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 A B S T R A C T

Monitoring large-scale work sites is challenging, particularly in vast outdoor areas. Unmanned aerial vehicles 
(UAVs) provide an effective solution for site monitoring and worker management. This paper introduces a 
UAV-based framework integrated with digital twin (DT) modeling to enhance real-time data management 
and worker authorization verification. The pretrained YOLO-LCA model improved detection accuracy from 
31.5% to 96.4%. The framework combines multi-object tracking with 3D site reconstruction, enabling precise 
global registration and situational awareness. Cross-referencing UAV detections with GPS-enabled worker 
IDs ensures that only authorized personnel are present, effectively identifying unapproved workers. The 
proposed framework has undergone large-scale validation across multiple construction projects in Hong Kong, 
demonstrating significant potential for modernizing work site management. By integrating UAVs and DT 
technology, this framework supports efficient monitoring, operational safety, and informed decision-making, 
providing a scalable approach to addressing the demands of large-scale construction site management.
1. Introduction

In large-scale outdoor working environments within urban con-
texts, managing worker authorization presents significant challenges 
due to the vast and open nature of such sites. Ensuring that only 
authorized, properly trained personnel are present on-site is critical 
not only for operational efficiency but also for safety, especially in 
densely populated urban areas. Unauthorized workers typically lack the 
necessary safety training and may be unfamiliar with the site’s specific 
hazards, increasing the risk of accidents. This is of particular concern in 
urban environments like open-pit mines [1], wind farms [2], and large 
infrastructure projects such as highways [3] and railways [4], where 
real-time monitoring of workers is essential to prevent incidents and 
maintain safety across vast and complex city landscapes. While smaller, 
enclosed sites allow for straightforward worker identity verification 
through controlled access points or physical security measures [5]. 
However, the sheer scale and openness of urban-level work sites make 
traditional methods like manual patrolling or closed-circuit television 
(CCTV) surveillance impractical and costly [6]. For example, mines 
situated in city outskirts or construction zones with dynamic excavation 
areas pose continuous worker monitoring challenges [7]. Similarly, 
wind farms and large-scale burial sites require real-time monitoring of 
workers, but the vast geographical spread of these projects limits the 
effectiveness of fixed surveillance methods [8].
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The application of unmanned aerial vehicles (UAVs) in large-scale 
urban site monitoring has proven to be a flexible and sustainable so-
lution, effectively addressing the limitations of traditional surveillance 
methods such as fixed CCTV systems, which are often restricted by 
their limited coverage areas and lack of adaptability to dynamic site 
layouts [9,10]. UAVs offer unmatched versatility in covering extensive 
and constantly evolving urban construction environments, enabling 
real-time aerial monitoring of site progress, worker activities, and 
environmental conditions. Unlike mobile 360-degree cameras, which 
require autonomous ground vehicles for mobility and are limited by 
terrain accessibility, UAV can operate fully autonomously without re-
quiring operator intervention during routine inspections. Furthermore, 
UAVs are not constrained by terrain, making them highly adaptable 
to complex and uneven construction environments. This enhances both 
operational safety and compliance with urban planning regulations by 
facilitating automated worker verification through integrated Global 
Positioning System (GPS) tracking systems [11,12]. However, despite 
these advantages, the deployment of UAVs in construction projects 
introduces new challenges, particularly in managing and processing 
the vast amounts of image data generated by UAV flights. In addition, 
for larger-scale scenarios where single UAV battery life may pose 
a limitation, the site should be divided into smaller sub-regions for 
sequential inspections or employing multiple UAVs to enable simulta-
neous coverage of different zones, which may addressed the battery 
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Fig. 1. Traditional monitoring methods.

limitation for single UAV. To meet the sustainability and efficiency 
goals emphasized in urban monitoring systems, sophisticated com-
puter vision algorithms are necessary to process these large datasets 
effectively, requiring advancements in image processing techniques to 
ensure accurate detection and tracking of site activities and personnel 
in real time [13,14].

Advancements in computer vision and deep learning algorithms 
have greatly enhanced sustainable urban construction monitoring by 
automating the detection, tracking, and analysis of site activities in 
real-time. UAV-based systems, while offering flexibility, face significant 
challenges due to the dynamic nature of large, open environments. 
Unlike fixed-camera setups with known spatial coordinates, UAVs must 
contend with constantly changing positions, making real-time local-
ization and accuracy difficult. Issues like GPS interruptions and sig-
nal interferences in dense urban environments further complicate the 
monitoring process, where precision is critical for tracking personnel 
and equipment across vast construction areas [15]. Moreover, one 
of the critical challenges in UAV-based site monitoring is the lack 
of specialized datasets for large-scale, open environments. Existing 
deep learning models are often trained on datasets that are not rep-
resentative of the complex, ever-changing conditions encountered in 
outdoor construction environments, such as varying lighting and ter-
rain. This discrepancy reduces the effectiveness of these models when 
applied to real-world scenarios [16,17]. The development of compre-
hensive datasets tailored for open-site object detection, like the SODA 
dataset, is necessary to improve the performance and generalizability of 
UAV-based monitoring systems in construction projects [18]. Address-
ing these issues requires further refinement of algorithms and robust 
datasets to better handle the complexities of UAV data in dynamic 
urban-level construction environments.

