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Abstract

Recent advances in artificial intelligence (Al) and cyber-physical systems have fostered innovative
approaches to performance assessment and management of existing building stock. This study
presents an Al-assisted digital twin (DT) framework for the automated and high-precision detection
of facade defects in large-scale buildings. Leveraging unmanned aerial vehicles (UAVs) for visual
data acquisition, the proposed framework integrates building information modeling (BIM) and
geographic information systems (GIS) into a GeoBIM-assisted DT environment. An end-to-end
pipeline is developed for defect localization and semantic registration, in which a virtual building
model and camera geometry are constructed using geographic metadata. Synthetic views are
generated to simulate real image capture conditions, enabling depth-based inference of each
defect’s spatial location. This facilitates the projection of defect data into georeferenced DT
models. A dual-verification method combining image and geographic features is employed to
eliminate duplicate detection across overlapping images, and structural context is retrieved via
GeoBIM for semantic enrichment of defect information. The proposed system exemplifies the
fusion of DT technologies with deep learning and cyber intelligence to enhance defect detection
accuracy, resilience optimization, and timely building health monitoring. Experimental validation
on a high-rise building in Hong Kong demonstrates the robustness and scalability of the framework,
indicating strong potential for smart building maintenance and operation.
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Periodic inspection is essential for maintaining the physical
and functional conditions of civil infrastructure systems
such as bridges, dams, roads, and buildings. For instance,
since 2012, the Hong Kong government has initiated the
mandatory building inspection scheme to address safety
concerns arising from over 50% of private residences that
have surpassed a 30-year lifespan (De Filippo et al. 2023).
Visual inspection is a common approach aims to identify
and locate potential defects caused by infrastructure
degradation, such as cracks, spalling, and moisture, to
prevent serious safety problems (Spencer et al. 2019).
Traditional visual inspection methods rely on trained

engineers for manual identification, characterized by high
subjectivity, low accuracy, and low efficiency (See et al. 2017;
Chen et al. 2023a).

The recent trend is to combine robotic technology,
such as unmanned aerial vehicles (UAVs), with computer
vision technology, such as defect detection algorithms, for
automatic data collection and analysis (Rakha and Gorodetsky
2018; Agnisarman et al. 2019; Abouelaziz and Jouane 2024;
Wang et al. 2024). On the one hand, UAVs equipped with
cameras demonstrate significant advantages in terms of
safety, cost-effectiveness, and maneuverability (Rakha and
Gorodetsky 2018). Duque et al. (2018) distributed a national
survey and find that UAV-enabled infrastructure inspection
has been extensively applied and its feasibility has been
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substantiated. On the other hand, the large amount of data
derived from efficient data collection requires rapid automated
processing methods, specifically artificial intelligence (AI)
algorithms (Liu et al. 2025). The deep learning-based object
detection algorithms have been widely adopted for different
structures (Zhang et al. 2023¢; Jha and Babiceanu 2023;
Zheng et al. 2025), including tunnels (Li et al. 2021), buildings
(Zheng et al. 2020), and bridges (McLaughlin et al. 2020). The
recent novel network models achieve better performance,
including faster region-based convolutional neural networks
(R-CNN) (Ren et al. 2017) and the You Only Look Once
(YOLO) series (Jocher 2020; Ge et al. 2021; Li et al. 2022;
Wang et al. 2022).

UAV-based imagery has become an essential tool for
detecting surface defects on building facades. However, the
identified defects on 2D aerial image data alone offer limited
insight into the overall condition of the building. While 2D
detection methods can localize defects, they often fail to
provide the necessary spatial context for a comprehensive
assessment of complex architectural structures. Zhang et al.
(2023a) emphasized that the localization of damage on a
building is crucial for accurate condition assessments. Many
existing approaches focus on defect detection in 2D images
without integrating these findings into a global 3D model
of the building, limiting the usefulness of the detected data
for broader structural evaluations. Furthermore, although
building information modeling (BIM) models contain
detailed architectural and structural information, their
potential for defect management remains underutilized,
as BIM’s semantic information is rarely incorporated into
these detection processes.

Beyond BIM, other approaches such as terrestrial
laser scanning (TLS) (Mohammadi et al. 2023) and 3D
reconstruction techniques like stereo photogrammetry (Jati
2021; Chen et al. 2024; Wang and Gan 2024) have been
utilized to build accurate representations of building facades.
Integrating structure from motion (SfM) with learning-based
multi-view stereo (MVS) has enhanced these techniques,
allowing for the efficient creation of detailed and cost-
effective digital twin (DT) models of structures (Hosamo
and Hosamo 2022; Chen et al. 2023d; Li et al. 2024). These
DT models provide high-fidelity representations of the
physical building, enabling a better understanding of its
current condition (Yang et al. 2022). However, despite their
geometric accuracy, these methods often ignore the integration
of semantic information from BIM, which limits their
ability to fully capture the complexity of building structures
and fails to provide effective maintenance and repair
strategies.

As illustrated in Figure 1, current defect detection
methodologies predominantly identify cracks and defects

in 2D images and project these findings onto a 3D model.
This process facilitates surface-level defect localization but
fails to address the deeper integration of detection data
with the semantic structure of 3D building information
modeling (BIM) models. For buildings with complex
geometries, such as irregular or highly detailed wall surfaces,
this traditional projection approach is insufficient for
comprehensive structural evaluations. Existing limitations
include the reliance on orthogonal images for accurate
projection and the inability to incorporate overlapping images
or irregular perspectives into the analysis. These gaps hinder
the potential for a holistic assessment of architectural integrity,
as crucial spatial and semantic relationships between
defects and structural components are often disregarded.
To overcome these challenges, recent studies have explored
the integration of GIS with BIM, termed GeoBIM (Hajji
and Oulidi 2022). GeoBIM combines the extensive spatial
analytical capabilities of GIS with the rich semantic
information provided by BIM, enabling more precise and
context-aware management of infrastructure and built
environment conditions (Liu et al. 2017; Moretti et al. 2021).

Our proposed system introduces a novel GeoBIM-assisted
registration method, leveraging GIS and BIM to construct
a DT environment. This approach allows for the precise
registration of UAV-captured 2D defect data onto a 3D model
enriched with semantic information. By incorporating depth
calculations and semantic retrieval, our method achieves
accurate defect localization even under challenging conditions,
such as non-flat surfaces or overlapping images. This
comprehensive solution advances the state of defect detection
and registration, enabling component-level evaluations that
guide targeted maintenance and repair decisions.
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Fig. 1 The detected defects on local image and the corresponding
defects registered on model with global reference
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2 Related works

2.1 UAV-based visual inspection

Visual inspection serves as a valuable tool in detecting
preliminary indicators of structural deficiencies in building
facade, thereby averting potential severe risks (Alencastro
et al. 2018). Moreover, visual inspection imposes minimal
equipment requirement, thereby mitigating the costs
associated with large-scale evaluations, such as those
performed on high-rise buildings and bridges. However,
traditional visual inspection requires substantial human
resources and faces challenges such as data collection in
hard-to-access areas and automated image data processing.

The progression of robotic technology, particularly
the advent of UAVs, has significantly facilitated the visual
inspection process for large structures. Incorporating
advanced sensing technology, lightweight sensors, such as
laser scanners, RGB or infrared cameras, can be equipped on
UAVs for the capture of video or image data (Alencastro et al.
2018). It amplify the volume of data that can be collected
within a brief time span, thereby integrating visual inspection
efficiently into routine building maintenance tasks (Ruiz
et al. 2022). However, the data collected by UAVs in visual
inspection exhibits certain characteristics that presents
considerable challenges for processing, including the vast
quantity, the high degree of overlap (over 35%), multi-
perspective views, and close-range to the surface (Chen
etal. 2021).

The task of conducting precise and efficient defect
detection on such image data has surpassed the capabilities
of traditional manual identification methods. Recently,
computer vision techniques have been widely applied in
structural inspection tasks, offering significant advancements
in automated defect detection. For instance, Li et al. (2021)
successfully employed R-CNN for large-scale surface defect
detection in tunnels, demonstrating the potential of deep
learning models in infrastructure assessment. Given the
increasing complexity and scale of inspection environments,
real-time processing has become a key focus, leading to the
frequent application of frameworks such as YOLO, known
for its rapid object detection capabilities. Despite these
advances, current methods primarily deliver detection
results in the form of annotations on 2D images. While this
approach is effective for recognizing defects in individual
images, it lacks the ability to provide a global spatial
context, which is particularly problematic in large-scale
environments.

2.2 Digital twin for inspection and defect management

The task of constructing accurate digital models of buildings

is critical in UAV-enabled inspections, especially when
incorporating DT technology for infrastructure management.
Several methods have emerged in recent years to facilitate
construction, including: (1) photogrammetry;
(2) image-to-BIM projection models; (3) level of detail
(LOD) models. Each of these methods presents distinct
advantages and limitations in terms of accuracy, efficiency,
and semantic richness.

