smart building maintenance and operation. 
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1 Introduction 

Periodic inspection is essential for maintaining the physical 
and functional conditions of civil infrastructure systems 
such as bridges, dams, roads, and buildings. For instance, 
since 2012, the Hong Kong government has initiated the 
mandatory building inspection scheme to address safety 
concerns arising from over 50% of private residences that 
have surpassed a 30-year lifespan (De Filippo et al. 2023). 
Visual inspection is a common approach aims to identify 
and locate potential defects caused by infrastructure 
degradation, such as cracks, spalling, and moisture, to 
prevent serious safety problems (Spencer et al. 2019). 
Traditional visual inspection methods rely on trained 

engineers for manual identification, characterized by high 
subjectivity, low accuracy, and low efficiency (See et al. 2017; 
Chen et al. 2023a). 

The recent trend is to combine robotic technology, 
such as unmanned aerial vehicles (UAVs), with computer 
vision technology, such as defect detection algorithms, for 
automatic data collection and analysis (Rakha and Gorodetsky 
2018; Agnisarman et al. 2019; Abouelaziz and Jouane 2024; 
Wang et al. 2024). On the one hand, UAVs equipped with 
cameras demonstrate significant advantages in terms of 
safety, cost-effectiveness, and maneuverability (Rakha and 
Gorodetsky 2018). Duque et al. (2018) distributed a national 
survey and find that UAV-enabled infrastructure inspection 
has been extensively applied and its feasibility has been  
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substantiated. On the other hand, the large amount of data 
derived from efficient data collection requires rapid automated 
processing methods, specifically artificial intelligence (AI) 
algorithms (Liu et al. 2025). The deep learning-based object 
detection algorithms have been widely adopted for different 
structures (Zhang et al. 2023c; Jha and Babiceanu 2023; 
Zheng et al. 2025), including tunnels (Li et al. 2021), buildings 
(Zheng et al. 2020), and bridges (McLaughlin et al. 2020). The 
recent novel network models achieve better performance, 
including faster region-based convolutional neural networks 
(R-CNN) (Ren et al. 2017) and the You Only Look Once 
(YOLO) series (Jocher 2020; Ge et al. 2021; Li et al. 2022; 
Wang et al. 2022). 

UAV-based imagery has become an essential tool for 
detecting surface defects on building façades. However, the 
identified defects on 2D aerial image data alone offer limited 
insight into the overall condition of the building. While 2D 
detection methods can localize defects, they often fail to 
provide the necessary spatial context for a comprehensive 
assessment of complex architectural structures. Zhang et al. 
(2023a) emphasized that the localization of damage on a 
building is crucial for accurate condition assessments. Many 
existing approaches focus on defect detection in 2D images 
without integrating these findings into a global 3D model 
of the building, limiting the usefulness of the detected data 
for broader structural evaluations. Furthermore, although 
building information modeling (BIM) models contain 
detailed architectural and structural information, their 
potential for defect management remains underutilized, 
as BIM’s semantic information is rarely incorporated into 
these detection processes. 

Beyond BIM, other approaches such as terrestrial 
laser scanning (TLS) (Mohammadi et al. 2023) and 3D 
reconstruction techniques like stereo photogrammetry (Jati 
2021; Chen et al. 2024; Wang and Gan 2024) have been 
utilized to build accurate representations of building façades. 
Integrating structure from motion (SfM) with learning-based 
multi-view stereo (MVS) has enhanced these techniques, 
allowing for the efficient creation of detailed and cost- 
effective digital twin (DT) models of structures (Hosamo 
and Hosamo 2022; Chen et al. 2023d; Li et al. 2024). These 
DT models provide high-fidelity representations of the 
physical building, enabling a better understanding of its 
current condition (Yang et al. 2022). However, despite their 
geometric accuracy, these methods often ignore the integration 
of semantic information from BIM, which limits their 
ability to fully capture the complexity of building structures 
and fails to provide effective maintenance and repair 
strategies. 

As illustrated in Figure 1, current defect detection 
methodologies predominantly identify cracks and defects 

in 2D images and project these findings onto a 3D model. 
This process facilitates surface-level defect localization but 
fails to address the deeper integration of detection data 
with the semantic structure of 3D building information 
modeling (BIM) models. For buildings with complex 
geometries, such as irregular or highly detailed wall surfaces, 
this traditional projection approach is insufficient for 
comprehensive structural evaluations. Existing limitations 
include the reliance on orthogonal images for accurate 
projection and the inability to incorporate overlapping images 
or irregular perspectives into the analysis. These gaps hinder 
the potential for a holistic assessment of architectural integrity, 
as crucial spatial and semantic relationships between 
defects and structural components are often disregarded. 
To overcome these challenges, recent studies have explored 
the integration of GIS with BIM, termed GeoBIM (Hajji 
and Oulidi 2022). GeoBIM combines the extensive spatial 
analytical capabilities of GIS with the rich semantic 
information provided by BIM, enabling more precise and 
context-aware management of infrastructure and built 
environment conditions (Liu et al. 2017; Moretti et al. 2021). 

Our proposed system introduces a novel GeoBIM-assisted 
registration method, leveraging GIS and BIM to construct  
a DT environment. This approach allows for the precise 
registration of UAV-captured 2D defect data onto a 3D model 
enriched with semantic information. By incorporating depth 
calculations and semantic retrieval, our method achieves 
accurate defect localization even under challenging conditions, 
such as non-flat surfaces or overlapping images. This 
comprehensive solution advances the state of defect detection 
and registration, enabling component-level evaluations that 
guide targeted maintenance and repair decisions. 

 
Fig. 1 The detected defects on local image and the corresponding 
defects registered on model with global reference 
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2 Related works 

2.1 UAV-based visual inspection 

Visual inspection serves as a valuable tool in detecting 
preliminary indicators of structural deficiencies in building 
façade, thereby averting potential severe risks (Alencastro 
et al. 2018). Moreover, visual inspection imposes minimal 
equipment requirement, thereby mitigating the costs 
associated with large-scale evaluations, such as those 
performed on high-rise buildings and bridges. However, 
traditional visual inspection requires substantial human 
resources and faces challenges such as data collection in 
hard-to-access areas and automated image data processing. 

The progression of robotic technology, particularly 
the advent of UAVs, has significantly facilitated the visual 
inspection process for large structures. Incorporating 
advanced sensing technology, lightweight sensors, such as 
laser scanners, RGB or infrared cameras, can be equipped on 
UAVs for the capture of video or image data (Alencastro et al. 
2018). It amplify the volume of data that can be collected 
within a brief time span, thereby integrating visual inspection 
efficiently into routine building maintenance tasks (Ruiz  
et al. 2022). However, the data collected by UAVs in visual 
inspection exhibits certain characteristics that presents 
considerable challenges for processing, including the vast 
quantity, the high degree of overlap (over 35%), multi- 
perspective views, and close-range to the surface (Chen   
et al. 2021). 

The task of conducting precise and efficient defect 
detection on such image data has surpassed the capabilities 
of traditional manual identification methods. Recently, 
computer vision techniques have been widely applied in 
structural inspection tasks, offering significant advancements 
in automated defect detection. For instance, Li et al. (2021) 
successfully employed R-CNN for large-scale surface defect 
detection in tunnels, demonstrating the potential of deep 
learning models in infrastructure assessment. Given the 
increasing complexity and scale of inspection environments, 
real-time processing has become a key focus, leading to the 
frequent application of frameworks such as YOLO, known 
for its rapid object detection capabilities. Despite these 
advances, current methods primarily deliver detection 
results in the form of annotations on 2D images. While this 
approach is effective for recognizing defects in individual 
images, it lacks the ability to provide a global spatial 
context, which is particularly problematic in large-scale 
environments. 

2.2 Digital twin for inspection and defect management 

The task of constructing accurate digital models of buildings 

is critical in UAV-enabled inspections, especially when 
incorporating DT technology for infrastructure management. 
Several methods have emerged in recent years to facilitate 
model construction, including: (1) photogrammetry; 
(2) image-to-BIM projection models; (3) level of detail 
(LOD) models. Each of these methods presents distinct 
advantages and limitations in terms of accuracy, efficiency, 
and semantic richness. 

Photogrammetry involves capturing the geometry and 
topology of buildings using aerial imagery. It has become 
widely adopted in UAV-based inspection workflows due to 
its relatively low cost, high efficiency, and ease of integration 
into automated processes. As demonstrated in recent studies, 
photogrammetry enables UAVs to gather high-resolution 
images, which are then processed into 3D models (Yu et al. 
2022). However, while photogrammetry provides a fast and 
scalable solution, its derived models often lack detailed 
structural information, limiting their utility in more complex 
analyses. For example, the models generated may capture 
external geometries but fail to offer insights into the 
internal structure or material composition of the building. 
Chen et al. (2023d) emphasized that photogrammetry- 
based reconstructions face significant challenges due to 
environmental factors like lighting and surface texture, 
which often lead to inaccuracies in the generated point 
clouds. However, they have leveraged advancements in 
deep learning and MVS techniques to enhance both the 
completeness and accuracy of these models, making 
photogrammetry more reliable and applicable in a variety 
of DT applications. 

Image-to-BIM modeling takes a different approach by 
leveraging existing BIM and integrating UAV-captured 
images into the BIM framework. This method involves 
aligning captured images with the BIM structure and 
superimposing additional data, such as optical or infrared 
imagery, onto the BIM for enhanced analysis (Hu et al. 
2022; Zhang et al. 2023b). The primary advantage of this 
method lies in its ability to provide semantic information 
and structural insights, as BIM typically contains data 
about the materials, construction methods, and lifecycle  
of a building. However, one of the major limitations of 
current image-to-BIM methods is their reliance on flat 
surfaces. As Zhang et al. (2023a) pointed out, existing 
image-to-BIM approaches cannot accommodate non-flat 
surfaces with complex architecture. Nevertheless, image-to-BIM 
remains a valuable tool for inspections requiring high 
structural precision and semantic detail, especially in scenarios 
where the UAV is deployed in a controlled environment 
with predictable building geometries. 

LOD models provide another means of digital 
representation by simplifying building geometries. LOD 
models prioritize real-time visualization and processing speed 
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by reducing the complexity of the geometric representation 
(Huang et al. 2020). These models are often used in 
applications where computational resources are limited, or 
when a high degree of accuracy is not required. For example, 
LOD models are frequently employed in city-scale simulations, 
where a simplified geometric representation is sufficient 
for planning or monitoring purposes (Hensel et al. 2019). 
However, LOD models lack the semantic and structural 
details needed for comprehensive inspections, making 
them unsuitable for more complex or large-scale buildings 
(Pantoja-Rosero et al. 2023). Furthermore, the simplification 
process can result in the loss of key features, such as façade 
details or intricate architectural elements, limiting their 
usefulness in precision-based tasks like defect detection or 
structural health monitoring. 