Traditional monitoring methods, as illustrated in Fig.  1(a), are often 
limited in coverage area, whereas drones, shown in Fig.  1(b), offer 
comprehensive site monitoring capabilities. However, challenges re-
main in verifying worker permissions solely through drone surveillance, 
highlighting the need for a more robust solution that can authenticate 
worker authorization while continuously updating worker distribu-
tion across the site. Recent digital twin (DT) research has gained 
increasing prominence in working site monitoring due to its ability 
to seamlessly integrate multi-source 2D and 3D data and provide 
real-time updates [19]. Faced with these conditions, we introduce 
a UAV-enabled surveillance and management framework that lever-
ages digital twin (DT) technology for real-time site monitoring. In 
this context, surveillance refers to UAVs capturing real-time video 
streams of the construction site and transmitting them to a centralized 
management platform. This allows site managers to remotely mon-
itor all work regions, eliminating the need for manual inspections 
in large-scale construction environments. However, real-time video 
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surveillance alone does not guarantee that only authorized personnel 
are present on-site, necessitating an additional management mechanism 
that integrates worker authorization verification with automated data 
processing. Therefore, we incorporates a worker authorization system, 
which cross-references UAV-detected personnel with GPS-based elec-
tronic work permits to verify their legitimacy. Additionally, the system 
aggregates and visualizes statistical data on both authorized and unau-
thorized workers for better management, enabling managers to make 
informed workforce allocation and compliance decisions. By integrat-
ing real-time UAV surveillance with intelligent worker management, 
this approach not only ensures continuous situational awareness but 
also facilitates proactive interventions. Through on-site validation, this 
method proves to be a scalable and efficient solution for modern site 
management, supporting enhanced safety enforcement and automated 
workforce surveillance.

2. Related works

2.1. UAV in construction monitoring

UAVs have emerged as a transformative tool in construction mon-
itoring due to their ability to provide real-time, comprehensive data 
collection, high flexibility, and extensive coverage across various con-
struction environments [20]. UAVs offer significant advantages over 
traditional monitoring methods, such as manual inspections and fixed-
camera surveillance systems, particularly in terms of efficiency, ac-
cessibility, and safety [21]. By enabling aerial views and integrating 
with advanced imaging technologies like LiDAR and photogrammetry, 
UAVs can rapidly collect large amounts of data that can be processed 
to monitor site progress, worker activity, and material usage [22].

In urban and confined construction projects, UAVs have achieved 
considerable success [23,24]. They are widely used for progress track-
ing [25], wet bulb globe temperature (WBGT) prediction for climate 
adaptation [26], safety inspections [13], and structural assessments 
[27], where high-resolution imagery and precise mapping are cru-
cial [28]. By reducing human involvement in dangerous environments, 
UAVs enhance safety while promoting resilient, low-impact construc-
tion workflows. UAVs offer a safer and faster alternative to manual 
inspections, reducing the need for workers to access hazardous ar-
eas [29], further supporting urban sustainability goals by enhancing 
resource allocation and reducing environmental footprints.

As UAVs have proven effective in smaller, confined sites, their 
application has expanded into large-scale outdoor and open construc-
tion environments, such as open-pit mines [30], wind farms, and 
highway projects [31,32]. In these vast and dynamic environments, 
UAVs offer unparalleled coverage and flexibility, providing real-time 
monitoring of extensive areas that are otherwise impractical for tra-
ditional surveillance methods [33]. UAVs are now being used for 
topographical mapping, 3D modeling, environmental assessments, and 
real-time worker and equipment tracking [34], contributing to sus-
tainable city management by integrating environmental monitoring 
with infrastructure development. The ability to monitor large distances, 
shifting terrain, and evolving site conditions makes UAVs essential 
for ensuring operational efficiency and maintaining safety standards 
across expansive construction sites, contributing to the resilience and 
sustainability of urban landscapes.

The deployment of UAVs in large-scale, open construction environ-
ments presents significant challenges. The vast size and complexity of 
such sites generate enormous volumes of data, demanding advanced 
processing capabilities and sophisticated algorithms for timely and 
accurate analysis. UAVs must operate in dynamic, uncontrolled en-
vironments where factors such as complex terrain, variable weather 
conditions, and shifting lighting can hinder data capture and compro-
mise system reliability. Their mobility further complicates real-time 
localization and data alignment due to constant adjustments in position 
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and orientation. Integrating UAV data into broader monitoring frame-
works is particularly challenging, as construction sites require continu-
ous adaptation and robust data synchronization to maintain accuracy. 
While UAVs hold substantial potential, their effectiveness in large-
scale construction relies on further advancements in data processing, 
environmental adaptability, and operational strategies.

2.2. Object detection in UAV application

Object detection methods in UAV applications can be broadly cate-
gorized into single-stage and two-stage approaches. Single-stage meth-
ods, such as YOLOv10 and SSD, are known for their real-time per-
formance and low computational requirements, making them highly 
suitable for applications that demand fast inference [35,36]. In con-
trast, two-stage methods, such as Faster R-CNN, improve detection 
accuracy by using a region proposal network (RPN), although this 
comes at the cost of slower inference speeds [37,38]. Transformer-
based models like DETR aim to enhance real-time performance by 
replacing the RPN with an end-to-end detection approach, offering high 
accuracy but requiring more computational resources [39,40].

While these algorithms perform well on standard benchmark
datasets like Pascal VOC 2007 and COCO, they often face limitations 
when applied to UAV-based detection. UAV images tend to have large 
background areas with complex features, while the target objects (e.g., 
workers or equipment) occupy only a small portion of the image, 
making detection more challenging [41,42]. Furthermore, UAVs are 
constrained by limited endurance and computational capacity, which 
require detection models that are both computationally efficient and 
capable of fast inference [43,44]. The critical challenge in UAV-based 
detection tasks is finding the balance between detection precision and 
real-time performance. As such, models like YOLO, with their minimal 
computational overhead and fast inference speeds, are often preferred 
for UAV inspection tasks.

However, even YOLO models, typically pre-trained on conventional 
datasets, may not align well with the unique operational conditions 
of UAV-based inspections. UAVs capture images from an overhead 
perspective, which results in distinct object features for the same 
categories and challenges like object occlusion [41,44]. This leads to 
the need for retraining these models on specialized datasets tailored 
to the specific context of UAV inspections. Currently, datasets specif-
ically designed for UAV perspectives or site inspection environments 
— such as UAVDT [45], VisDrone [46], and UAV123 [47] — remain 
limited, often lacking generalizability across diverse operational envi-
ronments [48,49]. While these datasets provide important benchmarks 
for certain UAV tasks, their applicability in broader, more complex real-
world scenarios remains constrained. As a result, there is a growing 
need to develop task-specific datasets that are customized to meet the 
unique challenges of UAV-based inspections.