Photogrammetry involves capturing the geometry and
topology of buildings using aerial imagery. It has become
widely adopted in UAV-based inspection workflows due to
its relatively low cost, high efficiency, and ease of integration
into automated processes. As demonstrated in recent studies,
photogrammetry enables UAVs to gather high-resolution
images, which are then processed into 3D models (Yu et al.
2022). However, while photogrammetry provides a fast and
scalable solution, its derived models often lack detailed
structural information, limiting their utility in more complex
analyses. For example, the models generated may capture
external geometries but fail to offer insights into the
internal structure or material composition of the building.
Chen et al. (2023d) emphasized that photogrammetry-
based reconstructions face significant challenges due to
environmental factors like lighting and surface texture,
which often lead to inaccuracies in the generated point
clouds. However, they have leveraged advancements in
deep learning and MVS techniques to enhance both the
completeness and accuracy of these models, making
photogrammetry more reliable and applicable in a variety
of DT applications.

Image-to-BIM modeling takes a different approach by
leveraging existing BIM and integrating UAV-captured
images into the BIM framework. This method involves
aligning captured images with the BIM structure and
superimposing additional data, such as optical or infrared
imagery, onto the BIM for enhanced analysis (Hu et al
2022; Zhang et al. 2023b). The primary advantage of this
method lies in its ability to provide semantic information
and structural insights, as BIM typically contains data
about the materials, construction methods, and lifecycle
of a building. However, one of the major limitations of
current image-to-BIM methods is their reliance on flat
surfaces. As Zhang et al. (2023a) pointed out, existing
image-to-BIM approaches cannot accommodate non-flat
surfaces with complex architecture. Nevertheless, image-to-BIM
remains a valuable tool for inspections requiring high
structural precision and semantic detail, especially in scenarios
where the UAV is deployed in a controlled environment
with predictable building geometries.

LOD models provide another means of digital
representation by simplifying building geometries. LOD
models prioritize real-time visualization and processing speed

model



Zhang et al. / Building Simulation

by reducing the complexity of the geometric representation
(Huang et al. 2020). These models are often used in
applications where computational resources are limited, or
when a high degree of accuracy is not required. For example,
LOD models are frequently employed in city-scale simulations,
where a simplified geometric representation is sufficient
for planning or monitoring purposes (Hensel et al. 2019).
However, LOD models lack the semantic and structural
details needed for comprehensive inspections, making
them unsuitable for more complex or large-scale buildings
(Pantoja-Rosero et al. 2023). Furthermore, the simplification
process can result in the loss of key features, such as fagade
details or intricate architectural elements, limiting their
usefulness in precision-based tasks like defect detection or
structural health monitoring.

Above methods can all construct DT’ of the as-is building
condition, but most work only focuses on geometric structure,
such as the point clouds generated by photogrammetry. The
data generated by different methods are incompatible and
only viable within their own frameworks. The model built
can seldom provide subsequent value for continuous or
periodic inspection and management.

2.3 Defect registration

Defect registration refers to the process of mapping 2D
defect information identified in images onto a 3D spatial
model, providing a global reference framework to support
decision-making (Artus et al. 2021). By integrating localized
2D defect data with the 3D global distribution of building
structures, this technology enables comprehensive assessments
that guide maintenance and repair strategies (Zhang et al.
2023a). As shown in Table 1, depending on the type of 3D
model used as the carrier, existing methods can be categorized
into three main types: (1) point cloud-based registration,
(2) BIM-based registration, and (3) GIS-based registration.
However, each has notable limitations in achieving high-
precision registration with semantic fidelity, particularly in
real-world architectural scenarios.

Point cloud-based registration uses dense spatial
representations generated through UAV photogrammetry
or laser scanning. These models effectively capture external
geometry at high resolution (Valero et al. 2018). Zhang et al.
(2022) employed finite-element methods to assess damage,
and Chen et al. (2023b) annotated defect locations in point
clouds. However, point clouds inherently lack semantic
information, making it difficult to relate defects to specific
structural elements or contextual attributes, thereby limiting
their utility for semantic-level defect management.

BIM-based registration incorporates building information
modeling (BIM) to integrate visual inspection data with
semantically rich architectural models. These methods have
demonstrated advantages in associating detected defects
with structural metadata, such as component IDs, material
types, and design specifications. Prior studies (Chen et al.
2019; Musella et al. 2021) have linked images to BIM
elements through manual and automated region-of-interest
extraction. More recent efforts (Tan et al. 2022; Zhang et al.
2023a) use coordinate transformations to project defect
locations from UAV imagery into BIM space. However,
such methods often assume flat, orthogonal fagades and
require cumbersome or imprecise coordinate conversion
workflows, which reduce applicability to buildings with
complex geometries.

GIS-based registration aligns images with real-world
coordinates using geographic information systems. GIS
excels in handling large-scale spatial data and integrating
multi-source information (Xia et al. 2022). For instance,
Chen et al. (2021, 2023c) used 2D facade unfolding
techniques to register UAV images within GIS frameworks,
simplifying visualization and documentation. Nevertheless,
GIS approaches frequently reduce 3D geometry into flattened
2D maps, which undermines fidelity when mapping defects
to non-planar surfaces or associating them with specific
building components.

In summary, existing methods exhibit trade-offs among
geometric accuracy, semantic integration, and practical
applicability. Point cloud-based methods provide high

Table 1 Comparison between existing registration methods and our approach

Associated
Publication Application Method technology Limitations

Chen et al. 2021 Ge.o—l."egister 2D GIS spatial model of Geo-registration GIS Applicabl.e o.nly to flat s'urfaces Witl’.l rich

building fagades features; limited to 2D image mosaics

Project segmented defect image to BIM . . Significant registration errors; dependent on
Tan et al. 2022 . Defect registration BIM . .

based on UAV GPS localization path planning; limited to orthogonal, flat facades
Zhang et al. Project image to BIM using improved Image-to-BIM BIM Effective only for flat walls with unique surface
2023a generalised Hough transform registration features; limited robustness in complex scenes
Mohammadiet  Integrate BIM with decision support Did not address the problem of precise defect

Asset management BIM

al. 2023 system to provide high-fidelity model

localization or semantic matching
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spatial resolution but lack component-level interpretability.
BIM-based approaches support semantic enrichment but
are hindered by complex and error-prone registration
procedures. GIS-based methods afford scalability but
oversimplify 3D structures, limiting their descriptive power.

To address these methodological shortcomings, we
propose a GeoBIM-based registration framework that unifies
the spatial accuracy of GIS with the semantic richness of
BIM. The novelty of our approach lies in the algorithmic
design of a high-precision pose estimation module and a
semantic matching mechanism that automatically associates
detected defects with corresponding BIM components. By
leveraging the georeferenced BIM model for camera pose
correction, we achieve centimeter-level accuracy in defect
localization, and by incorporating semantic metadata,
we facilitate structured defect management and query.
This enables precise, component-level mapping of defects
directly onto the DT with both spatial and contextual
fidelity—a capability that, to our knowledge, has not
been comprehensively realized in prior frameworks. Our
methodology not only integrates but also enhances existing
processes to meet the rigorous demands of automated,
scalable, and semantically enriched defect management in
complex urban structures.

2.4 Research gaps and contributions

Building on the preceding literature review and addressing
the key methodological concerns raised, we identify the
following critical research gaps:

(1) Inadequate support for high-precision 2D-to-3D defect
localization: Existing registration approaches, especially
those based on BIM, rely on complex and error-prone
coordinate transformations (e.g., from WGS-84 to local
BIM coordinates) (Liu et al. 2019). These multi-stage
projections introduce accumulated uncertainties, often
compromising localization accuracy. Moreover, these
methods do not sufficiently account for image perspective
distortions or UAV-acquired oblique imagery, which
are common in real-world inspections.

(2) Limitations in handling unordered and overlapping
visual inputs: Current methods frequently depend on
orthographic and non-overlapping images (Tan et al.
2022), which restricts their practical applicability.
Overlap, although useful for structural completeness, leads
to redundancy and ambiguity in defect interpretation.
There remains a lack of robust solutions that can
effectively utilize overlapping, non-perpendicular images
to achieve precise and unambiguous defect localization.

(3) Lack of semantic integration in spatial registration
frameworks: GIS-based registration methods often
reduce complex 3D geometries to flat 2D surfaces

(Chen et al. 2021, 2023c), making them inadequate
for evaluating structures with irregular geometries.
Moreover, traditional point cloud or SfM-based approaches
lack semantic depth, hindering intelligent retrieval,
component-level interpretation, and downstream decision
support.

To address these gaps, we introduce a novel UAV-based
GeoBIM-integrated DT framework for large-scale defect
inspection. The major contributions of this study are
summarized as follows:

(1) We design a high-precision defect registration framework
that integrates UAV-based image acquisition, real-time
defect detection, and GeoBIM-based semantic depth
rendering. The registration pipeline introduces a calibrated
pose estimation module to resolve positional inaccuracies,
ensuring accurate 2D-to-3D localization.