Above methods can all construct DTs of the as-is building 
condition, but most work only focuses on geometric structure, 
such as the point clouds generated by photogrammetry. The 
data generated by different methods are incompatible and 
only viable within their own frameworks. The model built 
can seldom provide subsequent value for continuous or 
periodic inspection and management. 

2.3 Defect registration 

Defect registration refers to the process of mapping 2D 
defect information identified in images onto a 3D spatial 
model, providing a global reference framework to support 
decision-making (Artus et al. 2021). By integrating localized 
2D defect data with the 3D global distribution of building 
structures, this technology enables comprehensive assessments 
that guide maintenance and repair strategies (Zhang et al. 
2023a). As shown in Table 1, depending on the type of 3D 
model used as the carrier, existing methods can be categorized 
into three main types: (1) point cloud-based registration,  
(2) BIM-based registration, and (3) GIS-based registration. 
However, each has notable limitations in achieving high- 
precision registration with semantic fidelity, particularly in 
real-world architectural scenarios. 

Point cloud-based registration uses dense spatial 
representations generated through UAV photogrammetry 
or laser scanning. These models effectively capture external 
geometry at high resolution (Valero et al. 2018). Zhang et al. 
(2022) employed finite-element methods to assess damage, 
and Chen et al. (2023b) annotated defect locations in point 
clouds. However, point clouds inherently lack semantic 
information, making it difficult to relate defects to specific 
structural elements or contextual attributes, thereby limiting 
their utility for semantic-level defect management. 

BIM-based registration incorporates building information 
modeling (BIM) to integrate visual inspection data with 
semantically rich architectural models. These methods have 
demonstrated advantages in associating detected defects 
with structural metadata, such as component IDs, material 
types, and design specifications. Prior studies (Chen et al. 
2019; Musella et al. 2021) have linked images to BIM 
elements through manual and automated region-of-interest 
extraction. More recent efforts (Tan et al. 2022; Zhang et al. 
2023a) use coordinate transformations to project defect 
locations from UAV imagery into BIM space. However, 
such methods often assume flat, orthogonal façades and 
require cumbersome or imprecise coordinate conversion 
workflows, which reduce applicability to buildings with 
complex geometries. 

GIS-based registration aligns images with real-world 
coordinates using geographic information systems. GIS 
excels in handling large-scale spatial data and integrating 
multi-source information (Xia et al. 2022). For instance, 
Chen et al. (2021, 2023c) used 2D façade unfolding 
techniques to register UAV images within GIS frameworks, 
simplifying visualization and documentation. Nevertheless, 
GIS approaches frequently reduce 3D geometry into flattened 
2D maps, which undermines fidelity when mapping defects 
to non-planar surfaces or associating them with specific 
building components. 

In summary, existing methods exhibit trade-offs among 
geometric accuracy, semantic integration, and practical 
applicability. Point cloud-based methods provide high 

Table 1 Comparison between existing registration methods and our approach 

Publication Application Method 
Associated 
technology Limitations 

Chen et al. 2021 
Geo-register 2D GIS spatial model of 
building façades 

Geo-registration GIS 
Applicable only to flat surfaces with rich 
features; limited to 2D image mosaics 

Tan et al. 2022  
Project segmented defect image to BIM 
based on UAV GPS localization  

Defect registration  BIM 
Significant registration errors; dependent on 
path planning; limited to orthogonal, flat facades

Zhang et al. 
2023a  

Project image to BIM using improved 
generalised Hough transform  

Image-to-BIM 
registration  

BIM 
Effective only for flat walls with unique surface 
features; limited robustness in complex scenes 

Mohammadi et 
al. 2023 

Integrate BIM with decision support 
system to provide high-fidelity model  

Asset management  BIM 
Did not address the problem of precise defect 
localization or semantic matching 
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spatial resolution but lack component-level interpretability. 
BIM-based approaches support semantic enrichment but 
are hindered by complex and error-prone registration 
procedures. GIS-based methods afford scalability but 
oversimplify 3D structures, limiting their descriptive power. 

To address these methodological shortcomings, we 
propose a GeoBIM-based registration framework that unifies 
the spatial accuracy of GIS with the semantic richness of 
BIM. The novelty of our approach lies in the algorithmic 
design of a high-precision pose estimation module and a 
semantic matching mechanism that automatically associates 
detected defects with corresponding BIM components. By 
leveraging the georeferenced BIM model for camera pose 
correction, we achieve centimeter-level accuracy in defect 
localization, and by incorporating semantic metadata,   
we facilitate structured defect management and query.  
This enables precise, component-level mapping of defects 
directly onto the DT with both spatial and contextual 
fidelity—a capability that, to our knowledge, has not 
been comprehensively realized in prior frameworks. Our 
methodology not only integrates but also enhances existing 
processes to meet the rigorous demands of automated, 
scalable, and semantically enriched defect management in 
complex urban structures. 

2.4 Research gaps and contributions 

Building on the preceding literature review and addressing 
the key methodological concerns raised, we identify the 
following critical research gaps: 
(1) Inadequate support for high-precision 2D-to-3D defect 

localization: Existing registration approaches, especially 
those based on BIM, rely on complex and error-prone 
coordinate transformations (e.g., from WGS-84 to local 
BIM coordinates) (Liu et al. 2019). These multi-stage 
projections introduce accumulated uncertainties, often 
compromising localization accuracy. Moreover, these 
methods do not sufficiently account for image perspective 
distortions or UAV-acquired oblique imagery, which 
are common in real-world inspections. 

(2) Limitations in handling unordered and overlapping 
visual inputs: Current methods frequently depend on 
orthographic and non-overlapping images (Tan et al. 
2022), which restricts their practical applicability. 
Overlap, although useful for structural completeness, leads 
to redundancy and ambiguity in defect interpretation. 
There remains a lack of robust solutions that can 
effectively utilize overlapping, non-perpendicular images 
to achieve precise and unambiguous defect localization. 

(3) Lack of semantic integration in spatial registration 
frameworks: GIS-based registration methods often 
reduce complex 3D geometries to flat 2D surfaces 

(Chen et al. 2021, 2023c), making them inadequate  
for evaluating structures with irregular geometries. 
Moreover, traditional point cloud or SfM-based approaches 
lack semantic depth, hindering intelligent retrieval, 
component-level interpretation, and downstream decision 
support. 
To address these gaps, we introduce a novel UAV-based 

GeoBIM-integrated DT framework for large-scale defect 
inspection. The major contributions of this study are 
summarized as follows: 
(1) We design a high-precision defect registration framework 

that integrates UAV-based image acquisition, real-time 
defect detection, and GeoBIM-based semantic depth 
rendering. The registration pipeline introduces a calibrated 
pose estimation module to resolve positional inaccuracies, 
ensuring accurate 2D-to-3D localization. 

(2) We develop a GeoBIM-based depth mapping strategy 
that provides sub-centimeter spatial accuracy by 
leveraging virtual camera rendering and physically aligned 
coordinate systems. Unlike conventional SfM-generated 
models, our approach benefits from high-quality BIM 
references and avoids distortions commonly found in 
point cloud reconstructions. 

(3) We implement a semantic defect matching mechanism, 
aligning detected defects not only geometrically but also 
with the associated BIM structural components. This 
enhances traceability, enriches defect characterization, 
and supports intelligent maintenance planning. 

(4) We construct an interactive, web-based visualization 
and data management platform using WebGIS, enabling 
intuitive interaction with defect data and structural 
semantics. The proposed system has been quantitatively 
validated across various real-world urban scenarios, 
demonstrating its effectiveness, scalability, and practical 
applicability for large-scale architectural maintenance. 

3 Methodology 

The basic flow chart of this registration method is shown in 
Figure 2, which starts with the aerial images collected by 
the UAV and ends up with a DT of the as-is building 
condition that integrates defects and a geometric model. 
The UAV-collected images have additional sensing data in 
two aspects: optical attributes such as POV, image size, etc., 
and the geographical state of the UAV, including attitude 
(from Inertial Measurement Unit (IMU)) and position 
(from Global Positioning System (GPS)). 

With the aerial images, the 3D model (either 
photogrammetry model or BIM) is constructed by a 3D 
reconstruction algorithm or manual modeling method. 
Then, the depth texture is generated with the geo-referenced 
model and the corresponding original aerial image. The 
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detected defects on the images are aligned with the distance 
information on the depth texture to calculate the global 
coordinate localization. Additionally, the alignment of 
BIM’s semantic information with the geographic data ensures 
that each defect is matched to its corresponding structural 
information. Finally, the 2D defects are registered to the 3D 
model, creating a DT of the target building with its as-is 
conditions. 

3.1 Coarse registration 

This section introduces and outlines the GeoBIM approach 
based on the integration of GIS and BIM, which aligns 
physical objects with their virtual counterparts in the virtual 
space, ultimately resulting in the construction of a coarse 
DT environment. The coarse registration involves configuring 
the GeoBIM environment and processing the input images 
and UAV pose data. Through virtual camera registration, 
pixel-level depth values for the original images are 
calculated. 

Although BIM is widely used as the dominant paradigm 
in architectural projects, BIM platforms are usually configured 
for the specific design, construction, and data management 
of unique buildings. As a result, their assistance for regional 
inspections, especially those that utilise unmanned systems 

and comprehensive spatio-temporal data, is significantly 
restricted. Through the process of geo-referencing, the 
integration of GIS with BIM establishes a global reference 
framework that enables BIM models to precisely correspond 
with real-world geographic data. Utilising ground control 
points (GCPs) with established geographic coordinates 
allows for geo-referencing of the BIM model to accurately 
represent the real spatial environment. By integrating the 
spatial accuracy of GIS with the comprehensive semantic 
information of BIM, a unified environment is established. 
This methodology not only surpasses the constraints   
of conventional BIM by facilitating wider geographic 
compatibility but also expands the use of BIM data to 
environmental analysis and infrastructure management, 
therefore augmenting its total usefulness and decision-making 
capacities. 

Innovatively, we are the first to propose the application 
of the BIM+GIS approach in the realm of large-scale UAV- 
based visual inspections, aiming to construct the GeoBIM 
as the as-is DT representation of architectural defects. The 
proposed method for the primary DT configuration entails 
two fundamental steps: (1) GIS-based georeferencing, 
encompassing both the model and aerial photography 
POV, and (2) the acquisition of corresponding depth data to 
facilitate subsequent defect localization. GeoBIM integrates 

Fig. 2 A workflow of autonomous building façade defect detection and management under the DT framework 
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the detailed structural and semantic information of BIM with 
the geospatial capabilities of GIS, providing a comprehensive 
framework for defect management and spatial analysis in 
building inspections. 