In terms of applications, many studies have explored UAV-based 
object detection, though most have focused on specific tasks like crack 
detection. For instance, He et al. [50] developed MUENet based on 
YOLOX-S for road crack detection from a UAV perspective, while 
Ding et al. [51] deployed a transformer model on UAVs to detect 
building defects. Xiao et al. [52] employed point cloud segmentation 
and projection methods for bridge defect detection. On the other hand, 
while some studies have applied object detection for worker moni-
toring, these are often designed for indoor environments or rely on 
CCTV systems [53,54]. While these systems perform well in controlled 
indoor settings, their reliability in large-scale, open outdoor environ-
ments is limited. In conclusion, while UAV-based object detection has 
proven to be a powerful tool in construction and site monitoring, 
several challenges persist, particularly in large-scale outdoor scenarios. 
The need for specialized datasets, computational efficiency, and task-
specific model adaptations remains critical to improving the reliability 
and performance of these systems in dynamic, real-world environments.
3

2.3. DT-based working site management

DT technology has emerged as an integral solution for sustainable 
urban site monitoring, offering a real-time, high-fidelity digital rep-
resentation of physical sites by combining data from diverse sources 
such as building information modeling (BIM), sensors, and AI-driven 
systems [55]. DTs allow for comprehensive monitoring by integrating 
environmental, operational, and worker data into a cohesive model, 
providing a global overview of site activities [54]. This enables stake-
holders to access real-time updates, track worker activities, and make 
informed decisions based on current site conditions [19]. By connecting 
UAV-generated aerial data with operational data — such as worker 
location and equipment usage — DT enhances not only site visualiza-
tion but also the task assignment and resource allocation [56]. As a 
result, DTs facilitate more efficient and safer workflows, optimizing 
worker movements, material distribution, and machinery operation 
across large and dynamic working sites [57].

UAVs hold significant potential for enhancing DT applications in 
urban construction, but their integration presents several challenges. 
While UAVs provide real-time aerial data, capturing detailed images 
and videos of worker activities and site progress, the dynamic nature of 
construction sites complicates the integration of 2D visual data into 3D 
models for identity verification. The constantly changing perspective 
of the drone makes it difficult to align and track workers’ precise 
locations and activities, complicating the matching of dynamic visual 
data with static site models [58]. Although AI-driven image analysis 
has been explored to manage the large volumes of UAV-generated 
data, integrating this information into a DT framework for real-time 
worker tracking and authorization remains a complex issue. Further-
more, synchronizing UAV imagery with other critical metrics — such 
as worker movements, real-time positioning, and equipment usage — 
poses additional challenges, particularly in converting discrete time-
stamped data into continuous measures of worker activity for accurate 
verification [59,60]. These limitations restrict UAVs from delivering 
a fully integrated monitoring system for worker identity and safety, 
which is essential for ensuring compliance and security on large-scale 
construction sites.

2.4. Contribution

Despite advancements in UAV-based construction monitoring, ob-
ject detection, and DT-driven site management, existing methods strug-
gle with real-time data processing, adaptability, and seamless DT in-
tegration in large-scale, dynamic environments. UAV monitoring faces 
challenges in worker tracking, while object detection models often fail 
in complex outdoor settings due to occlusion and scale variation. Ad-
ditionally, DT-based management lacks real-time worker tracking and 
authorization verification, limiting its effectiveness in site-wide com-
pliance monitoring. These challenges, as discussed in related works, 
underscore the need for an integrated approach that enhances UAV 
surveillance and worker management within DT frameworks. To ad-
dress the challenges of data integration and alignment in large-scale 
urban construction, this study presents a UAV-supported DT modeling 
method that advances construction site worker surveillance and man-
agement. In this framework, surveillance is achieved through UAVs 
capturing real-time video streams and transmitting them to a central-
ized platform, allowing site managers to oversee all work regions re-
motely without the need for manual patrols. Meanwhile, management 
is realized through a worker authorization system that cross-references 
UAV detections with GPS-based electronic work permits, ensuring that 
only authorized personnel are present on-site. By combining real-time 
monitoring with proactive worker supervision, our approach offers a 
more comprehensive solution for large-scale construction site manage-
ment. The contribution of our research is reflected in the following 
aspects. (1) By leveraging AI-driven visual detection, our method con-
tinuously aligns 2D UAV imagery with the 3D site model, effectively 
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Fig. 2. Overall framework for monitoring and management of large-scale urban construction sites through interaction of physical and virtual spaces.
solving the 2D–3D matching problem to improve spatial registration 
accuracy in dynamic urban scenarios. This alignment resolves persis-
tent temporal-spatial data issues in DT applications, ensuring real-time 
worker movements are accurately represented within the DT model. (2) 
We propose the pre-trained YOLOv10-LCA model based on YOLOv10-S 
model, which enhances large-scale worker authorization verification. 
This model overcomes the limitations of traditional UAV detection 
algorithms in outdoor environments, achieving substantial gains in de-
tection precision and real-time performance to improve site safety and 
efficiency. (3) Our GPS-based worker authorization verification method 
identifies unauthorized personnel and integrates this information into 
a centralized smart city management platform, offering an intelligent, 
comprehensive solution for construction site management. Altogether, 
these advancements provide a cohesive and efficient decision-making 
tool, supporting modern site monitoring and management while signifi-
cantly enhancing safety, operational efficiency, and adaptability across 
complex construction environments.