(2) We develop a GeoBIM-based depth mapping strategy
that provides sub-centimeter spatial accuracy by
leveraging virtual camera rendering and physically aligned
coordinate systems. Unlike conventional SfM-generated
models, our approach benefits from high-quality BIM
references and avoids distortions commonly found in
point cloud reconstructions.

(3) We implement a semantic defect matching mechanism,
aligning detected defects not only geometrically but also
with the associated BIM structural components. This
enhances traceability, enriches defect characterization,
and supports intelligent maintenance planning.

(4) We construct an interactive, web-based visualization
and data management platform using WebGIS, enabling
intuitive interaction with defect data and structural
semantics. The proposed system has been quantitatively
validated across various real-world urban scenarios,
demonstrating its effectiveness, scalability, and practical
applicability for large-scale architectural maintenance.

3 Methodology

The basic flow chart of this registration method is shown in
Figure 2, which starts with the aerial images collected by
the UAV and ends up with a DT of the as-is building
condition that integrates defects and a geometric model.
The UAV-collected images have additional sensing data in
two aspects: optical attributes such as POV, image size, etc.,
and the geographical state of the UAYV, including attitude
(from Inertial Measurement Unit (IMU)) and position
(from Global Positioning System (GPS)).

With the aerial images, the 3D model (either
photogrammetry model or BIM) is constructed by a 3D
reconstruction algorithm or manual modeling method.
Then, the depth texture is generated with the geo-referenced
model and the corresponding original aerial image. The
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Fig. 2 A workflow of autonomous building facade defect detection and management under the DT framework

detected defects on the images are aligned with the distance
information on the depth texture to calculate the global
coordinate localization. Additionally, the alignment of
BIM’s semantic information with the geographic data ensures
that each defect is matched to its corresponding structural
information. Finally, the 2D defects are registered to the 3D
model, creating a DT of the target building with its as-is
conditions.

3.1 Coarse registration

This section introduces and outlines the GeoBIM approach
based on the integration of GIS and BIM, which aligns
physical objects with their virtual counterparts in the virtual
space, ultimately resulting in the construction of a coarse
DT environment. The coarse registration involves configuring
the GeoBIM environment and processing the input images
and UAV pose data. Through virtual camera registration,
pixel-level depth values for the original images are
calculated.

Although BIM is widely used as the dominant paradigm
in architectural projects, BIM platforms are usually configured
for the specific design, construction, and data management
of unique buildings. As a result, their assistance for regional
inspections, especially those that utilise unmanned systems

and comprehensive spatio-temporal data, is significantly
restricted. Through the process of geo-referencing, the
integration of GIS with BIM establishes a global reference
framework that enables BIM models to precisely correspond
with real-world geographic data. Utilising ground control
points (GCPs) with established geographic coordinates
allows for geo-referencing of the BIM model to accurately
represent the real spatial environment. By integrating the
spatial accuracy of GIS with the comprehensive semantic
information of BIM, a unified environment is established.
This methodology not only surpasses the constraints
of conventional BIM by facilitating wider geographic
compatibility but also expands the use of BIM data to
environmental analysis and infrastructure management,
therefore augmenting its total usefulness and decision-making
capacities.

Innovatively, we are the first to propose the application
of the BIM+GIS approach in the realm of large-scale UAV-
based visual inspections, aiming to construct the GeoBIM
as the as-is DT representation of architectural defects. The
proposed method for the primary DT configuration entails
two fundamental steps: (1) GIS-based georeferencing,
encompassing both the model and aerial photography
POV, and (2) the acquisition of corresponding depth data to
facilitate subsequent defect localization. GeoBIM integrates
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the detailed structural and semantic information of BIM with
the geospatial capabilities of GIS, providing a comprehensive
framework for defect management and spatial analysis in
building inspections.

3.1.1 GeoBIM environment configuration

This subsection proposes the processes of GeoBIM
environment configuration with BIM, GIS and service
attributes as in Figure 3. BIM attribute provides both the
geometry model and the semantic metadata of the structures,
while the GIS attribute mainly ensures that elements such
as terrain, 3D assets, and world base maps in the environment
are consistent with physical scenes. The GeoBIM platform
is integrated based on Unreal Engine 4.27 (Sanders 2016),
which is compatible with Cesium’s GIS and BIM portals for
the unreal API (Cesium 2023). In addition, the UAVs are
modeling with the physical and optical settings.

3.1.2 Pose estimation

In practical UAV-based inspections, two types of aerial
images are utilized: mult-iview aerial images and close-range
images. Each serves distinct purposes and plays a
complementary role in ensuring accurate defect detection
and localization. For multi-view aerial images, they are
captured from multiple angles and distances around the
structure to provide a comprehensive view of the building.
They are primarily used for 3D reconstruction through an
incremental SfM framework, which generates a dense 3D
point cloud model of the building. This process enables
the derivation of global geometric features that serve as a
contextual reference for aligning close-range images. The
multi-view data compensates for the limited perspectives of
close-range images and enhances the global pose estimation
accuracy. For close-range images, they are collected at close

proximity to the building facade, offering high-resolution
detail critical for detecting surface defects. However, due to
the constrained field of view and limited spatial context,
close-range images may suffer from inaccuracies in pose
estimation when used in isolation.

To overcome the limitations of close-range images,
we integrate multi-view aerial images to provide global
contextual features that refine pose estimation for close-
range images. This involves matching key features between
the two image types, aligning their respective pose data, and
applying transformation matrices to ensure consistency
within the 3D reconstruction model. The combined data
approach leverages the global geometric accuracy of
multi-view images and the detailed defect detection capability
of close-range images, resulting in enhanced defect
localization and registration accuracy. The data collection
strategy is illustrated in physical space in Figure 2, showing
the UAV’s flight path for capturing both multi-view and
close-range images.
through oblique photogrammetry along the UAV’s broader
flight path, while close-range images are taken along a
facade-parallel path for detailed inspection. This coordinated
flight plan ensures comprehensive data acquisition for both
global and local tasks, laying the foundation for robust
integration into the GeoBIM framework.

Using an incremental SfM framework, we calibrate the
UAV’s pose data, incorporating constraints derived from
both multi-view and close-range images as in Figure 4. This
optimization corrects GPS errors, mitigates misalignment
issues, and establishes accurate camera poses. The optimized
pose data is subsequently used to transform the close-range
images into the global coordinate system, enabling precise

Multi-view images are captured

defect localization and integration into the GeoBIM

framework.

GeoBIM-based DT environment
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Fig. 3 The GeoBIM-based DT environment configuration
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Firstly, for a large batch of consecutive frame images,
the ORB algorithm provides fast and robust image feature
extraction. Subsequently, spatial matching selects two
consecutive frames, i — 1 and i, for initialization. The matching
of consecutive frames involves fundamental matrix calculation
using the random sample consensus (RANSAC) 8-point
method to eliminate outliers. The resulting image pairs and
matching relationships are used for 2D-2D matching based
on epipolar geometry, obtaining the relative poses of image
pairs. Then, triangulation is employed to generate 3D
points, establishing 2D-3D matching relationships, and
utilizing the PnP algorithm to solve the camera’s poses.

In practice, it is prone to outliers in the matching
process, i.e., incorrect matches of feature points. To address
this issue, the normalized 8-point algorithm with RANSAC
is introduced. It comprises the following steps: randomly
select eight pairs from all matched keypoints in the image
pair, compute the corresponding fundamental matrix F;
(since there is no need to consider the case where the
camera centers of matched frames are the same, there is no
need to involve the homography matrix H); then, calculate
the Sampson distance errors for all pairs of matching

points with F;, and if the error is less than a threshold, it is
considered an inlier; repeat the above steps until the maximum
number of iterations is reached to obtain the optimal match
with the maximum number of inliners.

The calculation formula from epipolar constraint for
matrix F is as follows:

F' = argmin||F — F'|

detF'=0
p/Ep, ;=0 ey
FE=K -t'".-R-K"!

where, p; and pi, are the corresponding points of the
physical point P in the image pair; K refers to the intrinsic
matrix of camera; t* is the skew-symmetric of translation
matrix from frame i — 1 to i; R is the rotation matrix from
framei—1toi.

The calculation formula for Sampson distance to filer
the outliers is as follows:

p'Ep,,
(Ep,,): +(Ep, ), +(p/E): +(p/E), (2)
d(PH,Pi) <t

d(PH 7Pi) =
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where, 7 is the maximum error for inliners as an
approximate estimate from p; to Fp;-;. Then the number of
the corresponding inliers is recorded in this iteration. Given
the ratio of inlier is 0.5, the iteration time is set as 1000 to
achieve the matching rate of 0.99. The transformation
matrix between the image pairs can be decomposed from
matrix F. Then the poses of following frames are solved by
Perspective-n-Point (PnP) algorithm. The corresponding
formula is as following:

R| = argmin me(" p, — n(RP” —t)” ,d? ) 3)

ReSO(3),teR

where, function 7 is the projection function to project the
3D point P; to pixel coordinate and the threshold d is to
filter the outliers. Hence, the optimized poses for all the
current frames are updated to the camera property in
GeoBIM library.