3.1.1 GeoBIM environment configuration 

This subsection proposes the processes of GeoBIM 
environment configuration with BIM, GIS and service 
attributes as in Figure 3. BIM attribute provides both the 
geometry model and the semantic metadata of the structures, 
while the GIS attribute mainly ensures that elements such 
as terrain, 3D assets, and world base maps in the environment 
are consistent with physical scenes. The GeoBIM platform 
is integrated based on Unreal Engine 4.27 (Sanders 2016), 
which is compatible with Cesium’s GIS and BIM portals for 
the unreal API (Cesium 2023). In addition, the UAVs are 
modeling with the physical and optical settings. 

3.1.2 Pose estimation 

In practical UAV-based inspections, two types of aerial 
images are utilized: mult-iview aerial images and close-range 
images. Each serves distinct purposes and plays a 
complementary role in ensuring accurate defect detection 
and localization. For multi-view aerial images, they are 
captured from multiple angles and distances around the 
structure to provide a comprehensive view of the building. 
They are primarily used for 3D reconstruction through an 
incremental SfM framework, which generates a dense 3D 
point cloud model of the building. This process enables  
the derivation of global geometric features that serve as a 
contextual reference for aligning close-range images. The 
multi-view data compensates for the limited perspectives of 
close-range images and enhances the global pose estimation 
accuracy. For close-range images, they are collected at close 

proximity to the building façade, offering high-resolution 
detail critical for detecting surface defects. However, due to 
the constrained field of view and limited spatial context, 
close-range images may suffer from inaccuracies in pose 
estimation when used in isolation. 

To overcome the limitations of close-range images,  
we integrate multi-view aerial images to provide global 
contextual features that refine pose estimation for close- 
range images. This involves matching key features between 
the two image types, aligning their respective pose data, and 
applying transformation matrices to ensure consistency 
within the 3D reconstruction model. The combined data 
approach leverages the global geometric accuracy of 
multi-view images and the detailed defect detection capability 
of close-range images, resulting in enhanced defect 
localization and registration accuracy. The data collection 
strategy is illustrated in physical space in Figure 2, showing 
the UAV’s flight path for capturing both multi-view and 
close-range images. Multi-view images are captured 
through oblique photogrammetry along the UAV’s broader 
flight path, while close-range images are taken along a 
façade-parallel path for detailed inspection. This coordinated 
flight plan ensures comprehensive data acquisition for both 
global and local tasks, laying the foundation for robust 
integration into the GeoBIM framework. 

Using an incremental SfM framework, we calibrate the 
UAV’s pose data, incorporating constraints derived from 
both multi-view and close-range images as in Figure 4. This 
optimization corrects GPS errors, mitigates misalignment 
issues, and establishes accurate camera poses. The optimized 
pose data is subsequently used to transform the close-range 
images into the global coordinate system, enabling precise 
defect localization and integration into the GeoBIM 
framework. 

Fig. 3 The GeoBIM-based DT environment configuration 
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Firstly, for a large batch of consecutive frame images, 
the ORB algorithm provides fast and robust image feature 
extraction. Subsequently, spatial matching selects two 
consecutive frames, i − 1 and i, for initialization. The matching 
of consecutive frames involves fundamental matrix calculation 
using the random sample consensus (RANSAC) 8-point 
method to eliminate outliers. The resulting image pairs and 
matching relationships are used for 2D-2D matching based 
on epipolar geometry, obtaining the relative poses of image 
pairs. Then, triangulation is employed to generate 3D 
points, establishing 2D-3D matching relationships, and 
utilizing the PnP algorithm to solve the camera’s poses. 

In practice, it is prone to outliers in the matching 
process, i.e., incorrect matches of feature points. To address 
this issue, the normalized 8-point algorithm with RANSAC 
is introduced. It comprises the following steps: randomly 
select eight pairs from all matched keypoints in the image 
pair, compute the corresponding fundamental matrix Fi 
(since there is no need to consider the case where the 
camera centers of matched frames are the same, there is no 
need to involve the homography matrix H); then, calculate 
the Sampson distance errors for all pairs of matching 

points with Fi, and if the error is less than a threshold, it is 
considered an inlier; repeat the above steps until the maximum 
number of iterations is reached to obtain the optimal match 
with the maximum number of inliners. 

The calculation formula from epipolar constraint for 
matrix F is as follows: 

det 0
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Fig. 4 Pose estimation 
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where, τ is the maximum error for inliners as an 
approximate estimate from pi to Fipi−1. Then the number of 
the corresponding inliers is recorded in this iteration. Given 
the ratio of inlier is 0.5, the iteration time is set as 1000 to 
achieve the matching rate of 0.99. The transformation 
matrix between the image pairs can be decomposed from 
matrix F. Then the poses of following frames are solved by 
Perspective-n-Point (PnP) algorithm. The corresponding 
formula is as following: 

[ ] ( )2 2

SO(3), 1
arg min min ( ) ,

n
w

i i
R t i

π d
Î Î =

= - -åR t p RP t


     (3) 

where, function π is the projection function to project the 
3D point Pi to pixel coordinate and the threshold d is to 
filter the outliers. Hence, the optimized poses for all the 
current frames are updated to the camera property in 
GeoBIM library.  

Through the preceding steps, we have filtered and 
calibrated the poses of each frame; however, these poses are 
defined within a local coordinate system. To be more 
precise, the current 3D spatial coordinate system is a Cartesian 
coordinate system represented by the matrix [R|t]. Recognizing 
that transformation matrix calculations cannot be directly 
performed in the WGS84 coordinate system, we establish 
an initial earth-centered, earth-fixed (ECEF) coordinate 
system through a 3D similarity estimation with more than 
3 settled frames. Subsequently, we calculate the poses of other 
frames in the ECEF coordinate system as e { }i i i iX Y Z= , ,P . 
Finally, these poses are transformed into WGS84 coordinates 

g { , , }i i i iP lng lat alt= , resulting in optimized global pose 
localization information. The transformation formula from 
ECEF coordinate to WGS84 coordinate is as follows: 
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                (4) 

In our framework, 3D model construction is based on 
SfM’s pose estimation, which enhances UAV positioning 
accuracy and serves as the basis for model construction. 
This is followed by a learning-based MVS method to generate 
a dense point cloud (Yang et al. 2023). Additionally, the 
framework is flexible, allowing alternative 3D reconstruction 
algorithms, provided the models maintain necessary accuracy 
and completeness. The integration with GeoBIM ensures 

that this flexibility does not affect the system’s overall 
functionality, preserving its effectiveness for tasks such as 
defect localization. 

3.1.3 Image registration and depth calculation 

The fundamental principle of 3D engine visualization 
rendering is to transform a scene represented in 3D into a 
2D form. The coordinate processing involves various stages 
such as modeling transformation, viewing transformation, 
projection transformation, perspective transformation, 
and viewport mapping (De Vries 2015). Through these 
transformations, object coordinates progress through multiple 
spaces: local space, world space, eye space, clip space, 
normalized device coordinate (NDC) space, and finally screen 
space. Each space serves a specific role in the rendering 
pipeline. Local space defines an object’s geometry relative 
to itself, while world space positions it in a global scene for 
interaction. Camera space aligns the global scene relative  
to the camera’s perspective, determining what is visible. 
Clipping space projects the scene onto a 2D plane while 
removing objects outside the camera’s view. NDC space 
normalizes these coordinates into a standard range, and 
screen space maps them to pixel positions for visualization. 
These transformations ensure accurate visualization of 3D 
scenes and facilitate the integration of UAV-collected data 
into the GeoBIM framework. The entire process is illustrated 
in Figure 5. 

To obtain the distance from the camera to an object, i.e., 
the depth value, it is necessary to perform a reverse 
calculation based on the depth texture acquired in screen 
space. Given that the transformation from local space to 
eye space (camera space) does not involve scale changes, the 
depth transformation process can be focused solely on the 
transition from screen space to view space. As in Figure 8(e), 
it’s required to calculate the depth in eye coordinate ze(i, j) 
from the screen coordinate zs(i, j), where (i, j) is the pixel 
coordinate of the depth image. 

The depth transformation between the NDC space zn(i, j) 
and the screen space zs(i, j) is as follows: 

s s s
n

s s

2 ( , ) ( )( , ) z i j f nz i j
f n
- +

=
-

                      (5) 

 
Fig. 5 The coordinate transformation pipeline for 3D to 2D 
rendering 
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where fs is the far plane and ns is the near plane on screen 
space with the default value fs = 1 and ns = 0. Accordingly, 
the depth transformation between the NDC space and the 
eye space is as follows: 

e
n

2( , )
( ) ( )

fnz i j
f n z f n

=
- - +

                       (6) 

As a result, from screen space to view space, the depth 
value are calculated as the formula: 

e
s

( )
( )( )

nz i j
z i j f n f

, =
, - +

                        (7) 

3.2 Precise registration 

Coarse registration establishes the GeoBIM environment, 
allowing the creation of virtual BIM images and physical 
depth maps that accurately align with the POV of the 
physical photographs. Achieving global defect registration 
and semantic annotation requires further refinement 
through precise registration. This process encompasses the 
following objectives: (1) the detection and local positioning 
of defects; (2) the registration of individual defects onto  
the model; (3) the employment of semantic retrieval for 
structure alignment. 

The core of this approach is the automation of defect 
detection and registration, achieved through the analysis of 
UAV-captured images. Each detected defect is cataloged, 
linked to a unique identifier within the architectural 
component, and integrated into the system. This method 
overcomes traditional limitations related to the UAV’s 
POV, the characteristics of the detection subject, and  
the photographic technique. It allows flexibility in UAV 
positioning relative to irregular wall surfaces, eliminating 
the need for perpendicular angles, and does not impose 
strict requirements on image overlap, offering an efficient 
solution for managing architectural defects. 

3.2.1 Deep learning-based defect detection 

To ensure the generalizability and reproducibility of the 
proposed GeoBIM-based defect registration framework, we 
adopt a modular approach to defect detection that allows 
seamless integration with existing or future deep learning 
models. While defect detection is not the core innovation 
of our work, we recognize its pivotal role in the entire 
workflow and thus provide a comprehensive presentation of 
the dataset, algorithm selection, and evaluation procedures. 
Our aim is to minimize ambiguity and support flexible 
deployment of our pipeline across diverse use cases and 
detection models. 

1) Dataset construction 

The effectiveness of current learning-based methods in defect 
detection for large-scale infrastructures is significantly 
hindered by the lack of a high-quality open-source dataset. 
To bridge this gap, we present CUBIT-Det, the first 
high-resolution dataset specifically designed for detecting 
various defects in extensive infrastructures (Zhao et al. 2024). 
This dataset includes 5527 images captured by unmanned 
systems, with a remarkable maximum resolution of 8000 × 
6000. The dataset’s defect images are taken from multiple 
angles and distances under various lighting conditions, 
offering a comprehensive array of structural details. This 
variety ensures the robustness of models in practical 
inspection scenarios. The dataset covers the three most 
common types of infrastructure: buildings (65%), pavements 
(29%), and bridges (6%), focusing on the inspection of three 
primary defect types: cracks (82%), spalling (12%), and 
moisture (6%), as shown in Figure 6. 