3. Methodology

This study presents the design and implementation of a framework 
for conducting inspection tasks using drones in large-scale outdoor 
environments, as shown in Fig.  2. This framework is achieved through 
a close integration between physical and virtual spaces. UAV are de-
ployed with photogrammetry to create a 3D reconstruction of con-
struction environments, generating a coarse DT model of the site and 
aligning it to geographical coordinates through georegistration. UAV 
inspection routes are then planned based on this model, incorporating 
terrain-following flight to optimize coverage and maximize inspection 
efficiency within the drone’s endurance limits in physical space. At each 
inspection waypoint, we developed a specialized dataset for outdoor 
drone inspections and implemented the YOLO-based detection network, 
YOLOv10-LCA, for precise worker detection. Using the detection re-
sults, a multi-object tracking network is applied to ensure continuous 
and accurate tracking of each worker. By combining these tracking 
outputs with the georegistered model, we transform the camera-based 
coordinate data into geographic coordinates, visualizing all worker 
movement trajectories within the DT model. This approach to DT mod-
eling effectively resolves spatial alignment issues, enabling accurate, 
real-time representation of worker activities within the virtual site 
model. Further, GPS information from locators is uploaded to our man-
agement platform, enabling the verification of worker authorization 
4

status and the identification of unauthorized activities. By integrating 
drones with vision-based detection and GPS locators, this framework 
bypasses the inefficiencies and unreliability of manual verification 
in large-scale environments. Ultimately, it significantly improves the 
efficiency and accuracy of large-scale site monitoring while providing 
a clear, intuitive visualization for enhanced site management.

3.1. 3D reconstruction and flight route design in the physical space

In large-scale outdoor construction environments, 3D models can 
significantly enhance the efficiency of robotic inspections and provide 
better visualization, thus improving project management [61]. In this 
task, the 3D model is used to plan detailed drone inspection routes, 
and the results of worker authorization verification are also visualized 
on the 3D model. To achieve this, we first need to ensure that the 3D 
model is accurate enough to identify key areas of interest, but without 
being excessively detailed as a coarse 3D model is sufficient to meet 
the framework’s requirements. Therefore, efficient flight planning for 
3D reconstruction is critical.

Conducting large-scale 3D reconstruction with drones requires the 
use of oblique photogrammetry, which captures more surface details 
and textures by photographing the same scene from different angles. 
To design an optimal flight path for capturing these details, we must 
calculate the area covered by the drone’s camera during each flight 
segment. This can be described by the following formula: 

𝐴coverage = 2ℎ ⋅ tan
( 𝜃
2

)

⋅ 𝑑 (1)

where ℎ is the drone’s flight altitude, 𝜃 is the camera’s field of view 
(FOV), and 𝑑 is the distance between flight lines. This formula helps 
ensure that we maintain sufficient overlap between images for the 3D 
reconstruction, improving the accuracy and resolution of the resulting 
model.

Additionally, to maximize the efficiency of the flight within the 
limited battery life of the drone, we need to calculate the maximum 
area the drone can cover during a single flight. This is essential to 
ensure that we gather all the necessary data without exceeding the 
drone’s operational limits. The following formula accounts for both 
battery life and the area covered: 

𝐴max =
𝑇battery ⋅ 𝑣 ⋅ 2ℎ ⋅ tan

(

𝜃
2

)

(2)

𝑑overlap
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Fig. 3. (a) Flight path used for 3D reconstruction of the working site. (b) Sample image captured during the flight for 3D reconstruction.
Fig. 4. (a) Top-down view of the inspection flight route using terrain-following flight. (b) Side view showing the drone maintaining a constant relative altitude of 30 m above 
the ground.
Here, 𝑇battery is the total battery life, 𝑣 is the drone’s flight speed, and 
𝑑overlap is the required overlap distance between adjacent flight paths. 
This equation allows us to optimize the total area covered within the 
constraints of the drone’s battery, ensuring efficient use of resources 
during large-scale 3D reconstruction. Based on these equations, we 
derived the oblique photography flight path as shown in Fig.  3(a). In 
this flight path, and image is captured every 3 s, with a sample image 
shown in Fig.  3(b). This flight path resulted in the collection of over 
3000 images for 3D reconstruction, by inputting these images into the 
DJI Terra reconstruction software, a coarse model of this large-scale 
work environment was generated. Once the coarse 3D model is gener-
ated, we can identify areas that require detailed monitoring during the 
inspection process. For these areas, we employ terrain-following flight 
at an distance of 30 m, ensuring that the drone maintains a consistent 
altitude relative to the ground.

In large-scale outdoor construction sites, particularly in mountain-
ous environments, construction managers typically designate key work 
zones based on terrain and safety considerations. Flat and stable ter-
rain is generally preferred for construction activities, as it provides a 
safer and more controlled environment, reducing operational risks and 
improving efficiency. As a result, the selection of critical construction 
areas is inherently linked to both terrain conditions and safety require-
ments, with project managers prioritizing these locations for active 
construction. Based on this practice, the 19 inspection locations chosen 
in our study correspond to these predefined key work regions, ensuring 
that our UAV-based framework is verified in real-world scenarios where 
effective site surveillance is crucial. Given that the drone’s maximum 
flight endurance is 41 min and there are 19 inspection locations, it is 
crucial to design an optimal route that minimizes total flight time while 
ensuring all locations are inspected within the time limit.
5

To formalize this optimization problem, we define the objective 
function as: 

Minimize
𝑛−1
∑

𝑖=1
𝑑𝑖,𝑖+1 +

∑

𝑖∈𝑁
𝑇hover,𝑖 (3)

where 𝑑𝑖,𝑖+1 represents the distance between consecutive inspection 
locations, and 𝑇hover,𝑖 is the hover time at location 𝑖. The UAV’s total 
flight time remains constrained by: 
𝑛−1
∑

𝑖=1

𝑑𝑖,𝑖+1
𝑣

+
∑

𝑖∈𝑁
𝑇hover,𝑖 + 𝑇return ≤ 41 (4)

where 𝑣 is the UAV’s flight speed and 𝑇return is the time required 
to return to the starting point. In our study, the hover time at each 
inspection location, 𝑇hover,𝑖 is set to a default of 1 min. However, 
this duration can be adjusted based on predefined parameters and 
operational priorities. The decision regarding hover time is influenced 
by several factors, primarily determined by the construction manager’s 
assessment of the area’s importance and activity level. For example, 
in high-priority construction zones, such as areas with active work or 
critical operations, the UAV may hover for a longer duration to capture 
sufficient data and ensure thorough monitoring. On the other hand, in 
less critical areas, such as worker rest zones, the UAV’s hover time may 
be minimized to conserve battery and optimize flight efficiency.