Through the preceding steps, we have filtered and
calibrated the poses of each frame; however, these poses are
defined within a local coordinate system. To be more
precise, the current 3D spatial coordinate system is a Cartesian
coordinate system represented by the matrix [R|f]. Recognizing
that transformation matrix calculations cannot be directly
performed in the WGS84 coordinate system, we establish
an initial earth-centered, earth-fixed (ECEF) coordinate
system through a 3D similarity estimation with more than
3 settled frames. Subsequently, we calculate the poses of other
frames in the ECEF coordinate system as P° ={X,,Y,,Z;}.
Finally, these poses are transformed into WGS84 coordinates
Pt ={Ing,,lat,,alt;},
localization information. The transformation formula from
ECEEF coordinate to WGS84 coordinate is as follows:

resulting in optimized global pose

pP=NXI+Y?
B a
J1— f@— f)sin*(lat,)

e — arran Y

ng, = arctanz (4)

p

It =———

@ cos(lat) — N
N -1

lat, = arctan p<1 —e? N —|—alt,.) l

In our framework, 3D model construction is based on
SfM’s pose estimation, which enhances UAV positioning
accuracy and serves as the basis for model construction.
This is followed by a learning-based MVS method to generate
a dense point cloud (Yang et al. 2023). Additionally, the
framework is flexible, allowing alternative 3D reconstruction
algorithms, provided the models maintain necessary accuracy
and completeness. The integration with GeoBIM ensures

that this flexibility does not affect the system’s overall
functionality, preserving its effectiveness for tasks such as
defect localization.

3.1.3 Image registration and depth calculation

The fundamental principle of 3D engine visualization
rendering is to transform a scene represented in 3D into a
2D form. The coordinate processing involves various stages
such as modeling transformation, viewing transformation,
projection transformation, perspective transformation,
and viewport mapping (De Vries 2015). Through these
transformations, object coordinates progress through multiple
spaces: local space, world space, eye space, clip space,
normalized device coordinate (NDC) space, and finally screen
space. Each space serves a specific role in the rendering
pipeline. Local space defines an object’s geometry relative
to itself, while world space positions it in a global scene for
interaction. Camera space aligns the global scene relative
to the camera’s perspective, determining what is visible.
Clipping space projects the scene onto a 2D plane while
removing objects outside the camera’s view. NDC space
normalizes these coordinates into a standard range, and
screen space maps them to pixel positions for visualization.
These transformations ensure accurate visualization of 3D
scenes and facilitate the integration of UAV-collected data
into the GeoBIM framework. The entire process is illustrated
in Figure 5.

To obtain the distance from the camera to an object, i.e.,
the depth value, it is necessary to perform a reverse
calculation based on the depth texture acquired in screen
space. Given that the transformation from local space to
eye space (camera space) does not involve scale changes, the
depth transformation process can be focused solely on the
transition from screen space to view space. As in Figure 8(e),
it’s required to calculate the depth in eye coordinate z.(i, f)
from the screen coordinate z(i, j), where (i, j) is the pixel
coordinate of the depth image.

The depth transformation between the NDC space z,(i, )
and the screen space z(i, j) is as follows:

z,(i,j) — (f, +ny,)

z,(i,j) = 5)

fo=n,

Modeling
transformation

Viewing
transformation

Perspective

. i
transformation

mapping

Fig.5 The coordinate transformation pipeline for 3D to 2D
rendering

Projection
transformation

Output
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where f; is the far plane and #; is the near plane on screen
space with the default value £, = 1 and n, = 0. Accordingly,
the depth transformation between the NDC space and the
eye space is as follows:

2 fn
F—mz—(F i (©)

z.(i,j) =

As a result, from screen space to view space, the depth
value are calculated as the formula:

z,(i,j) = (7)

n

3.2 Precise registration

Coarse registration establishes the GeoBIM environment,
allowing the creation of virtual BIM images and physical
depth maps that accurately align with the POV of the
physical photographs. Achieving global defect registration
and semantic annotation requires further refinement
through precise registration. This process encompasses the
following objectives: (1) the detection and local positioning
of defects; (2) the registration of individual defects onto
the model; (3) the employment of semantic retrieval for
structure alignment.

The core of this approach is the automation of defect
detection and registration, achieved through the analysis of
UAV-captured images. Each detected defect is cataloged,
linked to a unique identifier within the architectural
component, and integrated into the system. This method
overcomes traditional limitations related to the UAV’s
POV, the characteristics of the detection subject, and
the photographic technique. It allows flexibility in UAV
positioning relative to irregular wall surfaces, eliminating
the need for perpendicular angles, and does not impose
strict requirements on image overlap, offering an efficient
solution for managing architectural defects.

3.2.1 Deep learning-based defect detection

To ensure the generalizability and reproducibility of the
proposed GeoBIM-based defect registration framework, we
adopt a modular approach to defect detection that allows
seamless integration with existing or future deep learning
models. While defect detection is not the core innovation
of our work, we recognize its pivotal role in the entire
workflow and thus provide a comprehensive presentation of
the dataset, algorithm selection, and evaluation procedures.
Our aim is to minimize ambiguity and support flexible
deployment of our pipeline across diverse use cases and
detection models.

1) Dataset construction

The effectiveness of current learning-based methods in defect
detection for large-scale infrastructures is significantly
hindered by the lack of a high-quality open-source dataset.
To bridge this gap, we present CUBIT-Det, the first
high-resolution dataset specifically designed for detecting
various defects in extensive infrastructures (Zhao et al. 2024).
This dataset includes 5527 images captured by unmanned
systems, with a remarkable maximum resolution of 8000 x
6000. The dataset’s defect images are taken from multiple
angles and distances under various lighting conditions,
offering a comprehensive array of structural details. This
variety ensures the robustness of models in practical
inspection scenarios. The dataset covers the three most
common types of infrastructure: buildings (65%), pavements
(29%), and bridges (6%), focusing on the inspection of three
primary defect types: cracks (82%), spalling (12%), and
moisture (6%), as shown in Figure 6.

2) Real-time detection and localization

Based on the self-established dataset, we conduct evaluations
on a multitude of state-of-the-art (SOTA) learning-based
real-time object detection algorithms to ascertain the
optimal solution of the task of defect detection in terms of
both speed and accuracy. We train and test 12 SOTA series
algorithms (nearly 30 models): YOLOv5 (Jocher 2020),
YOLOv6 (Li et al. 2022), YOLOv7 (Wang et al. 2022),
YOLOvVS (Jocher et al. 2023), YOLOX (Ge et al. 2021),
PP-YOLO (Long et al. 2020), PP-YOLOv2 (Huang et al.
2021), PP-YOLOE (Xu et al. 2022), PP-YOLOE+ (Xu et al.
2022), MobileViT (Mehta and Rastegari 2021), RT-DETR
(Zhao et al. 2023) and Faster R-CNN (Ren et al. 2017).

3) Evaluation metrics

Precision (P), Recall (R), and Average Precision (AP) are
the three most commonly used metrics in object detection
for infrastructure defect detection. Precision measures the
accuracy of detected defects, denoting the ratio of correctly
identified defects to all detections made by the model. Recall,
on the other hand, assesses the rate of missed detections,
indicating the proportion of correctly identified defects
among all actual defects. Precision and Recall are defined
as follows:

TP
Precision = —— (8)
TP + FP
TP
Recall = ——— )
TP + FN

The AP metric represents the weighted mean of precision
scores at each threshold on the precision-recall (PR) curve,
using the increase in recall from the previous threshold as
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Fig. 6 Self-established dataset for infrastructure defect detection.
infrastructure category includes building, pavement and bridge

the weight. Given the multi-category nature of our detection
task, we calculate the AP for each category and then compute
the mean Average Precision (mAP) across all categories. The
equations for AP and mAP are provided below. Here, AP;
represents the AP for class i, and m is the total number of
classes.

ar= | p(r)dr
L (10
mAP = E;:AR

Unlike traditional integral methods used to calculate
AP, the computation of AP in MS COCO involves a
discretization process: the PR curve is defined as the average
of precision values at a set of 101 evenly spaced recall levels
[0, 0.01, ..., 1] (from O to 1, with the increments of 0.01).
The equations for mAP in MS COCO is shown below:

1& 1
=201 2

i=1 r€(0,0.01,...,1

(11)

mAP

p xinterp(r)
)

4) Model selection

We visualize the inference time versus APy s,0s of the selected
SOTA models in Figure 7. For all series of algorithms, as
the model size increases, the inference speed will decrease
while the detection capability will improve. However, there
is a bottleneck in detection capability, which means that

The defect category includes crack, spalling, and moisture, and the

simply enlarging the model to realize the enhancement of
detection performance cannot always be effective. From the
top-left corner of Figure 7, it becomes clearer that YOLOV8
(Jocher et al. 2023) (red star) networks demonstrate a fabulous
trade-off between accuracy and latency on large-scale
infrastructure defect detection task.