2) Real-time detection and localization 

Based on the self-established dataset, we conduct evaluations 
on a multitude of state-of-the-art (SOTA) learning-based 
real-time object detection algorithms to ascertain the 
optimal solution of the task of defect detection in terms of 
both speed and accuracy. We train and test 12 SOTA series 
algorithms (nearly 30 models): YOLOv5 (Jocher 2020), 
YOLOv6 (Li et al. 2022), YOLOv7 (Wang et al. 2022), 
YOLOv8 (Jocher et al. 2023), YOLOX (Ge et al. 2021), 
PP-YOLO (Long et al. 2020), PP-YOLOv2 (Huang et al. 
2021), PP-YOLOE (Xu et al. 2022), PP-YOLOE+ (Xu et al. 
2022), MobileViT (Mehta and Rastegari 2021), RT-DETR 
(Zhao et al. 2023) and Faster R-CNN (Ren et al. 2017). 

3) Evaluation metrics 

Precision (P), Recall (R), and Average Precision (AP) are 
the three most commonly used metrics in object detection 
for infrastructure defect detection. Precision measures the 
accuracy of detected defects, denoting the ratio of correctly 
identified defects to all detections made by the model. Recall, 
on the other hand, assesses the rate of missed detections, 
indicating the proportion of correctly identified defects 
among all actual defects. Precision and Recall are defined 
as follows: 

TPPrecision
TP FP

=
+

                             (8) 

TPRecall
TP FN

=
+

                               (9) 

The AP metric represents the weighted mean of precision 
scores at each threshold on the precision–recall (PR) curve, 
using the increase in recall from the previous threshold as  
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the weight. Given the multi-category nature of our detection 
task, we calculate the AP for each category and then compute 
the mean Average Precision (mAP) across all categories. The 
equations for AP and mAP are provided below. Here, APi 
represents the AP for class i, and m is the total number of 
classes. 

1
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1

AP ( )d

1mAP AP
m

i
i

p r r

m =

=

=

ò

å
                              (10) 

Unlike traditional integral methods used to calculate 
AP, the computation of AP in MS COCO involves a 
discretization process: the PR curve is defined as the average 
of precision values at a set of 101 evenly spaced recall levels 
[0, 0.01, ..., 1] (from 0 to 1, with the increments of 0.01). 
The equations for mAP in MS COCO is shown below: 
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        (11) 

4) Model selection 

We visualize the inference time versus AP0.5:0.95 of the selected 
SOTA models in Figure 7. For all series of algorithms, as 
the model size increases, the inference speed will decrease 
while the detection capability will improve. However, there 
is a bottleneck in detection capability, which means that 

simply enlarging the model to realize the enhancement of 
detection performance cannot always be effective. From the 
top-left corner of Figure 7, it becomes clearer that YOLOv8 
(Jocher et al. 2023) (red star) networks demonstrate a fabulous 
trade-off between accuracy and latency on large-scale 
infrastructure defect detection task. 

YOLOv8 (Jocher et al. 2023) builds upon the YOLO 
series with a fully anchor-free design, predicting object 
bounding boxes directly from feature maps without relying 
on predefined anchor templates. It introduces a decoupled 
head architecture that separates classification and localization 
tasks, improving convergence and accuracy. YOLOv8 also 
integrates advanced techniques such as dynamic label 
assignment and a simplified backbone, enabling more accurate 
and efficient detection of defects like cracks, spalling, and 
moisture, even under varied lighting and surface conditions. 
For each defect, YOLOv8 (Jocher et al. 2023) outputs a 
bounding box with four parameters: x and y coordinates  
of the center, and the box’s width and height. These 
parameters, normalized to the image’s dimensions, offer a 
scalable object localization method. Alongside these spatial 
parameters, the model also outputs a confidence score 
reflecting the model’s certainty in the detection, as well as 
class probabilities indicating the type of defect detected. 
The result is a set of bounding boxes, each associated with  
a defect type and its relative location within the image, 
providing critical data for subsequent analysis and rectification 
in architectural maintenance and restoration efforts. 

 
Fig. 6 Self-established dataset for infrastructure defect detection. The defect category includes crack, spalling, and moisture, and the 
infrastructure category includes building, pavement and bridge 
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3.2.2 Individual defect to model registration 

A key step in integrating and managing defect detection 
outcomes—such as defect images, local positioning data, 
and classification—is the registration of these results. This 
process involves determining global positions and eliminating 
redundant defects. Registration ensures that each detected 
defect is accurately mapped within the GeoBIM framework, 
enabling precise localization across the entire structure.  
By aligning and consolidating detection results, this step 
lays the foundation for building a comprehensive DT of 
architectural defects, crucial for effective maintenance and 
remediation strategies. 

We follow the geographic transformation paradigm 
shown in Figure 9 to project the detected defects from the 
image coordinate system onto the geo-referenced model. In 
previous sections, we derived the corresponding detected 
images, GeoBIM images, and depth images within the 
GeoBIM environment (see Figures 8(a)–(d)). The defect 
images contain the origin images with defects marked by 
red bounding boxes, while the local coordinates and defect 
size on the image plane are recorded in the data library. For 
the jth defect in the ith image (denoted as defect ij), we first 
capture the geographic coordinate of the image center O 
based on the pose estimation results, denoted as g

iP . 
Instead of incorrectly describing the distance ( )jd i


 as the 

projection from O to O˝, this vector actually represents the 
depth from the defect ij to the model surface, as inferred 
from the depth map generated in the GeoBIM environment. 
The vector ( )jd i


 is aligned with the depth axis and 

provides the distance from the defect to the wallsurface.  

The direction is consistent with OO¢¢


, but the magnitude 
reflects the depth from the defect to the 3D model. 
Subsequently, we compute the relative distance between O˝ 

and the center of the defect’s bounding box, converting  
it into a metric distance along the tangential vector ( )jl i


 

from O˝ to the defect ij. This allows us to determine the 
global position of the defect in the 3D space. The corrected 
calculation process is reflected in Algorithm 1. 

 
Algorithm 1 Individual defect registration 

Require: Geographical coordinates g ( )i i i iP lon lat alt, , ; defect distance 
ze(i,j); projection vector n  

Ensure: Global location g(i,j) = (lngi,j,lati,j,alti,j) 
 1: for i = 1 to imax do 
 2:     Compute projection point: g g

e( 0)i iP P z i n* ¬ + , ⋅
  

 3:     for j = 1 to jmax do 
 4:         ( )FOV

D e 2( ) 2 ( 0) tanL i z i¬ , ⋅  

 5:         D
D

( )( ) ( ) ( )
l i jL i j L i l i
,

, ¬ ⋅


 

 6:         g( ) ( )ig i j P L i j*, ¬ + ,


 

 7:         2 2
lng lat(0 5 unit ) (0 5 unit )T ¬ . / + . /  

 8:         for k = 1 to i − 1 do 
 9:             for t = 1 to jmax − 1 do 
10:                 if ( ) ( )g k t g i j T, - , > then 
11:                     Mark g(i,j) as a new defect 
12:                 end if 
13:             end for 
14:         end for 
15:     end for 
16: end for 
17: return g(i,j) 

 
Fig. 7 Trade-off performance of different models about inference time versus AP0.5:0.95 trained on CUBIT-Det dataset. The further the 
point is toward the top-left corner, the stronger the detection capability and the shorter the inference time 
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Fig. 8 Corresponding images from different sources: (a) original aerial image; (b) detected image; (c) GeoBIM generated image;
(d) GeoBIM derived depth image. (e) The transformation process to compute the physical depth OP


 from image to the building surface

 
Fig. 9 The projection of defects from image to model 
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3.2.3 Semantic retrieval for semantic matching 

Global registration furnishes the geographical coordinates 
of defects, facilitating the establishment of a one-to-one 
correspondence between these defects and the geospatially 
coupled architectural structures within the GeoBIM 
environment. In this section, we will expound on the 
methodology for conducting structural retrieval correlated 
with identified defects through GeoBIM, aiming to construct 
an assessment of building defects at the structural level. 
Given that GeoBIM incorporates metadata from BIM and 
introduces GIS data as well as inspection data from UAVs, 
as illustrated in Figure 8. Utilizing collected images along 
with their fully corresponding GeoBIM-derived images allows 
for the retrieval of BIM semantic information corresponding 
to elements present in the images. 

This approach not only enhances the precision of defect 
assessments but also contributes to the strategic allocation 
of resources for infrastructure maintenance, underscoring 
the critical role of GeoBIM in advancing the state-of-the- 
art in architectural defect management. 

As depicted in Figure 10, while BIM provides essential 
structural prior knowledge for constructing a building’s  
DT, it does not automatically link to the defects detected 
within the structure. To bridge this gap, we have developed 
an automated workflow, which systematically facilitates the 
integration of BIM with detected defects and other relevant 
data. This process is entirely automated, as explained 
below. 
(1) BIM registration: This initial step involves aligning and 

geo-referencing the BIM data with real-world physical 
data gathered from the site. Using Unreal Engine’s  

 
Fig. 10 The hierarchy of corresponding BIM and GeoBIM 
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Datasmith API, we automate the registration process 
by transferring BIM metadata into the GeoBIM 
environment. The geo-referencing process, as discussed 
in Section 3.1.3, assigns geographic coordinates to the 
BIM model, ensuring that its semantic structures are 
aligned with the actual geographic location. This allows 
for precise overlay of detected defects on the GeoBIM 
model, which forms the foundation for further analysis. 

(2) Knowledge extraction: Once the BIM registration is 
completed, we automatically extract semantic information 
from the BIM model using the same Datasmith API. 
This extraction process parses data such as material 
properties, structural components, and spatial hierarchies 
(e.g., floor levels, orientations) to construct a knowledge 
base. This information is critical for understanding the 
context of the building’s structure and linking it to the 
detected defects. 

(3) Metadata transference: Through Unreal Engine’s 
metadata transfer capabilities, both static BIM data and 
dynamic UAV data (such as flight paths, timestamps, 
and aerial defect logs) are transferred and stored in a 
consolidated metadata system. By automating this 
transference process, the system ensures that each 
defect is linked to relevant geographic and semantic 
information, forming a traceable record of the building’s 
condition. All defect locations and their corresponding 
high-precision geographic information, as calculated 
and discussed earlier in the manuscript, are archived in 
the database. 