We further model this problem as a 3D Traveling Salesman Problem 
(3D-TSP) to determine the optimal sequence of visits while minimizing 
total travel time. Each inspection location 𝑖 is represented by its 3D co-
ordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), and the direct distance between any two locations 
𝑖, 𝑗 is: 

𝑑𝑖𝑗 =
√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 + (𝑧𝑖 − 𝑧𝑗 )2 (5)
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The UAV’s route is optimized through the binary decision variable 
𝑥𝑖𝑗 : 

𝑥𝑖𝑗 =

{

1, if the UAV travels directly from location 𝑖 to location 𝑗
0, otherwise

(6)

Minimizing the total travel distance is formulated as: 

min
∑

𝑖∈𝑁

∑

𝑗∈𝑁,𝑗≠𝑖
𝑑𝑖𝑗𝑥𝑖𝑗 (7)

subject to: 
∑

𝑗∈𝑁,𝑗≠𝑖
𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑁 (8)

∑

𝑖∈𝑁,𝑖≠𝑗
𝑥𝑖𝑗 = 1, ∀𝑗 ∈ 𝑁 (9)

To prevent sub-tours, we introduce the Miller–Tucker–Zemlin (MTZ)
constraints: 

𝑢𝑖 − 𝑢𝑗 + |𝑁|𝑥𝑖𝑗 ≤ |𝑁| − 1, ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (10)

1 ≤ 𝑢𝑖 ≤ |𝑁|, ∀𝑖 ∈ 𝑁 (11)

The total mission duration, incorporating adaptive hover times, is 
constrained by: 
∑

𝑖∈𝑁

∑

𝑗∈𝑁,𝑗≠𝑖

𝑑𝑖𝑗𝑥𝑖𝑗
𝑣

+
∑

𝑖∈𝑁
𝑇hover,𝑖 + 𝑇return ≤ 41 (12)

Considering that obstacles may be encountered during the UAV’s 
flight, we assume that the UAV used in our study is equipped with 
environmental awareness capabilities, such as multiple cameras or 
infrared sensors. To address this, we introduce a distance constraint 
to ensure that the UAV’s flight path maintains a safe distance from 
any obstacles in the environment. Specifically, for each UAV position 
𝐩(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), where 𝐩(𝑡) represents the position of the UAV in 
its own coordinate system, we impose the following condition for every 
time step: 

‖𝐩(𝑡) − 𝐩obs(𝑡)‖ ≥ 𝑑safe, ∀𝑡 (13)

where 𝐩obs(𝑡) is the position of the obstacle at time 𝑡, and 𝑑safe is the 
minimum safe distance between the UAV and the obstacle.

This optimization model ensures that the inspection route is de-
signed to minimize total flight time while respecting the drone’s battery 
life constraint, as well as avoiding potential collisions. By solving this 
3D-TSP-based optimization problem, we obtain an efficient inspec-
tion route that not only meets the 41-min flight constraint but also 
minimizes redundant travel between locations, all while maintaining 
safe distances from obstacles. From another perspective, accurately 
estimating worker locations from the drone’s video stream necessitates 
matching the 2D images with the 3D reconstructed model to infer 
the workers’ geolocation. Traditional feature point matching methods 
prove ineffective, and ensuring the real-time performance and reliabil-
ity of deep learning approaches poses challenges. To address this, we 
established a predetermined flight path, allowing the drone to capture 
the worksite from fixed positions, thus obtaining accurate metadata, 
including the drone’s longitude, latitude, altitude, gimbal angle, and 
focal length during recording. This information enables the framework 
to accurately infer the geolocation of each target object in the video, 
effectively overcoming the challenges of automatic 2D–3D matching in 
large-scale outdoor environments.
6

Fig. 5. Make sense annotator used for dataset construction.

3.2. UAV-oriented worker detection

Given the need for minimal computational overhead and fast infer-
ence speeds, YOLO models have emerged as an optimal choice for such 
tasks. Their ability to perform real-time object detection with lower 
computational cost is critical, particularly in UAV-based applications 
where processing power is constrained. The YOLO models is known 
for balancing accuracy with speed, making it suitable for the rapid 
decision-making required in drone-based monitoring scenarios. How-
ever, standard datasets like COCO and PASCAL VOC 2007, which are 
commonly used for training object detection models, are not ideal for 
UAV-based detection due to their focus on terrestrial object views. UAV 
images, by contrast, are captured from an aerial perspective, where 
objects appear smaller and often in different orientations, making 
detection more challenging. As a result, we constructed a specialized 
dataset tailored to this specific UAV monitoring scenario.

To create this dataset, we used a UAV to fly over multiple way-
points, collecting data during each flight. In total, we gathered over 
3000 images from different flight points, ensuring that the dataset 
covered a wide range of environments and conditions encountered 
in real-world UAV monitoring. Each image was carefully annotated, 
as shown in Fig.  5, to indicate the presence of workers, equipment, 
and other objects of interest. The annotated images, displayed in Fig. 
6, ensure that the model is trained to detect objects from a UAV’s 
perspective, accounting for factors like varying object sizes, occlusions, 
and perspectives. This customized dataset accounts for the unique 
perspectives and conditions encountered during drone flights, ensuring 
the model is trained to recognize objects in a manner that reflects the 
aerial viewpoint.

Based on the YOLOv10-S model, we performed pretraining to de-
velop the YOLOv10-LCA model, which is specifically optimized for 
drone-based monitoring in large-scale environments. The architecture 
of YOLOv10-S, as illustrated in Fig.  7, consists of three main com-
ponents: (1) Backbone: The lightweight backbone efficiently extracts 
features from aerial images, enabling rapid processing under the limited 
computational capacity of UAVs. This is crucial for ensuring the system 
can handle the high volume of data in real-time while maintaining 
accuracy in large-scale environments. (2) Neck: The neck refines the 
extracted features, enhancing the model’s ability to detect objects at 
varying scales. By balancing feature refinement and computational 
efficiency, it supports the detection of workers and equipment across 
dynamic construction sites, where targets may vary significantly in 
distance and appearance. (3) YOLO Head: The YOLO head is optimized 
for real-time performance, generating bounding boxes and class predic-
tions rapidly. This ensures that the UAV system can detect and classify 
workers and equipment in real time, providing immediate feedback to 
support site safety and resource management.