YOLOV8 (Jocher et al. 2023) builds upon the YOLO
series with a fully anchor-free design, predicting object
bounding boxes directly from feature maps without relying
on predefined anchor templates. It introduces a decoupled
head architecture that separates classification and localization
tasks, improving convergence and accuracy. YOLOVS also
integrates advanced techniques such as dynamic label
assignment and a simplified backbone, enabling more accurate
and efficient detection of defects like cracks, spalling, and
moisture, even under varied lighting and surface conditions.
For each defect, YOLOvV8 (Jocher et al. 2023) outputs a
bounding box with four parameters: x and y coordinates
of the center, and the box’s width and height. These
parameters, normalized to the image’s dimensions, offer a
scalable object localization method. Alongside these spatial
parameters, the model also outputs a confidence score
reflecting the model’s certainty in the detection, as well as
class probabilities indicating the type of defect detected.
The result is a set of bounding boxes, each associated with
a defect type and its relative location within the image,
providing critical data for subsequent analysis and rectification
in architectural maintenance and restoration efforts.
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Fig. 7 Trade-off performance of different models about inference time versus APos09s trained on CUBIT-Det dataset. The further the
point is toward the top-left corner, the stronger the detection capability and the shorter the inference time

3.2.2 Individual defect to model registration

A key step in integrating and managing defect detection
outcomes—such as defect images, local positioning data,
and classification—is the registration of these results. This
process involves determining global positions and eliminating
redundant defects. Registration ensures that each detected
defect is accurately mapped within the GeoBIM framework,
enabling precise localization across the entire structure.
By aligning and consolidating detection results, this step
lays the foundation for building a comprehensive DT of
architectural defects, crucial for effective maintenance and
remediation strategies.

We follow the geographic transformation paradigm
shown in Figure 9 to project the detected defects from the
image coordinate system onto the geo-referenced model. In
previous sections, we derived the corresponding detected
images, GeoBIM images, and depth images within the
GeoBIM environment (see Figures 8(a)-(d)). The defect
images contain the origin images with defects marked by
red bounding boxes, while the local coordinates and defect
size on the image plane are recorded in the data library. For
the j* defect in the i image (denoted as defect i;), we first
capture the geographic coordinate of the image center O
based on the pose estimation results, denoted as Pf.
Instead of incorrectly describing the distance E(ij) as the
projection from O to O, this vector actually represents the
depth from the defect i; to the model surface, as inferred
from the depth map generated in the GeoBIM environment.
The vector d (i;) is aligned with the depth axis and
provides the distance from the defect to the wallsurface.

The direction is consistent with 00" , but the magnitude
reflects the depth from the defect to the 3D model
Subsequently, we compute the relative distance between O”
and the center of the defect’s bounding box, converting
it into a metric distance along the tangential vector T(z’j)
from O” to the defect i;. This allows us to determine the
global position of the defect in the 3D space. The corrected
calculation process is reflected in Algorithm 1.

Algorithm 1 Individual defect registration

Require: Geographical coordinates P8(lon;,lat;,alt;) ; defect distance
ze(i,j); projection vector 7
Ensure: Global location g(i,j) = (Ingij,latij,altij)
1: for i = 1 to imax do

2: Compute projection point: P# «— P# + 2,(i,0) - 7i
3: for j =1 t0 jmax do

4: Ly, (i) < 22,.(,0) - tan (9%

5 £6,)) = Ly() 1D

N0

6 8Gi,j) — P¥ + LG, )

7: T \/(0.5 / unit, )’ + (0.5 / unit,, )?
8

9

fork=1toi—1do

: for t =110 jmax — 1 do
10: if| g(k,t) — g(i, j)| > T then
11: Mark g(i,j) as a new defect
12: end if
13: end for
14: end for
15: end for
16: end for
17: return g(i,j)
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Fig. 8 Corresponding images from different sources: (a) original aerial image; (b) detected image; (c) GeoBIM generated image;
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Fig. 9 The projection of defects from image to model
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3.2.3 Semantic retrieval for semantic matching

Global registration furnishes the geographical coordinates
of defects, facilitating the establishment of a one-to-one
correspondence between these defects and the geospatially
coupled architectural structures within the GeoBIM
environment. In this section, we will expound on the
methodology for conducting structural retrieval correlated
with identified defects through GeoBIM, aiming to construct
an assessment of building defects at the structural level.
Given that GeoBIM incorporates metadata from BIM and
introduces GIS data as well as inspection data from UAVs,
as illustrated in Figure 8. Utilizing collected images along
with their fully corresponding GeoBIM-derived images allows
for the retrieval of BIM semantic information corresponding
to elements present in the images.

BIM

BIM knowledge b

e 1 |

Extract

This approach not only enhances the precision of defect
assessments but also contributes to the strategic allocation
of resources for infrastructure maintenance, underscoring
the critical role of GeoBIM in advancing the state-of-the-
art in architectural defect management.

As depicted in Figure 10, while BIM provides essential
structural prior knowledge for constructing a building’s
DT, it does not automatically link to the defects detected
within the structure. To bridge this gap, we have developed
an automated workflow, which systematically facilitates the
integration of BIM with detected defects and other relevant
data. This process is entirely automated, as explained
below.

(1) BIM registration: This initial step involves aligning and
geo-referencing the BIM data with real-world physical
data gathered from the site. Using Unreal Engine’s

GeoBIM

GeoBIM knowledge

I
1
B [
e S——— N
l Structure I l Matenal | [ Location ] 1 I BIM I [ GIS | | UAV ]
| Wall | | window | | - | | Structure I | Material I I Geo-location I | = |

Fig. 10 The hierarchy of corresponding BIM and GeoBIM
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Datasmith API, we automate the registration process
by transferring BIM metadata into the GeoBIM
environment. The geo-referencing process, as discussed
in Section 3.1.3, assigns geographic coordinates to the
BIM model, ensuring that its semantic structures are
aligned with the actual geographic location. This allows
for precise overlay of detected defects on the GeoBIM
model, which forms the foundation for further analysis.

(2) Knowledge extraction: Once the BIM registration is
completed, we automatically extract semantic information
from the BIM model using the same Datasmith API.
This extraction process parses data such as material
properties, structural components, and spatial hierarchies
(e.g., floor levels, orientations) to construct a knowledge
base. This information is critical for understanding the
context of the building’s structure and linking it to the
detected defects.

(3) Metadata transference: Through Unreal Engine’s
metadata transfer capabilities, both static BIM data and
dynamic UAV data (such as flight paths, timestamps,
and aerial defect logs) are transferred and stored in a
consolidated metadata system. By automating this
transference process, the system ensures that each
defect is linked to relevant geographic and semantic
information, forming a traceable record of the building’s
condition. All defect locations and their corresponding
high-precision geographic information, as calculated
and discussed earlier in the manuscript, are archived in
the database.

(4) Retrieval mechanism: With metadata from both the
static BIM model and UAV-acquired dynamic data
properly aligned and registered, the system automatically
allows semantic retrieval. Defects can be queried based
on their geographic location and semantic context, such

as the material type or structural component affected.
By leveraging the metadata’s geo-referenced alignment
with BIM, the system provides a fully automated
mechanism for defect localization and retrieval based
on semantic and geographic information. Users can
retrieve defect details, such as the defect’s severity and
material specifications, enabling comprehensive analysis
and decision-making. This automated retrieval mechanism
ensures that defects are correctly localized within the
broader context of the structure, providing actionable
insights for maintenance and monitoring.

Through these interlinked processes, the automated
workflow enhances the building DT with detailed defect-
related information and transforms it into a dynamic tool
for ongoing structural health monitoring. The entire process,
from metadata extraction to defect localization, is fully
automated, ensuring precision and efficiency.

4 Implementation

We deploy our proposed inspection framework on various
large-scale scenarios to verify its effectiveness and efficiency.
Here, we take a large-scale high-rise warehouse (36 m x
27 m x 100 m) as a representative instance.

To verify the effectiveness and efficiency on real
large-scale scenarios, we have deployed the method on a
large-scale high-rise warehouse. Figure 11 illustrates the
application of our methodology to a commercial building
which rises to a height of 100 meters and spans an area of
approximately 27 m x 36 m, located in the Shatin district
of Hong Kong. This 18-story structure was extensively
surveyed using three DJI Mavic 2 drones, each equipped
with a camera capable of capturing images at a resolution
of 8000 pixel x 6000 pixel. These UAVs were deployed to

(b)

STTLNO. 135

STTLNO.78

STTLNO. 110

STILNO. 14

Fig. 11 Experiment scene to evaluate the proposed approach: (a) aerial view of the target building; (b) footprint of the target building;

(c) GCP on the building; (d) multiple UAVs used in data collection
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collect over 1000 aerial photographs to facilitate a detailed
analysis of the building’s features and conditions. The specific
locations from which these images were acquired are detailed
in Figure 11(b).