(4) Retrieval mechanism: With metadata from both the 
static BIM model and UAV-acquired dynamic data 
properly aligned and registered, the system automatically 
allows semantic retrieval. Defects can be queried based 
on their geographic location and semantic context, such  

as the material type or structural component affected. 
By leveraging the metadata’s geo-referenced alignment 
with BIM, the system provides a fully automated 
mechanism for defect localization and retrieval based 
on semantic and geographic information. Users can 
retrieve defect details, such as the defect’s severity and 
material specifications, enabling comprehensive analysis 
and decision-making. This automated retrieval mechanism 
ensures that defects are correctly localized within the 
broader context of the structure, providing actionable 
insights for maintenance and monitoring. 
Through these interlinked processes, the automated 

workflow enhances the building DT with detailed defect- 
related information and transforms it into a dynamic tool 
for ongoing structural health monitoring. The entire process, 
from metadata extraction to defect localization, is fully 
automated, ensuring precision and efficiency. 

4 Implementation 

We deploy our proposed inspection framework on various 
large-scale scenarios to verify its effectiveness and efficiency. 
Here, we take a large-scale high-rise warehouse (36 m ×  
27 m × 100 m) as a representative instance. 

To verify the effectiveness and efficiency on real 
large-scale scenarios, we have deployed the method on a 
large-scale high-rise warehouse. Figure 11 illustrates the 
application of our methodology to a commercial building 
which rises to a height of 100 meters and spans an area of 
approximately 27 m × 36 m, located in the Shatin district  
of Hong Kong. This 18-story structure was extensively 
surveyed using three DJI Mavic 2 drones, each equipped 
with a camera capable of capturing images at a resolution 
of 8000 pixel × 6000 pixel. These UAVs were deployed to  

Fig. 11 Experiment scene to evaluate the proposed approach: (a) aerial view of the target building; (b) footprint of the target building; 
(c) GCP on the building; (d) multiple UAVs used in data collection 
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collect over 1000 aerial photographs to facilitate a detailed 
analysis of the building’s features and conditions. The specific 
locations from which these images were acquired are detailed 
in Figure 11(b). 

To process this substantial amount of high-resolution 
data, the study utilized advanced computing hardware, 
comprising an Intel(R) Core(TM) i9-10920X CPU and an 
NVIDIA GeForce RTX 3090Ti GPU. This setup was 
chosen to ensure robust and efficient handling of the data, 
enabling precise and timely analysis of the structural integrity 
of the building. 

4.1 Field experiment results 

In the field experiments, the primary focus was on the 
collection of data via UAVs, with specific attention to 
ensuring image quality, data completeness, and flight safety. 
To facilitate this, flight paths were meticulously planned 
based on the GeoBIM surface model of the structure. 
Typically, this planning necessitates maintaining the UAVs 
in a perpendicular orientation to the building’s walls while 
keeping an approximate distance of 10 meters to optimize 
image capture and data accuracy. 

Following these guidelines, the UAVs executed their 
flights along predetermined trajectories, effectively adhering 

to the designed flight paths. To enhance the efficiency of 
data collection and mitigate potential issues such as battery 
depletion, three drones were deployed simultaneously. This 
strategy allowed for comprehensive aerial coverage of the 
target building’s surface, achieving complete data acquisition 
within a span of thirty minutes. This coordinated approach 
not only maximized the productivity of the data collection 
phase but also ensured the safety and reliability of the 
operational process. 

4.1.1 Results of individual defect registration 

As proposed in Section 3, the registration process involves 
projecting individual defect images from their original GPS 
locations to geo-referenced 3D model. Specifically, this is 
achieved by utilizing GeoBIM to generate corresponding 
coarse registration images and employing depth maps to 
ascertain physical distances, thereby accurately localizing 
each defect onto the model. 

We collected 1,016 aerial images at a resolution of 8000 
× 6000, covering the entire exterior surface of the building. 
These images were then processed for detection and registered 
to the corresponding SfM model for visualization and 
evaluation. Figure 12 presents the sequence of intermediate 
results generated throughout this process. According to 
evaluations by building inspection experts, the detection  

 
Fig. 12 The process of quantitative evaluation of the results of detection defect registration: (a) detection images with red bounding boxes
to illustrate the defects; (b) GeoBIM derived depth image; (c) registration results of individual defects and each defect is illustrated by a
green mark; (d) mask of defects for registration evaluation, while the masks are from (a)’s bounding box and defects are from (c)’s green
marks 
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results achieved over 80% mAP0.5 accuracy (at 30 FPS), 
demonstrating strong consistency within the dataset and 
the effectiveness of the chosen model for accurate detection. 
Figure 12(a) shows the defect detection outcomes from the 
aerial photographs, with red bounding boxes highlighting 
the defects. Figure 12(b) illustrates the depth maps derived 
from GeoBIM, providing essential spatial information for 
defect localization. Finally, panel (c) visualizes the registered 
defects on a WebGIS platform powered by Cesium (2023), 
where the central positions of the defects are marked by green 
points. From Figure 12(c), it is clear that the SfM model more 
accurately represents the as-is condition of the building 
compared to BIM. The SfM serves as the primary geometrical 
and visual representation within the DT framework, with the 
registered defects accurately reflecting their true geographic 
locations. These results confirm the effectiveness of our 
methodology. However, errors are inevitable during data 
processing, and we have developed a validation method to 
quantify the precision of our approach. 

Considering that the defects have been located in global 
geographic coordinates, we calculate the defect localization 
error as the offset between the registered defect positions 
on GIS-derived images and the centers of the detected 
defect bounding boxes on original images. To achieve this, 
we have reconstructed each POV of the camera within the 
GIS virtual space, which precisely mirrors the actual world 
settings and incorporates identical geographical and optical 
features, as shown in Figure 12(c). Following this setting, 
we overlay the defect images onto these virtual images to 
accurately determine the defect localization errors. Here, 
the gray square masks represent the original defect bounding 
boxes, and the registered defects are marked with relative 
green points, as illustrated in Figure 12(d). These discrepancies 
are then converted from pixel measurements to physical 
units measured in centimeters. The accuracy of our 
registration method is evaluated by calculating the mean 

absolute error (MAE), the root mean square error (RMSE), 
and the interquartile range (IQR)—the latter being the 
difference between the first quartile (Q1) and the third 
quartile (Q3). The results, as tabulated in Table 2, confirm 
the centimeter-level accuracy of our approach. These statistical 
measures provide a robust assessment of our method’s 
precision, ensuring that our registration technique is both 
reliable and suitable for practical applications in defect 
detection and localization. 

To validate the performance of our proposed registration 
framework, we conducted a comparative evaluation against 
three representative classes of state-of-the-art methods: 
GPS-based projection, image-feature-based BIM registration, 
and GIS-based 2 D image alignment. As summarized in 
Table 3, these conventional approaches suffer from distinct 
limitations that hinder their effectiveness in practical 
settings. GPS-based projection methods, such as Tan et al. 
(2022), rely on UAV GPS data, which is prone to drift and 
environmental interference, often resulting in localization 
errors of 1–3 meters. This level of inaccuracy significantly 
compromises the spatial reliability of defect registration, 
particularly in dense urban environments. Image-feature- 
based approaches (Zhang et al. 2023a) attempt to match 
visual features between UAV imagery and BIM models but 
require distinctive surface patterns or geometrical features 
to function effectively. In practice, however, façades often 
lack such distinguishing characteristics, leading to failed or 
unstable registration. GIS-based 2D alignment methods 
(Chen et al. 2021) mitigate some spatial alignment issues 
by unfolding building façades into planar representations, 
but they disregard the 3D structure of the target surfaces. 
As a result, they cannot accommodate curved or complex 
façades and fail to provide accurate spatial and semantic 
correspondence. In contrast, our GeoBIM-based registration 
framework achieves centimeter-level accuracy by combining 
virtual camera rendering, pose correction, and semantic 

Table 2 Defect registration error for large-scale infrastructure (computed over 1016 close-range façade images) 

Registration error (cm) Mean MAE RMSE IQR 

Horizontal 0.490 2.350 4.746 0 

Vertical 0.592 1.037 2.385 0 

Diagonal 1.360 4.056 7.149 3.747 

Table 3 Benchmark comparison of representative defect registration methods 

Reference Approach type Error level Limitations 

Tan et al. 2022 BIM+GPS pose ~1–3 m High error due to GPS drift; flat façades 

Zhang et al. 2023a BIM+image-based registration Failed Fails on textureless surfaces 

Chen et al. 2021 GIS+2D façade unfolding Failed Ignores 3D geometry and curved façades 

Our method GeoBIM+pose correction + semantic matching ~1–5 cm Complex geometries; semantically enriched 
 



Zhang et al. / Building Simulation 

 

18 

matching. It is robust to visual ambiguity, overlapping images, 
and irregular geometries, demonstrating superior fidelity 
and applicability across diverse architectural conditions. 

Our evaluation methodology is designed to rigorously 
assess the accuracy of defect localization and the fidelity 
of the geometric representations in our DT models. By 
systematically comparing the derived positions and conditions 
of structural defects against empirical measurements and 
DT-derived data, we can not only validate the effectiveness 
of our process but also identify areas for further refinement 
and enhancement. In fact, both theoretically and in 
practice, we have demonstrated that this method possesses 
commendable robustness and scalability, effectively 
addressing the limitations inherent in existing methodologies. 
Our approach facilitates the registration of irregular images, 
the exclusion of non-target areas, the merging of redundant 
defects, and the verification of model integrity. Details are 
listed as below. 

1) Irregular defect image registration 

In practical applications, UAV flight paths rarely align 
perfectly with the planned trajectories due to factors like 
localization errors, planning inaccuracies, and wind forces. 
This issue is especially prominent during manual flights, 
where aerial photographs are often captured at skewed 
angles relative to the building façades. Discarding these 
images would compromise the completeness of the data. 

Unlike existing methods that require the camera to be 
perpendicular to flat wall surfaces, our approach performs 
robustly even with skewed angles and on irregular wall 
surfaces. As shown in Figure 13, the defect registration on 
the corresponding GIS platform aligns well with the original 
detection images, accurately pinpointing defects at skewed 
and irregular positions. 

To further evaluate the robustness of our method,  
we conducted additional experiments on structures with 
complex surface geometries, including both modern and 
historical buildings. Specifically, we tested on the China 
Resources Logistics Kader Centre in Hong Kong, a 
high-rise building featuring curved glass and metal façades, 
and the Fujian Tulou, a traditional circular earth building 
with prominent curved and inclined surfaces. These structures 
present significant challenges for defect registration due  
to their non-planar walls and low-texture surfaces. Our 
method successfully registered high-resolution defect images 
on both structures, even under non-orthogonal viewing 
conditions. Sample results from these experiments are 
shown in Figure 14, where green markers indicate the 
registered defect positions and red bounding boxes highlight 
the affected areas. The registration accuracy remained 
within a few centimeters, consistent with our previous 
evaluations on planar surfaces. 