In our system, video data captured by the drone during flight are 
transmitted in real-time to a remote workstation, where the trained 
YOLOv10-LCA model processes the video stream for object detection. 
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Fig. 6. Sample of annotated objects: (a) Raw images. (b) Annotated image.
Fig. 7. Architecture of YOLOv10-LCA model based on YOLOv10s.
The model identifies workers within the video feed, drawing bounding 
boxes around them and providing positional information relative to the 
video coordinate system. This real-time detection allows for continuous 
monitoring of worker activities on-site, which is essential for accurate 
tracking and management. This positional data is subsequently used 
for object tracking, enabling the system to track individual work-
ers across frames. Additionally, by combining the detected worker’s 
location with GPS data, we can estimate the worker’s latitude and 
longitude, providing an accurate geolocation of each worker.

3.3. Multi-object tracking and registration in virtual space

When selecting a tracking algorithm for this study, the outdoor 
environment presents complex scenarios, despite the relatively low 
density of workers to track. Therefore, ensuring stability in long-term 
worker tracking is essential. DeepSORT [62] is well-suited for these 
requirements, providing robust performance under such conditions. 
Additionally, DeepSORT integrates seamlessly with YOLO, utilizing the 
bounding boxes generated by YOLOv10-LCA for tracking purposes. This 
integration facilitates real-time tracking of workers in the field, making 
DeepSORT the optimal choice for the objectives of this study. For each 
frame detection in the video, DeepSORT either creates a new track 
𝐓 = 𝐱 ,𝐏 , 𝐟 , id  or associates the detected object with an existing track 
7

𝑗 𝑗 𝑗 𝑗 𝑗
through intersection over union (IOU) matching. The IOU for bounding 
boxes 𝐴 and 𝐵 is calculated as follows: 
IOU(𝐴,𝐵) = |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(14)

Each track 𝐓𝑗 represents a worker in the video stream, where 𝐱𝑗
is the state vector, 𝐏𝑗 is the covariance matrix, 𝐟𝑗 is the appearance 
characteristic vector and id𝑗 is the unique identifier. The Kalman filter 
is then employed to predict and update the state 𝐱𝑗 and covariance 𝐏𝑗
for each track. The Kalman filter predicts the state of the track for the 
next frame by using the following equations: 
�̂�𝑗|𝑗−1 = 𝐅𝑗 �̂�𝑗−1|𝑗−1 + 𝐁𝑗𝐮𝑗 (15)

𝐏𝑗|𝑗−1 = 𝐅𝑗𝐏𝑗−1|𝑗−1𝐅𝑇𝑗 +𝐐𝑗 (16)

where �̂�𝑗|𝑗−1 is the predicted state of the worker (position and velocity) 
at time 𝑗, based on information up to time 𝑗−1. 𝐅𝑗 is the state transition 
matrix, modeling how the worker is expected to move between frames. 
𝐁𝑗𝐮𝑗 represents the control input, which is often zero in tracking sce-
narios. 𝐏𝑗|𝑗 − 1 is the predicted covariance, and 𝐐𝑗 is the process noise 
covariance, accounting for uncertainties in the worker’s movement. 
When a new prediction is associated with an existing track, the Kalman 
filter updates the track’s state, which can be expressed by the following 
equations: 
𝐊 = 𝐏 𝐇𝑇 (𝐇 𝐏 𝐇𝑇 + 𝐑 )−1 (17)
𝑗 𝑗|𝑗−1 𝑗 𝑗 𝑗|𝑗−1 𝑗 𝑗
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Fig. 8. Projection relationship between camera coordinate system, pixel coordinate system, and world coordinate system.
�̂�𝑗|𝑗 = �̂�𝑗|𝑗−1 +𝐊𝑗 (𝐳𝑗 −𝐇𝑗 �̂�𝑗|𝑗−1) (18)

𝐏𝑗|𝑗 = (𝐈 −𝐊𝑗𝐇𝑗 )𝐏𝑗|𝑗−1 (19)

where 𝐊𝑗 is the Kalman gain, determining how much to trust the 
new measurement versus the prediction. 𝐳𝑗 is the new measurement 
(detection) of the worker’s position. 𝐇𝑗 is the observation matrix, map-
ping the state space to the measurement space. 𝐑𝑗 is the measurement 
noise covariance. When a predicted track cannot be associated with 
any existing tracks, a new track is initialized with �̂�new based on the 
detection, and an initial covariance 𝐏new representing uncertainty in 
the initial estimate. In contrast, If a track does not have a corresponding 
bounding box in several consecutive frames, the track will be deleted. 
Through the integration of DeepSORT with YOLOv10-LCA, workers 
can be accurately identified and tracked from the drone’s perspective, 
enabling the further estimation of each worker’s latitude and longitude 
information.

After confirming the specific location and shooting angles of the 
drone, the geographical information of the workers in the video stream 
can be estimated using the trained YOLOv10-LCA model. As shown 
in the Fig.  8, the drone’s camera coordinate system is represented by 
(𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ), and the world coordinate system is denoted as (𝑥𝑤, 𝑦𝑤, 𝑧𝑤). 
The pixel coordinates of the target object in the image are (𝑢, 𝑣), where 
𝑢 and 𝑣 represent the horizontal and vertical directions in the camera’s 
pixel coordinate system respectively. Assuming the camera’s intrinsic 
matrix is: 

𝐊 =
⎡

⎢

⎢

⎣

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤

⎥

⎥

⎦

(20)

where 𝑓𝑥 and 𝑓𝑦 represent the focal lengths in the pixel coordinates, 𝑐𝑥
and 𝑐𝑦 are the coordinates of the optical center in the pixel coordinate 
system, the object’s pixel coordinates in the image are defined as 
(𝑥, 𝑦), which is obtained from YOLOv10-LCA. The normalized pixel 
coordinates 𝑢 and 𝑣 can then be obtained using the following equation, 
and the corresponding direction vector 𝐝𝐜 in the camera coordinate 
system is derived accordingly: 