To process this substantial amount of high-resolution
data, the study utilized advanced computing hardware,
comprising an Intel(R) Core(TM) i9-10920X CPU and an
NVIDIA GeForce RTX 3090Ti GPU. This setup was
chosen to ensure robust and efficient handling of the data,
enabling precise and timely analysis of the structural integrity
of the building.

4.1 Field experiment results

In the field experiments, the primary focus was on the
collection of data via UAVs, with specific attention to
ensuring image quality, data completeness, and flight safety.
To facilitate this, flight paths were meticulously planned
based on the GeoBIM surface model of the structure.
Typically, this planning necessitates maintaining the UAVs
in a perpendicular orientation to the building’s walls while
keeping an approximate distance of 10 meters to optimize
image capture and data accuracy.

Following these guidelines, the UAVs executed their
flights along predetermined trajectories, effectively adhering

to the designed flight paths. To enhance the efficiency of
data collection and mitigate potential issues such as battery
depletion, three drones were deployed simultaneously. This
strategy allowed for comprehensive aerial coverage of the
target building’s surface, achieving complete data acquisition
within a span of thirty minutes. This coordinated approach
not only maximized the productivity of the data collection
phase but also ensured the safety and reliability of the
operational process.

4.1.1 Results of individual defect registration

As proposed in Section 3, the registration process involves
projecting individual defect images from their original GPS
locations to geo-referenced 3D model. Specifically, this is
achieved by utilizing GeoBIM to generate corresponding
coarse registration images and employing depth maps to
ascertain physical distances, thereby accurately localizing
each defect onto the model.

We collected 1,016 aerial images at a resolution of 8000
x 6000, covering the entire exterior surface of the building.
These images were then processed for detection and registered
to the corresponding SfM model for visualization and
evaluation. Figure 12 presents the sequence of intermediate
results generated throughout this process. According to
evaluations by building inspection experts, the detection

Fig. 12 The process of quantitative evaluation of the results of detection defect registration: (a) detection images with red bounding boxes
to illustrate the defects; (b) GeoBIM derived depth image; (c) registration results of individual defects and each defect is illustrated by a
green mark; (d) mask of defects for registration evaluation, while the masks are from (a)’s bounding box and defects are from (c)’s green

marks



Zhang et al. / Building Simulation

results achieved over 80% mAP,s accuracy (at 30 FPS),
demonstrating strong consistency within the dataset and

the effectiveness of the chosen model for accurate detection.

Figure 12(a) shows the defect detection outcomes from the
aerial photographs, with red bounding boxes highlighting
the defects. Figure 12(b) illustrates the depth maps derived
from GeoBIM, providing essential spatial information for
defect localization. Finally, panel (c) visualizes the registered
defects on a WebGIS platform powered by Cesium (2023),
where the central positions of the defects are marked by green
points. From Figure 12(c), it is clear that the SfM model more
accurately represents the as-is condition of the building
compared to BIM. The SfM serves as the primary geometrical
and visual representation within the DT framework, with the
registered defects accurately reflecting their true geographic
locations. These results confirm the effectiveness of our
methodology. However, errors are inevitable during data
processing, and we have developed a validation method to
quantify the precision of our approach.

Considering that the defects have been located in global
geographic coordinates, we calculate the defect localization
error as the offset between the registered defect positions
on GIS-derived images and the centers of the detected
defect bounding boxes on original images. To achieve this,
we have reconstructed each POV of the camera within the
GIS virtual space, which precisely mirrors the actual world
settings and incorporates identical geographical and optical
features, as shown in Figure 12(c). Following this setting,
we overlay the defect images onto these virtual images to
accurately determine the defect localization errors. Here,
the gray square masks represent the original defect bounding
boxes, and the registered defects are marked with relative
green points, as illustrated in Figure 12(d). These discrepancies
are then converted from pixel measurements to physical
units measured in centimeters. The accuracy of our
registration method is evaluated by calculating the mean

absolute error (MAE), the root mean square error (RMSE),
and the interquartile range (IQR)—the latter being the
difference between the first quartile (Q1l) and the third
quartile (Q3). The results, as tabulated in Table 2, confirm
the centimeter-level accuracy of our approach. These statistical
measures provide a robust assessment of our method’s
precision, ensuring that our registration technique is both
reliable and suitable for practical applications in defect
detection and localization.

To validate the performance of our proposed registration
framework, we conducted a comparative evaluation against
three representative classes of state-of-the-art methods:
GPS-based projection, image-feature-based BIM registration,
and GIS-based 2 D image alignment. As summarized in
Table 3, these conventional approaches suffer from distinct
limitations that hinder their effectiveness in practical
settings. GPS-based projection methods, such as Tan et al.
(2022), rely on UAV GPS data, which is prone to drift and
environmental interference, often resulting in localization
errors of 1-3 meters. This level of inaccuracy significantly
compromises the spatial reliability of defect registration,
particularly in dense urban environments. Image-feature-
based approaches (Zhang et al. 2023a) attempt to match
visual features between UAV imagery and BIM models but
require distinctive surface patterns or geometrical features
to function effectively. In practice, however, facades often
lack such distinguishing characteristics, leading to failed or
unstable registration. GIS-based 2D alignment methods
(Chen et al. 2021) mitigate some spatial alignment issues
by unfolding building fagades into planar representations,
but they disregard the 3D structure of the target surfaces.
As a result, they cannot accommodate curved or complex
facades and fail to provide accurate spatial and semantic
correspondence. In contrast, our GeoBIM-based registration
framework achieves centimeter-level accuracy by combining
virtual camera rendering, pose correction, and semantic

Table 2 Defect registration error for large-scale infrastructure (computed over 1016 close-range facade images)

Registration error (cm) Mean MAE RMSE IQR
Horizontal 0.490 2.350 4.746 0
Vertical 0.592 1.037 2.385 0
Diagonal 1.360 4.056 7.149 3.747
Table 3 Benchmark comparison of representative defect registration methods
Reference Approach type Error level Limitations

Tan et al. 2022 BIM+GPS pose
Zhang et al. 2023a

Chen et al. 2021

BIM-+image-based registration
GIS+2D fagade unfolding

Our method GeoBIM+pose correction + semantic matching

~1-3m High error due to GPS drift; flat facades
Failed Fails on textureless surfaces
Failed Ignores 3D geometry and curved fagades
~1-5cm Complex geometries; semantically enriched
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matching. It is robust to visual ambiguity, overlapping images,
and irregular geometries, demonstrating superior fidelity
and applicability across diverse architectural conditions.

Our evaluation methodology is designed to rigorously
assess the accuracy of defect localization and the fidelity
of the geometric representations in our DT models. By
systematically comparing the derived positions and conditions
of structural defects against empirical measurements and
DT-derived data, we can not only validate the effectiveness
of our process but also identify areas for further refinement
and enhancement. In fact, both theoretically and in
practice, we have demonstrated that this method possesses
scalability, effectively
addressing the limitations inherent in existing methodologies.
Our approach facilitates the registration of irregular images,
the exclusion of non-target areas, the merging of redundant
defects, and the verification of model integrity. Details are
listed as below.

commendable robustness and

1) Irregular defect image registration

In practical applications, UAV flight paths rarely align
perfectly with the planned trajectories due to factors like
localization errors, planning inaccuracies, and wind forces.
This issue is especially prominent during manual flights,
where aerial photographs are often captured at skewed
angles relative to the building facades. Discarding these
images would compromise the completeness of the data.

Non-vertical camera pose
Location O (Ing, lat, lat)

Defect image

Unlike existing methods that require the camera to be
perpendicular to flat wall surfaces, our approach performs
robustly even with skewed angles and on irregular wall
surfaces. As shown in Figure 13, the defect registration on
the corresponding GIS platform aligns well with the original
detection images, accurately pinpointing defects at skewed
and irregular positions.

To further evaluate the robustness of our method,
we conducted additional experiments on structures with
complex surface geometries, including both modern and
historical buildings. Specifically, we tested on the China
Resources Logistics Kader Centre in Hong Kong, a
high-rise building featuring curved glass and metal fagades,
and the Fujian Tulou, a traditional circular earth building
with prominent curved and inclined surfaces. These structures
present significant challenges for defect registration due
to their non-planar walls and low-texture surfaces. Our
method successfully registered high-resolution defect images
on both structures, even under non-orthogonal viewing
conditions. Sample results from these experiments are
shown in Figure 14, where green markers indicate the
registered defect positions and red bounding boxes highlight
the affected areas. The registration accuracy remained
within a few centimeters, consistent with our previous
evaluations on planar surfaces.

This confirms that our registration framework maintains
high precision across diverse architectural forms and

Fig. 13 Irregular defect image registration: (a) illustration of the non-vertical camera pose registration on non-flat surface; (b) original
defect image; (c) GeoBIM-derived depth map; (d) registered defect image (defects are marked as green spots)
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demonstrates its applicability to real-world scenarios with
complex structural features. The ability to robustly align
defect images on irregular surfaces significantly expands
the potential use cases of our method in both modern
infrastructure inspection and heritage conservation.