This confirms that our registration framework maintains 
high precision across diverse architectural forms and  

 
Fig. 13 Irregular defect image registration: (a) illustration of the non-vertical camera pose registration on non-flat surface; (b) original 
defect image; (c) GeoBIM-derived depth map; (d) registered defect image (defects are marked as green spots) 
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demonstrates its applicability to real-world scenarios with 
complex structural features. The ability to robustly align 
defect images on irregular surfaces significantly expands 
the potential use cases of our method in both modern 
infrastructure inspection and heritage conservation. 

2) Exclusion of non-target areas 

Due to the reasons mentioned above, aerial photographs 
captured by UAVs not only encompass the target building 
but may also include extraneous elements such as adjacent 
structures and trees. Utilizing GeoBIM-derived depth maps, 
which focus exclusively on the architectural structure itself, 
aids in the elimination of non-target areas within the images. 
As depicted in Figure 15(a), the presence of neighboring 
buildings can interfere with detection algorithms, leading 
to erroneous results. Depth maps, as shown in Figure 15(b), 
facilitate the direct generation of masked images (Figure 15(c)), 
where the target areas are denoted in white (value 1 in 
image) and non-target areas in black (value 0 in image). 
Consequently, the final image output (Figure 15(d)) is 
purged of non-target areas, thereby also removing incorrect 
detection outcomes and enhancing the precision of the 
data. This methodology significantly improves the quality 
of the analysis by focusing solely on relevant architectural 
details, thus optimizing the effectiveness of the detection 
process in urban and complex environments. 

3) Redundant defect merging 

Previous research indicates that UAV-based defect detection 

tasks often require a necessary overlap rate to ensure the 
completeness of data collection, which can result in the 
same defect appearing in multiple images, as illustrated  
in Figure 16(a). Our method uses high-precision global 
geographic registration to uniquely localize each defect, 
enabling the merging of duplicate detection results. This 
approach ensures the uniqueness of each defect by effectively 
consolidating overlapping detection results from adjacent 
images, as demonstrated in Figure 16(b). By implementing 
this strategy, we not only streamline the data but also 
enhance the accuracy of our defect mapping, ensuring that 
each defect is represented just once in the analysis. This 
reduction in redundancy significantly reduces data clutter 
and improves the efficiency of subsequent processing and 
analysis, leading to more reliable and actionable insights. 

4) Verification of model integrity 

The results of 3D reconstruction, specifically the 3D models 
of target buildings, often suffer from issues such as voids 
and distortions due to insufficient data completeness during 
collection. Typically, the evaluation of reconstruction methods 
is conducted on datasets, but such datasets for large-scale 
architectural scenes are exceedingly rare. Furthermore, 
generating ground truth for each target building (e.g., 
through comprehensive laser scanning) is cost-prohibitive 
and impractical in real-world applications. Therefore, 
developing effective evaluation methods for assessing  
the quality of model constructions is a critical need in    

 
Fig. 14 Extended validation result on two scenarios: (a) modern high-rise building with curved façades; (b) complex historic architectural
structure. The left column is the detected image with defects’ bounding box and the right column is the corresponding registered defects 
on model 
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DT modeling. Our approach offers a feasible quantitative 
perspective to address this challenge. By comparing the 
reconstructed models with BIM-derived depth maps from 
identical POV, we assess the structural integrity of the 
corresponding constructions. As illustrated in Figure 17, by 
comparing depth images from GeoBIM with corresponding 
SfM model image, structure defects in the modeling process  

can be precisely localized. Structural differences between 
images are quantified using the structural similarity index 
measure (SSIM), which is 81.9% for the given sample. The 
formula of SSIM for image i and j is shown below: 

1 2
2 2 2 2

1 2

(2 ) (2 )
SSIM( )

( )( )
i j ij

i j i j

μ μ C σ C
i j

μ μ C σ σ C
+ + +

, =
+ + + +

           (12) 

 
Fig. 15 Exclusion of non-target areas: (a) original defect image with non-target area defect (FP result); (b) GeoBIM-derived depth map; 
(c) mask image from depth map; (d) defect image with target area 

 
Fig. 16 Registration to merge redundant defects on overlapped images: (a) aerial photography with overlap ratio; (b) merging of redundant
defects (overlapped area is marked by bounding box) 
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where μi and μj are the pixel sample mean; σij is the covariance 
of i and j; 2

iσ  and 2
jσ  are respectively the covariance of each 

image; C1 and C2 are variables to stabilize the division with 
weak denominator. 

Subsequent differences that exceed a predefined threshold 
are filtered to delineate predictive bounding boxes, thereby 
identifying specific defect areas. This comparison allows 
for the quantitative identification of structural anomalies, 
such as voids or boundary distortions, at specific locations. 
Such assessments are instrumental in guiding further data 
capture and model updates, thereby enhancing the accuracy 
and utility of the 3D reconstruction process. This method 
not only improves the fidelity of architectural models but 
also supports the iterative refinement and updating of 
DTs, ensuring their applicability and reliability in practical 
scenarios. 

4.1.2 Results of GeoBIM retrieval 

Using the aforementioned approach, GeoBIM has successfully 
extracted all structural semantic information from the BIM 
system and completed geographic registration. As illustrated 
in Figure 18(a), detailed information about each architectural 
element is accessible. To automate the retrieval of structural 
information corresponding to each defect, we utilized the 
script in Figure 18(b) to acquire the geo-position and 
geometric boundary data of all structures, comparing these 
with the locations of defects. Figure 18(c) presents an 
image of a specific defect, while Figure 18(d) shows the 
structural information corresponding to that defect retrieved 
via GeoBIM. This method efficiently links each defect with 
its respective structural location, thereby providing a 
detailed depiction of the defect distribution within the 
building structure. 

 
Fig. 17 SSIM compare for verification of model integrity 

 
Fig. 18 Results of GeoBIM retrieval: (a) GeoBIM structure element as scene actor; (b) scripts for GeoBIM retrieval; (c) defect images
with registered defects; (d) GeoBIM retrieval result for structure element matching
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Particularly, since defect detection primarily focuses on 
the façade of concrete structures, the final data display the 
distribution of defects across each floor as in Figure 19. 
Each direction represents a different wall surface; for instance, 
the northwest-facing wall, due to visual obstructions, only 
includes defect data from the upper floors, with no lower 
floor defects included. This structure-oriented distribution 
of defects supports systematic assessments of structural 
damage in buildings, guiding efficient and targeted 
maintenance strategies. Moreover, the precision of defect 
localization is crucial for ensuring that the detected defects 
are accurately registered onto the building façade in the 
GeoBIM environment. As shown in Table 2, the pose 
estimation and depth alignment processes achieve centimeter- 
level accuracy, which ensures that the defect positions are 
geo-referenced with a high degree of precision. The robust 
global geographic registration methodology, incorporating 
GCPs, further minimizes errors in the overall spatial 
alignment of the building model. Given the high accuracy 
achieved in defect localization, the distribution of defects 
across floors and surfaces offers a reliable and precise 
representation of the building’s condition. This precision 
allows for clear visualization of defect patterns and 
concentrations, facilitating the development of systematic, 
floor-by-floor maintenance strategies. The centimeter-level 
accuracy ensures that defects are mapped accurately to their 
real-world locations, enabling maintenance teams to address 
the most critical areas efficiently and without ambiguity. 
Consequently, the precision of the system is sufficiently 
high to support both macro-level damage assessments and 
micro-level defect management, ensuring that the data can 
effectively inform targeted repair strategies. 

4.1.3 Decision support through GeoBIM 

In the realm of building maintenance, the use of building 
maintenance units (BMUs) plays a pivotal role in executing 
repair operations. To enhance operational efficiency, we 
have introduced an algorithm that optimizes maintenance 
trajectories based on the building defect DT model 
illustrated in Figure 20(a). This approach not only streamlines 
repair activities but also facilitates strategic planning through 
precise defect localization and distribution analysis. 

The user interface (UI) depicted in Figure 20(b) provides 
clear and actionable guidance for both on-site engineers 
and management staff. This tool enables efficient planning 
and oversight of maintenance operations, ensuring that 
defect rectification is both systematic and targeted. The BMU 
in operation is shown in Figure 20(c), while engineers use 
GPS-enabled mobile devices (Figure 20(d)) to acquire field 
data and monitor the progress of maintenance tasks in real 
time. 

The UI depicted in Figure 20(b) provides clear and 
actionable guidance for both on-site engineers and 
management staff. This tool enables efficient planning and 
oversight of maintenance operations, ensuring that defect 
rectification is both systematic and targeted. The BMU in 
operation is shown in Figure 20(c), while engineers use 
GPS-enabled mobile devices (Figure 20(d)) to acquire field 
data and monitor the progress of maintenance tasks in real 
time. To enhance spatial awareness and facilitate intuitive 
interaction, the DT interface is developed on the Cesium 
WebGIS platform (Cesium 2023), enabling real-time 3D 
visualization of the entire structure and its registered 
defects. Each green marker on the 3D model represents an 
individual defect location, serving not only as a visual  

 
Fig. 19 Defect distribution across four façades (indicated by direction) on 18 floors from the GeoBIM retrieval 
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annotation but also as an interactive gateway. When clicked, 
these markers dynamically trigger the display of associated 
defect imagery, the semantic information of the underlying 
BIM component, and relevant metadata such as detection 
timestamp and severity assessment. This bidirectional linkage 
between the digital model and defect records supports both 
top-down review by management and bottom-up reporting 
by field staff. For example, engineers can upload updated 
inspection images or confirm repair completions directly 
through the interface. 

Leveraging the GeoBIM framework, structural defects 
are accurately mapped to their corresponding building 
elements with high spatial precision. This mapping enables 

a detailed visualization of defect distributions, providing 
actionable insights for prioritizing maintenance activities. 
Figure 19 illustrates the systematic localization of defects across 
façades, categorized by floor, allowing maintenance teams 
to focus on high-priority areas with greater defect density. 

The proposed method further supports the optimization 
of maintenance paths. By analyzing the defect distribution 
data, our algorithm determines the most efficient trajectories 
for BMUs, minimizing resource use and downtime while 
addressing critical defects. The integration of defect data 
into the interactive UI ensures that real-time guidance is 
available to maintenance teams, enhancing their responsiveness 
and operational efficiency. 

 
Fig. 20 Target building maintenance activities guided by this method: (a) efficient maintenance path; (b) data assignment into the web UI;
(c) Equipped building maintenance unit; (d) GPS-supported mobile device for defect information access; (e) onsite maintenance activity
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5 Discussion 

In this section, we discuss the advantages of the proposed 
method, examine its current limitations, and suggest future 
improvements and extensions for broader application. 