𝑢 =
𝑥 − 𝑐𝑥 , 𝑣 =

𝑦 − 𝑐𝑦 (21)
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𝑓𝑥 𝑓𝑦
𝐝𝐜 =
⎡

⎢

⎢

⎣

𝑢
𝑣
1

⎤

⎥

⎥

⎦

(22)

The direction vector in the camera coordinate system needs to be 
transformed into the world coordinate system based on the drone’s 
gimbal angles. The rotation of the gimbal is described by the angle 
of yaw 𝜙, pitch 𝜓 , and roll 𝜃, then the gimbal’s rotation matrix is 
constructed using the rotation matrices 𝐑 corresponding to these three 
matrix: 

𝐑yaw =
⎡

⎢

⎢

⎣

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

⎤

⎥

⎥

⎦

(23)

𝐑pitch =
⎡

⎢

⎢

⎣

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

⎤

⎥

⎥

⎦

(24)

𝐑roll =
⎡

⎢

⎢

⎣

1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

⎤

⎥

⎥

⎦

(25)

𝐑 = 𝐑yaw ⋅ 𝐑pitch ⋅ 𝐑roll (26)

where 𝐑yaw is the rotation matrix in the yaw direction, 𝐑pitch is the 
rotation matrix in the pitch direction, and 𝐑roll is the rotation matrix 
in the roll direction. By applying the combined rotation matrix 𝐑, the 
direction vector 𝐝𝑐 in the camera coordinate system can be transformed 
into the world coordinate system 𝐝𝑤: 
𝐝𝐰 = 𝐑 ⋅ 𝐝𝐜 (27)

Given the distance 𝑑 from the drone to the object location, the 
relative displacement of the object in the world coordinate system can 
be calculated: 
𝛥𝑋𝑤 = 𝑑 ⋅ 𝑑𝑤𝑥, 𝛥𝑌𝑤 = 𝑑 ⋅ 𝑑𝑤𝑦, 𝛥𝑍𝑤 = 𝑑 ⋅ 𝑑𝑤𝑧 (28)

𝑑wx, 𝑑wy, and 𝑑wz are the respective components of the global 
direction vector 𝐝w. Using the GPS module on the drone, its position 
in the world coordinate system can be known as (𝑋0, 𝑌0, 𝑍0), allowing 
the position of the target object in the world coordinate system to be 
calculated as: 
𝑋 = 𝑋 + 𝛥𝑋 , 𝑌 = 𝑌 + 𝛥𝑌 ,𝑍 = 𝑍 + 𝛥𝑍 (29)
𝑤 0 𝑤 𝑤 0 𝑤 𝑤 0 𝑤



Automation in Construction 174 (2025) 106108M. Han et al.
Fig. 9. Workflow for geo-referenced 3D model integration and worker visualization in 
the DT framework.

To convert the target object’s position from the world coordinate 
system to geographic coordinates, the curvature of the Earth must be 
taken into account. The actual distance corresponding to one degree of 
latitude and longitude is given by the following equations: 

𝑀 =
2𝜋𝑅earth

360
, 𝑁 =𝑀 ⋅ cos𝜙0 (30)

Here, 𝑅𝑒𝑎𝑟𝑡ℎ ≈ 6 371 000 m is the radius of the Earth and 𝜙0 is the 
initial latitude of the drone. The final longitude, latitude, and altitude 
of the target object can be calculated as follows: 

𝜆 = 𝜆0 +
𝛥𝑋𝑤
𝑁

, 𝜙 = 𝜙0 +
𝛥𝑌𝑤
𝑀

, ℎ = ℎ0 + 𝛥𝑍𝑤 (31)

Through the above derivation, the real-time estimation of the ge-
ographical coordinates of all workers in the drone video stream can 
be achieved, with accuracy down to the centimeter level. However, 
this is not sufficient to verify whether workers have proper work 
authorization, as detecting all workers in the video stream does not 
confirm whether they are carrying the necessary permits. Therefore, we 
equip all authorized workers with a GPS locator, as shown in the figure, 
to distinguish between workers with and without permission in the 
video stream. The GPS locator provides real-time latitude and longitude 
information for authorized workers, also with centimeter-level accu-
racy. By cross-verifying the data from the GPS locator with the location 
information estimated from the drone’s perspective, the framework can 
accurately identify workers without proper work permission.

Since the drone does not reside at a location for an extended 
period, the historical trajectories of detected workers at each work 
site are immediately uploaded to the visualization platform once the 
drone departs. Given Cesium’s free and open source nature, this frame-
work utilizes Cesium as the visualization platform [63]. As shown in 
Fig.  9, the workflow begins with a geo-referenced 3D model of the 
construction site generated from UAV-based photogrammetry, which 
is aligned to the WGS84 coordinate system (longitude, latitude and 
altitude). This model serves as the base for 3D visualization. Detected 
workers’ locations are calculated by using our 2D–3D matching method 
and converted into GeoJSON format using their corresponding WGS84 
coordinates. Both the 3D model and worker data are then uploaded to 
Cesium for real-time visualization, enabling site managers to monitor 
worker activities on a detailed digital twin platform.

3.4. Verification in physical space

Building upon the calculations presented in the previous section, 
we are able to estimate the latitude and longitude coordinates of all 
workers within the drone video stream. Each individual worker is 
tracked, and their geographic coordinates are estimated in real time 
based on the visual data captured by the drone. As the drone completes 
its flight and exits the worksite, this information is uploaded and 
subsequently converted into GeoJSON format, enabling its visualization 
on a 3D model of the entire construction site. However, relying solely 
on video streams is insufficient to ascertain whether workers possess 
valid work authorization. To address this limitation, each worker is 
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equipped with a work permit, in the form of a GPS locator, which 
provides real-time positioning data with centimeter-level accuracy. By 
cross-referencing the GPS location with the estimated position derived 
from the video stream, it becomes possible to determine whether 
workers are engaging in unauthorized activities. If the location data 
from the video stream aligns closely with the GPS coordinates, it 
suggests that the worker is operating within the designated area, and 
their activities are authorized. Conversely, significant discrepancies 
between the video-based location estimate and the GPS data may 
indicate potential unauthorized actions. This verification process is 
then uploaded to the site management platform for further analysis 
and reporting. This integrated system not only enhances the security of 
the construction site but also provides project managers with a robust 
tool for efficient monitoring and inspection. By combining drone-based 
video tracking with precise GPS technology, this method offers an 
automated and highly accurate solution for worker identity verification 
and work authorization management. The approach minimizes human 
error, increases the precision of monitoring, and enables rapid detection 
of potential risks, thereby ensuring both safety and compliance on the 
construction site.