2) Exclusion of non-target areas

Due to the reasons mentioned above, aerial photographs
captured by UAVs not only encompass the target building
but may also include extraneous elements such as adjacent
structures and trees. Utilizing GeoBIM-derived depth maps,
which focus exclusively on the architectural structure itself,
aids in the elimination of non-target areas within the images.
As depicted in Figure 15(a), the presence of neighboring
buildings can interfere with detection algorithms, leading
to erroneous results. Depth maps, as shown in Figure 15(b),
facilitate the direct generation of masked images (Figure 15(c)),
where the target areas are denoted in white (value 1 in
image) and non-target areas in black (value 0 in image).
Consequently, the final image output (Figure 15(d)) is
purged of non-target areas, thereby also removing incorrect
detection outcomes and enhancing the precision of the
data. This methodology significantly improves the quality
of the analysis by focusing solely on relevant architectural
details, thus optimizing the effectiveness of the detection
process in urban and complex environments.

3) Redundant defect merging

Previous research indicates that UAV-based defect detection

Registered defects on model

0 ! ‘

Fig. 14 Extended validation result on two scenarios: (a) modern high-rise building with curved facades; (b) complex historic architectural
structure. The left column is the detected image with defects’ bounding box and the right column is the corresponding registered defects
on model

tasks often require a necessary overlap rate to ensure the
completeness of data collection, which can result in the
same defect appearing in multiple images, as illustrated
in Figure 16(a). Our method uses high-precision global
geographic registration to uniquely localize each defect,
enabling the merging of duplicate detection results. This
approach ensures the uniqueness of each defect by effectively
consolidating overlapping detection results from adjacent
images, as demonstrated in Figure 16(b). By implementing
this strategy, we not only streamline the data but also
enhance the accuracy of our defect mapping, ensuring that
each defect is represented just once in the analysis. This
reduction in redundancy significantly reduces data clutter
and improves the efficiency of subsequent processing and
analysis, leading to more reliable and actionable insights.

4) Verification of model integrity

The results of 3D reconstruction, specifically the 3D models
of target buildings, often suffer from issues such as voids
and distortions due to insufficient data completeness during
collection. Typically, the evaluation of reconstruction methods
is conducted on datasets, but such datasets for large-scale
architectural scenes are exceedingly rare. Furthermore,
generating ground truth for each target building (e.g.,
through comprehensive laser scanning) is cost-prohibitive
and impractical in real-world applications. Therefore,
developing effective evaluation methods for assessing
the quality of model constructions is a critical need in
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Fig. 15 Exclusion of non-target areas: (a) original defect image with non-target area defect (FP result); (b) GeoBIM-derived depth map;

(c) mask image from depth map; (d) defect image with target area

Overlapped images

SR NN NN >od NN

Fig. 16 Registration to merge redundant defects on overlapped images: (a) aerial photography with overlap ratio; (b) merging of redundant

defects (overlapped area is marked by bounding box)

DT modeling. Our approach offers a feasible quantitative
perspective to address this challenge. By comparing the
reconstructed models with BIM-derived depth maps from
identical POV, we assess the structural integrity of the
corresponding constructions. As illustrated in Figure 17, by
comparing depth images from GeoBIM with corresponding
SfM model image, structure defects in the modeling process

can be precisely localized. Structural differences between
images are quantified using the structural similarity index
measure (SSIM), which is 81.9% for the given sample. The
formula of SSIM for image i and j is shown below:

Qup; +C)+ @20, +C,)

SSIM(i, j) =
Pt e+ +C)

(12)
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Fig. 17 SSIM compare for verification of model integrity

where y; and y; are the pixel sample mean; o; is the covariance
of i and j; 07 and o7 are respectively the covariance of each
image; C; and C, are variables to stabilize the division with
weak denominator.

Subsequent differences that exceed a predefined threshold
are filtered to delineate predictive bounding boxes, thereby
identifying specific defect areas. This comparison allows
for the quantitative identification of structural anomalies,
such as voids or boundary distortions, at specific locations.
Such assessments are instrumental in guiding further data
capture and model updates, thereby enhancing the accuracy
and utility of the 3D reconstruction process. This method
not only improves the fidelity of architectural models but
also supports the iterative refinement and updating of
DTs, ensuring their applicability and reliability in practical
scenarios.

(©

4.1.2  Results of GeoBIM retrieval

Using the aforementioned approach, GeoBIM has successfully
extracted all structural semantic information from the BIM
system and completed geographic registration. As illustrated
in Figure 18(a), detailed information about each architectural
element is accessible. To automate the retrieval of structural
information corresponding to each defect, we utilized the
script in Figure 18(b) to acquire the geo-position and
geometric boundary data of all structures, comparing these
with the locations of defects. Figure 18(c) presents an
image of a specific defect, while Figure 18(d) shows the
structural information corresponding to that defect retrieved
via GeoBIM. This method efficiently links each defect with
its respective structural location, thereby providing a
detailed depiction of the defect distribution within the
building structure.

(@

Fig. 18 Results of GeoBIM retrieval: (a) GeoBIM structure element as scene actor; (b) scripts for GeoBIM retrieval; (c) defect images
with registered defects; (d) GeoBIM retrieval result for structure element matching
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Particularly, since defect detection primarily focuses on
the facade of concrete structures, the final data display the
distribution of defects across each floor as in Figure 19.
Each direction represents a different wall surface; for instance,
the northwest-facing wall, due to visual obstructions, only
includes defect data from the upper floors, with no lower
floor defects included. This structure-oriented distribution
of defects supports systematic assessments of structural
damage in buildings, guiding efficient and targeted
maintenance strategies. Moreover, the precision of defect
localization is crucial for ensuring that the detected defects
are accurately registered onto the building fagade in the
GeoBIM environment. As shown in Table 2, the pose
estimation and depth alignment processes achieve centimeter-
level accuracy, which ensures that the defect positions are
geo-referenced with a high degree of precision. The robust
global geographic registration methodology, incorporating
GCPs, further minimizes errors in the overall spatial
alignment of the building model. Given the high accuracy
achieved in defect localization, the distribution of defects
across floors and surfaces offers a reliable and precise
representation of the building’s condition. This precision
allows for clear visualization of defect patterns and
concentrations, facilitating the development of systematic,
floor-by-floor maintenance strategies. The centimeter-level
accuracy ensures that defects are mapped accurately to their
real-world locations, enabling maintenance teams to address
the most critical areas efficiently and without ambiguity.
Consequently, the precision of the system is sufficiently
high to support both macro-level damage assessments and
micro-level defect management, ensuring that the data can
effectively inform targeted repair strategies.

4.1.3 Decision support through GeoBIM

In the realm of building maintenance, the use of building
maintenance units (BMUs) plays a pivotal role in executing
repair operations. To enhance operational efficiency, we
have introduced an algorithm that optimizes maintenance
trajectories based on the building defect DT model
illustrated in Figure 20(a). This approach not only streamlines
repair activities but also facilitates strategic planning through
precise defect localization and distribution analysis.

The user interface (UI) depicted in Figure 20(b) provides
clear and actionable guidance for both on-site engineers
and management staff. This tool enables efficient planning
and oversight of maintenance operations, ensuring that
defect rectification is both systematic and targeted. The BMU
in operation is shown in Figure 20(c), while engineers use
GPS-enabled mobile devices (Figure 20(d)) to acquire field
data and monitor the progress of maintenance tasks in real
time.

The UI depicted in Figure 20(b) provides clear and
actionable guidance for both on-site engineers and
management staff. This tool enables efficient planning and
oversight of maintenance operations, ensuring that defect
rectification is both systematic and targeted. The BMU in
operation is shown in Figure 20(c), while engineers use
GPS-enabled mobile devices (Figure 20(d)) to acquire field
data and monitor the progress of maintenance tasks in real
time. To enhance spatial awareness and facilitate intuitive
interaction, the DT interface is developed on the Cesium
WebGIS platform (Cesium 2023), enabling real-time 3D
visualization of the entire structure and its registered
defects. Each green marker on the 3D model represents an
individual defect location, serving not only as a visual

GeoBIM retrieval for defect distribution
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Fig. 19 Defect distribution across four fagades (indicated by direction) on 18 floors from the GeoBIM retrieval
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Fig. 20 Target building maintenance activities guided by this method: (a) efficient maintenance path; (b) data assignment into the web UT;
(c) Equipped building maintenance unit; (d) GPS-supported mobile device for defect information access; (e) onsite maintenance activity

annotation but also as an interactive gateway. When clicked,
these markers dynamically trigger the display of associated
defect imagery, the semantic information of the underlying
BIM component, and relevant metadata such as detection
timestamp and severity assessment. This bidirectional linkage
between the digital model and defect records supports both
top-down review by management and bottom-up reporting
by field staff. For example, engineers can upload updated
inspection images or confirm repair completions directly
through the interface.