5.1 Method advantages 

The proposed UAV–GeoBIM inspection framework offers 
several notable advantages over conventional approaches. 
First, it achieves high precision in defect localization. Our 
experiments demonstrated that defects can be georeferenced 
with an accuracy on the order of centimeters, which is a 
significant improvement compared to traditional manual 
inspections. This level of accuracy ensures that the mapped 
defect positions correspond very closely to their real-world 
locations, facilitating reliable condition assessment and 
repair planning. Second, the method is robust in handling 
various practical challenges in data collection. It can 
accommodate UAV imagery captured at oblique angles or 
of irregular façade geometries, whereas many existing 
techniques require strictly perpendicular camera views or 
flat surfaces. In our case, even images taken from suboptimal 
angles were used effectively without loss of localization 
performance. In addition, by using depth-derived masks, 
the framework automatically filters out irrelevant regions 
(such as neighboring buildings or sky in the background), 
thereby avoiding false positives on non-target surfaces. The 
pipeline also identifies and merges duplicate detections   
of the same defect from overlapping images, ensuring that 
each unique defect is recorded only once. These features 
collectively improve the reliability of the defect data: the 
results are cleaner (focused only on the actual building) and 
more concise (with no duplicated entries), which simplifies 
subsequent analysis. Third, our approach integrates multi- 
source data including photogrammetric imagery, GIS, and 
BIM, in an automated end-to-end workflow, leading to a 
high degree of automation and information richness. The 
GeoBIM-based registration efficiently unifies the coordinate 
systems of the SfM model, BIM, and global GIS reference, 
streamlining what is often a complicated transformation 
process in other workflows. This integration yields a DT 
that not only contains the geometric representation of the 
building but also the semantic context for each defect 
through the BIM metadata. Every defect is linked to a specific 
building component and floor level, providing context that 
purely image-based methods lack. The system is scalable 
and was shown to work on a large 18-story building using 
over a thousand images, indicating its potential applicability 
to even larger structures or campus-scale deployments. The 
use of multiple UAVs and a high-performance computing 

setup demonstrates that the framework can handle extensive 
data collection and processing in a time-efficient manner. 
Moreover, the outcome of our pipeline is directly usable  
for maintenance decision-making: by visualizing defects in 
a WebGIS environment and retrieving their structural 
information, facility managers can immediately interpret 
the results in terms of actionable tasks. 

Finally, the framework bridges the gap between static 
inspections and active maintenance management. Unlike 
conventional defect detection studies that end at reporting 
the locations of defects, our approach goes a step further by 
incorporating a decision-support mechanism. The integration 
of defect data with maintenance planning tools with the 
BMU path optimization and UI shows how the DT can guide 
real-world interventions. This synergy between accurate 
digital models and practical maintenance workflows is a 
key advantage for asset management: it enables data-driven 
scheduling of repairs, efficient allocation of resources, and 
continuous updating of the building’s condition in the DT. 
In summary, the method enhances accuracy, robustness, 
and automation in defect detection, and it translates those 
improvements into tangible benefits for building maintenance 
operations. 

5.2 Limitations 

While our proposed method demonstrates strong 
performance and generalizability, we acknowledge several 
areas where further improvements or refinements may be 
warranted. 

Firstly, although the method has been validated on a 
variety of building types—including high-rise curtain  
wall systems, curved façades, and historic masonry—it is 
important to recognise that real-world inspection scenarios 
can be even more diverse and complex. Architectural 
configurations with extreme occlusions, highly reflective 
surfaces, or dense ornamental detail may challenge the 
robustness of both the defect detection algorithm and the 
GeoBIM registration. In such scenarios, localization accuracy 
may decrease and processing time may increase due to greater 
algorithmic complexity. These effects are not intrinsic 
limitations of the method, but rather expected performance 
variations under non-ideal conditions. Addressing them 
may require additional data pre-processing, model retraining, 
or adaptive flight strategies in future deployments. 

Secondly, the current system operates in a near real-time 
mode. UAV images are collected, processed, and visualised 
within a short period following data acquisition, which 
suffices for periodic condition assessment and maintenance 
planning. However, the system does not yet incorporate a 
continuous real-time streaming capability. This is not a  
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technical shortcoming but a design choice, as the current 
application scenarios do not demand persistent monitoring. 
Should use cases arise—such as disaster response or critical 
infrastructure surveillance—that require real-time data 
feeds, the system architecture is sufficiently modular to 
support such integration with minimal modification. 

Finally, while the use of SfM/MVS-based reconstruction 
and BIM-GIS data fusion delivers rich spatial and semantic 
context, it does involve significant data volume and 
computational resources. In our implementation, these 
demands were met using modern consumer-grade hardware. 
However, in extremely large-scale projects or resource- 
constrained environments, computational efficiency and 
memory management may become more prominent concerns. 
Additionally, although data format interoperability between 
BIM and GIS platforms has been effectively handled using 
standardised coordinate transformations and conversion 
pipelines, residual inconsistencies in geometry resolution 
or metadata mapping may occasionally require manual 
refinement. 

In summary, these issues are better characterised as 
manageable trade-offs or conditions for optimal performance, 
rather than intrinsic weaknesses of the framework. They 
highlight practical considerations that can inform targeted 
enhancements in future iterations of the system. 

5.3 Future directions and application extensions 

We outline several directions for future work to address the 
above limitations and extend the applicability of the proposed 
framework. 
(1) Broadening applicability to diverse structures: Ensuring 

that the GeoBIM integration works with different BIM 
standards and practices (for example, varying levels of 
detail in BIM models or different coordinate reference 
systems) will make the system more universally 
applicable. In the long term, scaling the methodology 
to manage multiple buildings or an entire portfolio of 
assets (such as all buildings in a campus or all bridges 
in a city) could enable a more holistic infrastructure 
maintenance platform. This might involve integrating 
our building-level DTs into larger urban DT or smart 
city systems, allowing city officials and stakeholders to 
monitor and prioritize maintenance across many assets 
in a unified environment. 

(2) Integration of real-time data and IoT: Another key 
improvement is incorporating real-time monitoring 
capabilities into the DT. By integrating Internet of 
Things (IoT) sensors and devices with the GeoBIM 
framework, the digital model could be kept up-to-date 
with live data. Real-time data integration would enable 

timely alerts for new or worsening defects and could 
support predictive maintenance – identifying areas of 
concern before visible defects even emerge. Additionally, 
future work could explore automated UAV deployments 
or permanent camera installations for more frequent 
data capture. 

(3) Enhanced semantic analysis and usability: Increasing 
the semantic understanding and user-friendliness of the 
DT is another future direction. On the one hand, this 
involves improving how defects are characterized and 
reported. Such enriched information would make the 
DT more valuable to engineers and decision-makers. 
On the other hand, integrating the framework with 
existing facility management or maintenance scheduling 
software could streamline the workflow from detection 
to repair. This might include exporting defect data  
in standardized formats or developing dashboards that 
allow users to interact with the defect information 
intuitively. 

6 Conclusion 

In conclusion, the method introduced in this study 
demonstrates remarkable scalability and holds substantial 
practical implications for the automated construction of 
architectural defect DTs and for guiding real-world 
maintenance endeavors. By utilizing high-precision, 3D 
global defect localization through GeoBIM registration and 
incorporating automated structural adaptation, this approach 
effectively resolves prevalent issues encountered in existing 
methods. Such issues include the limited scope of UAV 
data collection and the challenges in applying conventional 
techniques to all facets of a building’s exterior. Our 
methodology significantly improves upon these limitations 
by facilitating precise defect mapping across the entire 
structure. 

This novel end-to-end solution leverages the integration 
of BIM+GIS, not only to enhance the accuracy of defect 
localization but also to enable the solution’s application on 
a urban scale for holistic management. By adopting this 
comprehensive approach, the methodology is capable of 
executing global control over extensive urban infrastructure, 
thereby paving the way for smart city management. 

The implementation of this method allows for a 
sophisticated synergy between virtual models and their 
physical counterparts. This synergy is pivotal in enriching 
the DT with detailed semantic information, which in turn, 
refines the maintenance strategies and actions taken on the 
ground. In essence, it transcends the digital-physical division 
and aligns the DT paradigm with operational reality. 

Validated in the dense urban environment of Hong 
Kong on a high-rise civil structure, our solution has proven 



Zhang et al. / Building Simulation 

 

26 

its feasibility, effectiveness, and efficiency. It stands as a 
testament to the potential of similar large-scale assets, 
ushering in a new era for architectural maintenance and 
asset management. By fostering an environment where defects 
are not merely identified but are contextually understood 
and addressed, the proposed solution offers a significant 
leap forward from current practices. It marks a pivotal step 
towards more resilient and maintainable urban architectural 
landscapes. 

Acknowledgements 

This work was supported in part by the InnoHK initiative 
of the Innovation and Technology Commission of the Hong 
Kong Special Administrative Region Government via the 
Hong Kong Centre for Logistics Robotics and in part by 
the Research Grants Council of Hong Kong SAR (Grant 
Nos: 14209020, 14206821, 14209424, 14200524). 

Declaration of competing interest 

The authors have no competing interests to declare that are 
relevant to the content of this article.  

Ethics approval 

This study does not contain any studies with human or 
animal subjects performed by any of the authors. 

Author contribution statement  

Jihan Zhang, Benyun Zhao, Guidong Yang, Xunkuai Zhou, 
Yijun Huang, and Chuanxiang Gao contributed to the 
investigation, formal analysis, and original draft preparation. 
Jihan Zhang and Xi Chen contributed to the conceptualisation 
of the study. Xi Chen and Ben M. Chen provided resources, 
supervision, and were responsible for project administration. 
Xi Chen and Ben M. Chen also contributed to reviewing 
and editing the manuscript. Ben M. Chen acquired funding 
for the study. All authors read and approved the final 
manuscript. 

 
Open Access: This article is licensed under a Creative 
Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes 
were made.  

The images or other third party material in this article 
are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If 

material is not included in the article’s Creative Commons 
license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder.  

To view a copy of this license, visit 
http://creativecommons.org/licenses/by/4.0/ 

References 

Abouelaziz I, Jouane Y (2024). Photogrammetry and deep learning 
for energy production prediction and building-integrated 
photovoltaics decarbonization. Building Simulation, 17: 189–205. 

Agnisarman S, Lopes S, Chalil Madathil K, et al. (2019). A survey of 
automation-enabled human-in-the-loop systems for infrastructure 
visual inspection. Automation in Construction, 97: 52–76. 

Alencastro J, Fuertes A, de Wilde P (2018). The relationship between 
quality defects and the thermal performance of buildings. 
Renewable and Sustainable Energy Reviews, 81: 883–894. 

Artus M, Alabassy M, Koch C (2021). IFC based framework for 
generating, modeling and visualizing spalling defect geometries. 
In: Proceedings of 28th International Workshop on Intelligent 
Computing in Engineering (EG-ICE 2021), Berlin, Germany. 

Cesium (2023). The Platform for 3D Geospatial. Available at 
https://cesium.com/ 

Chen J, Liu D, Li S, et al. (2019). Registering georeferenced photos to 
a building information model to extract structures of interest. 
Advanced Engineering Informatics, 42: 100937. 

Chen K, Reichard G, Akanmu A, et al. (2021). Geo-registering 
UAV-captured close-range images to GIS-based spatial model 
for building façade inspections. Automation in Construction, 122: 
103503. 

Chen J, Lu W, Fu Y, et al. (2023a). Automated facility inspection using 
robotics and BIM: a knowledge-driven approach. Advanced 
Engineering Informatics, 55: 101838. 

Chen J, Lu W, Lou J (2023b). Automatic concrete defect detection 
and reconstruction by aligning aerial images onto semantic-rich 
building information model. Computer-Aided Civil and 
Infrastructure Engineering, 38: 1079–1098. 

Chen K, Reichard G, Xu X, et al. (2023c). GIS-based information 
system for automated building façade assessment based on 
unmanned aerial vehicles and artificial intelligence. Journal of 
Architectural Engineering, 29: 04023032. 

Chen S, Fan G, Li J (2023d). Improving completeness and accuracy of 
3D point clouds by using deep learning for applications of digital 
twins to civil structures. Advanced Engineering Informatics, 58: 
102196. 

Chen X, Pan Y, Gan VJL, et al. (2024). 3D reconstruction of 
semantic-rich digital twins for ACMV monitoring and anomaly 
detection via scan-to-BIM and time-series data integration. 
Developments in the Built Environment, 19: 100503. 

De Filippo M, Asadiabadi S, Kuang JS, et al. (2023). AI-powered 
inspections of facades in reinforced concrete buildings. HKIE 
Transactions, 30: 1–14. 

De Vries J (2015) Learn OpenGL.  



Zhang et al. / Building Simulation 

 

27

Duque L, Seo J, Wacker J (2018). Synthesis of unmanned aerial 
vehicle applications for infrastructures. Journal of Performance of 
Constructed Facilities, 32: 04018046. 

Ge Z, Liu S, Wang F, et al. (2021). Yolox: Exceeding yolo series in 
2021. arXiv:210708430. 

Hajji R, Oulidi HJ (2022). Building Information Modeling for a Smart 
And Sustainable Urban Space. New York: John Wiley & Sons 

Hensel S, Goebbels S, Kada M (2019). Facade reconstruction for 
textured LOD2 citygml models based on deep learning and mixed 
integer linear programming. ISPRS Annals of Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 42W5: 37–44. 

Hosamo HH, Hosamo MH (2022). Digital twin technology for bridge 
maintenance using 3D laser scanning: A review. Advances in 
Civil Engineering, 2022: 2194949. 

Hu X, Zhou Y, Vanhullebusch S, et al. (2022). Smart building 
demolition and waste management frame with image-to-BIM. 
Journal of Building Engineering, 49: 104058. 

Huang H, Michelini M, Schmitz M, et al. (2020). LOD3 building 
reconstruction from multi-source images. ISPRS - International 
Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 43B2: 427–434. 

Huang X, Wang X, Lv W, et al. (2021). Pp-yolov2: A practical object 
detector. arXiv:210410419. 

Jati DGP (2021). Uav-based photogrammetry data transformation as 
a building inspection tool: applicability in mid-high-rise building. 
Jurnal Teknik Sipil, 16: 113–121. 

Jocher G (2020). YOLOv5 by Ultralytics. https://doi.org/10.5281/ 
zenodo.3908559 

Jocher G, Chaurasia A, Qiu J (2023). Ultralytics yolov8. 
Li D, Xie Q, Gong X, et al. (2021). Automatic defect detection of 

metro tunnel surfaces using a vision-based inspection system. 
Advanced Engineering Informatics, 47: 101206. 

Li C, Li L, Jiang H, et al. (2022). Yolov6: A single-stage object detection 
framework for industrial applications. arXiv:220902976. 

Li Q, Yang G, Gao C, et al. (2024). Single drone-based 3D reconstruction 
approach to improve public engagement in conservation of 
heritage buildings: A case of Hakka Tulou. Journal of Building 
Engineering, 87: 108954. 

Liu X, Wang X, Wright G, et al. (2017). A state-of-the-art review   
on the integration of building information modeling (BIM) and 
geographic information system (GIS). ISPRS International 
Journal of Geo-Information, 6: 53. 

Liu D, Chen J, Hu D, et al. (2019). Dynamic BIM-augmented UAV 
safety inspection for water diversion project. Computers in 
Industry, 108: 163–177. 

Liu D, Wang G, Feng B, et al. (2025). Research on non-uniform heat 
transfer testing of prefabricated walls based on infrared images. 
Building Simulation, 18: 499–513. 

Long X, Deng K, Wang G, et al. (2020). Pp-yolo: An effective and 
efficient implementation of object detector. arXiv:200712099. 

McLaughlin E, Charron N, Narasimhan S (2020). Automated defect 
quantification in concrete bridges using robotics and deep 
learning. Journal of Computing in Civil Engineering, 34: 04020029. 

Mehta S, Rastegari M (2021). Mobilevit: Light-weight, general-purpose, 
and mobilefriendly vision transformer. arXiv:211002178. 

Mohammadi M, Rashidi M, Yu Y, et al. (2023). Integration of 
TLS-derived Bridge Information Modeling (BrIM) with a 
Decision Support System (DSS) for digital twinning and asset 
management of bridge infrastructures. Computers in Industry, 
147: 103881. 

Moretti N, Ellul C, Re Cecconi F, et al. (2021). GeoBIM for built 
environment condition assessment supporting asset management 
decision making. Automation in Construction, 130: 103859. 

Musella C, Serra M, Menna C, et al. (2021). Building information 
modeling and artificial intelligence: Advanced technologies 
for the digitalisation of seismic damage in existing buildings. 
Structural Concrete, 22: 2761–2774. 

Pantoja-Rosero BG, Achanta R, Beyer K (2023). Damage-augmented 
digital twins towards the automated inspection of buildings. 
Automation in Construction, 150: 104842. 

Rakha T, Gorodetsky A (2018). Review of Unmanned Aerial System 
(UAS) applications in the built environment: Towards automated 
building inspection procedures using drones. Automation in 
Construction, 93: 252–264. 

Ren S, He K, Girshick R, et al. (2017). Faster R-CNN: Towards 
real-time object detection with region proposal networks. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 39: 
1137–1149. 

Ruiz RDB, Lordsleem AC Jr, Rocha JHA, et al. (2022). Unmanned 
aerial vehicles (UAV) as a tool for visual inspection of building 
facades in AEC+FM industry. Construction Innovation, 22: 
1155–1170. 

Sanders A (2016). An Introduction to Unreal Engine 4. A K Peters/ 
CRC Press. 

See JE, Drury CG, Speed A, et al. (2017). The role of visual inspection 
in the 21st century. Proceedings of the Human Factors and 
Ergonomics Society Annual Meeting, 61: 262–266. 

Spencer BF, Hoskere V, Narazaki Y (2019). Advances in computer 
vision-based civil infrastructure inspection and monitoring. 
Engineering, 5: 199–222. 

Tan Y, Li G, Cai R, et al. (2022). Mapping and modelling defect data 
from UAV captured images to BIM for building external wall 
inspection. Automation in Construction, 139: 104284. 

Valero E, Bosché F, Forster A (2018). Automatic segmentation of 
3D point clouds of rubble masonry walls, and its application to 
building surveying, repair and maintenance. Automation in 
Construction, 96: 29–39. 

Wang C, Bochkovskiy A, Liao H (2022) Yolov7: Trainable bag-of- 
freebies sets new state-of-the-art for real-time object detectors. 
arXiv:220702696 

Wang M, Xu W, Cao G, et al. (2024). Identification of rural 
courtyards’ utilization status using deep learning and machine 
learning methods on unmanned aerial vehicle images in North 
China. Building Simulation, 17: 799–818. 

Wang T, Gan VJL (2024). Multi-view stereo for weakly textured indoor 
3D reconstruction. Computer-Aided Civil and Infrastructure 
Engineering, 39: 1469–1489. 

Xia H, Liu Z, Efremochkina M, et al. (2022). Study on city digital 
twin technologies for sustainable smart city design: A review 
and bibliometric analysis of geographic information system and 



Zhang et al. / Building Simulation 

 

28 

building information modeling integration. Sustainable Cities 
and Society, 84: 104009. 

Xu S, Wang X, Lv W, et al. (2022). Pp-yoloe: An evolved version of 
yolo. arXiv:220316250 

Yang B, Lv Z, Wang F (2022). Digital twins for intelligent green 
buildings. Buildings, 12: 856. 

Yang G, Zhou X, Gao C, et al. (2023). Multi-view stereo with learnable 
cost metric. In: Proceedings of 2023 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), Detroit, 
MI, USA. 

Yu R, Li P, Shan J, et al. (2022). Structural state estimation of 
earthquake-damaged building structures by using UAV 
photogrammetry and point cloud segmentation. Measurement, 
202: 111858. 

Zhang C, Shu J, Shao Y, et al. (2022). Automated generation of FE 
models of cracked RC beams based on 3D point clouds and 
2D images. Journal of Civil Structural Health Monitoring, 12: 
29–46. 

Zhang C, Wang F, Zou Y, et al. (2023a). Automated UAV 
image-to-BIM registration for building façade inspection 

using improved generalised Hough transform. Automation in 
Construction, 153: 104957. 

Zhang C, Zou Y, Dimyadi J, et al. (2023b). Thermal-textured BIM 
generation for building energy audit with UAV image fusion and 
histogram-based enhancement. Energy and Buildings, 301: 113710. 

Zhang D, Yu X, Yang L, et al. (2023c). Data-augmented deep learning 
models for abnormal road manhole cover detection. Sensors, 23: 
2676. 

Zhao Y, Lv W, Xu S, et al. (2023). Detrs beat yolos on real-time object 
detection. arXiv:2304.08069. 

Zhao B, Zhou X, Yang G, et al. (2024). High-resolution infrastructure 
defect detection dataset sourced by unmanned systems and 
validated with deep learning. Automation in Construction, 163: 
105405. 

Zheng M, Lei Z, Zhang K (2020). Intelligent detection of building 
cracks based on deep learning. Image and Vision Computing, 
103: 103987. 

Zheng S, Hao F, Lu Y, et al. (2025). A method for quantitatively 
evaluating the impact of defects on wall U-value using infrared 
thermal imaging. Building Simulation, 18: 281–293. 

 
 
 
 
 