Leveraging the GeoBIM framework, structural defects
are accurately mapped to their corresponding building
elements with high spatial precision. This mapping enables

a detailed visualization of defect distributions, providing
actionable insights for prioritizing maintenance activities.
Figure 19 illustrates the systematic localization of defects across
facades, categorized by floor, allowing maintenance teams
to focus on high-priority areas with greater defect density.

The proposed method further supports the optimization
of maintenance paths. By analyzing the defect distribution
data, our algorithm determines the most efficient trajectories
for BMUs, minimizing resource use and downtime while
addressing critical defects. The integration of defect data
into the interactive Ul ensures that real-time guidance is
available to maintenance teams, enhancing their responsiveness
and operational efficiency.
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5 Discussion

In this section, we discuss the advantages of the proposed
method, examine its current limitations, and suggest future
improvements and extensions for broader application.

5.1 Method advantages

The proposed UAV-GeoBIM inspection framework offers
several notable advantages over conventional approaches.
First, it achieves high precision in defect localization. Our
experiments demonstrated that defects can be georeferenced
with an accuracy on the order of centimeters, which is a
significant improvement compared to traditional manual
inspections. This level of accuracy ensures that the mapped
defect positions correspond very closely to their real-world
locations, facilitating reliable condition assessment and
repair planning. Second, the method is robust in handling
various practical challenges in data collection. It can
accommodate UAV imagery captured at oblique angles or
of irregular facade geometries, whereas many existing
techniques require strictly perpendicular camera views or
flat surfaces. In our case, even images taken from suboptimal
angles were used effectively without loss of localization
performance. In addition, by using depth-derived masks,
the framework automatically filters out irrelevant regions
(such as neighboring buildings or sky in the background),
thereby avoiding false positives on non-target surfaces. The
pipeline also identifies and merges duplicate detections
of the same defect from overlapping images, ensuring that
each unique defect is recorded only once. These features
collectively improve the reliability of the defect data: the
results are cleaner (focused only on the actual building) and
more concise (with no duplicated entries), which simplifies
subsequent analysis. Third, our approach integrates multi-
source data including photogrammetric imagery, GIS, and
BIM, in an automated end-to-end workflow, leading to a
high degree of automation and information richness. The
GeoBIM-based registration efficiently unifies the coordinate
systems of the SfM model, BIM, and global GIS reference,
streamlining what is often a complicated transformation
process in other workflows. This integration yields a DT
that not only contains the geometric representation of the
building but also the semantic context for each defect
through the BIM metadata. Every defect is linked to a specific
building component and floor level, providing context that
purely image-based methods lack. The system is scalable
and was shown to work on a large 18-story building using
over a thousand images, indicating its potential applicability
to even larger structures or campus-scale deployments. The
use of multiple UAVs and a high-performance computing

setup demonstrates that the framework can handle extensive
data collection and processing in a time-efficient manner.
Moreover, the outcome of our pipeline is directly usable
for maintenance decision-making: by visualizing defects in
a WebGIS environment and retrieving their structural
information, facility managers can immediately interpret
the results in terms of actionable tasks.

Finally, the framework bridges the gap between static
inspections and active maintenance management. Unlike
conventional defect detection studies that end at reporting
the locations of defects, our approach goes a step further by
incorporating a decision-support mechanism. The integration
of defect data with maintenance planning tools with the
BMU path optimization and UI shows how the DT can guide
real-world interventions. This synergy between accurate
digital models and practical maintenance workflows is a
key advantage for asset management: it enables data-driven
scheduling of repairs, efficient allocation of resources, and
continuous updating of the building’s condition in the DT.
In summary, the method enhances accuracy, robustness,
and automation in defect detection, and it translates those
improvements into tangible benefits for building maintenance
operations.

5.2 Limitations

While our proposed method demonstrates
performance and generalizability, we acknowledge several

strong

areas where further improvements or refinements may be
warranted.

Firstly, although the method has been validated on a
variety of building types—including high-rise curtain
wall systems, curved fagades, and historic masonry—it is
important to recognise that real-world inspection scenarios
can be even more diverse and complex. Architectural
configurations with extreme occlusions, highly reflective
surfaces, or dense ornamental detail may challenge the
robustness of both the defect detection algorithm and the
GeoBIM registration. In such scenarios, localization accuracy
may decrease and processing time may increase due to greater
algorithmic complexity. These effects are not intrinsic
limitations of the method, but rather expected performance
variations under non-ideal conditions. Addressing them
may require additional data pre-processing, model retraining,
or adaptive flight strategies in future deployments.

Secondly, the current system operates in a near real-time
mode. UAV images are collected, processed, and visualised
within a short period following data acquisition, which
suffices for periodic condition assessment and maintenance
planning. However, the system does not yet incorporate a
continuous real-time streaming capability. This is not a
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technical shortcoming but a design choice, as the current
application scenarios do not demand persistent monitoring.
Should use cases arise—such as disaster response or critical
infrastructure surveillance—that require real-time data
feeds, the system architecture is sufficiently modular to
support such integration with minimal modification.

Finally, while the use of SfIM/MVS-based reconstruction
and BIM-GIS data fusion delivers rich spatial and semantic
context, it does involve significant data volume and
computational resources. In our implementation, these
demands were met using modern consumer-grade hardware.
However, in extremely large-scale projects or resource-
constrained environments, computational efficiency and
memory management may become more prominent concerns.
Additionally, although data format interoperability between
BIM and GIS platforms has been effectively handled using
standardised coordinate transformations and conversion
pipelines, residual inconsistencies in geometry resolution
or metadata mapping may occasionally require manual
refinement.

In summary, these issues are better characterised as
manageable trade-offs or conditions for optimal performance,
rather than intrinsic weaknesses of the framework. They
highlight practical considerations that can inform targeted
enhancements in future iterations of the system.

5.3 Future directions and application extensions

We outline several directions for future work to address the
above limitations and extend the applicability of the proposed
framework.

(1) Broadening applicability to diverse structures: Ensuring
that the GeoBIM integration works with different BIM
standards and practices (for example, varying levels of
detail in BIM models or different coordinate reference
systems) will make the system more universally
applicable. In the long term, scaling the methodology
to manage multiple buildings or an entire portfolio of
assets (such as all buildings in a campus or all bridges
in a city) could enable a more holistic infrastructure
maintenance platform. This might involve integrating
our building-level DTs into larger urban DT or smart
city systems, allowing city officials and stakeholders to
monitor and prioritize maintenance across many assets
in a unified environment.

(2) Integration of real-time data and IoT: Another key
improvement is incorporating real-time monitoring
capabilities into the DT. By integrating Internet of
Things (IoT) sensors and devices with the GeoBIM
framework, the digital model could be kept up-to-date
with live data. Real-time data integration would enable

timely alerts for new or worsening defects and could
support predictive maintenance - identifying areas of
concern before visible defects even emerge. Additionally,
future work could explore automated UAV deployments
or permanent camera installations for more frequent
data capture.

(3) Enhanced semantic analysis and usability: Increasing
the semantic understanding and user-friendliness of the
DT is another future direction. On the one hand, this
involves improving how defects are characterized and
reported. Such enriched information would make the
DT more valuable to engineers and decision-makers.
On the other hand, integrating the framework with
existing facility management or maintenance scheduling
software could streamline the workflow from detection
to repair. This might include exporting defect data
in standardized formats or developing dashboards that
allow users to interact with the defect information
intuitively.

6 Conclusion

In conclusion, the method introduced in this study
demonstrates remarkable scalability and holds substantial
practical implications for the automated construction of
architectural defect DTs and for guiding real-world
maintenance endeavors. By utilizing high-precision, 3D
global defect localization through GeoBIM registration and
incorporating automated structural adaptation, this approach
effectively resolves prevalent issues encountered in existing
methods. Such issues include the limited scope of UAV
data collection and the challenges in applying conventional
techniques to all facets of a building’s exterior. Our
methodology significantly improves upon these limitations
by facilitating precise defect mapping across the entire
structure.

This novel end-to-end solution leverages the integration
of BIM+GIS, not only to enhance the accuracy of defect
localization but also to enable the solution’s application on
a urban scale for holistic management. By adopting this
comprehensive approach, the methodology is capable of
executing global control over extensive urban infrastructure,
thereby paving the way for smart city management.

The implementation of this method allows for a
sophisticated synergy between virtual models and their
physical counterparts. This synergy is pivotal in enriching
the DT with detailed semantic information, which in turn,
refines the maintenance strategies and actions taken on the
ground. In essence, it transcends the digital-physical division
and aligns the DT paradigm with operational reality.

Validated in the dense urban environment of Hong
Kong on a high-rise civil structure, our solution has proven
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its feasibility, effectiveness, and efficiency. It stands as a
testament to the potential of similar large-scale assets,
ushering in a new era for architectural maintenance and
asset management. By fostering an environment where defects
are not merely identified but are contextually understood
and addressed, the proposed solution offers a significant
leap forward from current practices. It marks a pivotal step
towards more resilient and maintainable urban architectural
landscapes.
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