4. Experimental results

4.1. System and experiment configuration

In this study, the DJI M30T was used to complete our tasks due 
to its exceptional endurance, stable flight performance, precision range 
capabilities, and robust environmental adaptability, as shown in Fig. 
10(a). The DJI M30T offers a maximum flight time of 41 min, which 
is crucial for large-scale continuous inspection, reducing the need for 
frequent battery replacements, thereby enhancing overall mission effi-
ciency. Additionally, the drone supports real-time data synchronization, 
allowing real-time video streams to be accessed through its correspond-
ing Flighthub 2 platform, facilitating subsequent object detection and 
geographical information estimation.

For the experimental site, tests were conducted at the location 
consistent in Fig.  4, situated in Fanling, North District of Hong Kong’s 
New Territories. The site covers an area of approximately 22,500 square 
meters, with an elevation ranging from the base to the ridgeline, reach-
ing a maximum height of about 565 m. Due to the complex terrain and 
large area, traditional UAVs and algorithms face multiple challenges in 
this environment. Firstly, variations in elevation and dense vegetation 
can lead to unstable GPS signals, affecting UAV positioning accuracy. 
Secondly, the diverse terrain and features increase the difficulty of 
image processing and object detection, potentially degrading algorithm 
performance. Additionally, the vast area requires UAVs with long en-
durance and efficient data processing capabilities to ensure complete 
coverage and real-time analysis of the collected data. The DJI M30T’s 
extended flight duration and stable performance make it particularly 
well-suited for overcoming these challenges. During these tests, the 
drone maintained an altitude of 30 m above ground level across all 
regions, consistent with the designed flight path in virtual space. This 
altitude was selected to avoid most obstacles while still capturing 
high-resolution video streams to support worker detection and tracking.

Once the real-time video stream transmitted by the DJI M30T 
was accessed through Flighthub 2, it was relayed to a remote fixed 
workstation. This workstation was equipped with an Intel i9-14900K 
central processing unit (CPU) and an NVIDIA A6000 graphics pro-
cessing unit (GPU). Object detection, geographical estimation, online 
registration, and worker authorization verification were all processed 
on this workstation, ensuring efficient and accurate data analysis.

To evaluate the economic feasibility of the proposed UAV-based 
framework, a detailed cost–benefit analysis was conducted, comparing 
its financial investment against traditional manual supervision and 
fixed CCTV systems. The total system cost includes the DJI M30T 
UAV ($9800), a computing workstation ($5600), software development 



Automation in Construction 174 (2025) 106108M. Han et al.
Fig. 10. (a) DJI M30T and its controller. (b) Sample inspection site with flight path in virtual space. (c) Drone following the designed flight path in physical space.
Table 1
ROI analysis of UAV-based system vs. manual supervision and fixed CCTV systems.
 Timeframe UAV Total Cost (USD) Manual Supervision Cost (USD) Fixed CCTV System Cost (USD) ROI (%) 
 1 month 17,640 11,200 95,000 −36.5  
 3 months 17,920 33,600 95,000 87.5  
 6 months 18,340 67,200 95,000 266.4  
 12 months 19,180 134,400 95,000 600.7  
($1400), training costs ($700), and monthly maintenance costs ($140). 
In contrast, manual supervision costs are calculated based on four 
supervisors patrolling the site daily, each earning a monthly salary of 
$2800, resulting in a total monthly labor cost of $11,200. Additionally, 
the patrol process requires at least three hours per session, and manual 
verification of worker authorization is labor-intensive and prone to 
errors. For fixed CCTV systems, we assume the deployment of one 
camera per inspection point, requiring a total of 19 cameras. Each 
CCTV system costs $5000, leading to an initial investment of $95,000, 
excluding additional expenses such as installation, wiring, and main-
tenance. Although CCTV systems provide continuous monitoring, they 
lack mobility and adaptability to large-scale dynamic environments, 
where UAV-based systems offer greater flexibility and efficiency.

Given these factors, we conducted a return on investment (ROI) 
analysis over different timeframes (1, 3, 6, and 12 months) to assess 
the long-term benefits of adopting UAV-based monitoring. As shown 
in Table  1, the UAV system initially incurs a higher upfront cost, 
but by the third month, it becomes more cost-effective than manual 
supervision, achieving an ROI of 87.5%. By the sixth month, the ROI 
reaches 266.4%, and by twelve months, the UAV system delivers a 
sixfold return on investment (ROI: 600.7%), confirming its long-term 
financial viability. In comparison, the fixed CCTV system requires 
an upfront investment of $95,000, significantly higher than the UAV 
system. Although CCTV provides continuous monitoring, it lacks adapt-
ability to dynamic environments, cannot track workers outside its 
fixed field of view, and requires additional costs for installation and 
infrastructure maintenance. Unlike UAVs, which can adjust flight paths 
and dynamically reposition based on site conditions, CCTV cameras 
are static and require additional units to cover blind spots. These 
limitations reduce the cost-effectiveness and flexibility of CCTV systems 
in large-scale, evolving construction environments. Moreover, as the 
scale of construction increases, the cost of manual supervision and 
CCTV system rises proportionally, whereas the UAV system remains 
scalable with minimal additional cost. This highlights the UAV-based 
framework’s potential to significantly reduce operational costs, improve 
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efficiency, and enhance worker monitoring accuracy in large-scale, 
complex construction environments.

4.2. UAV-oriented worker detection and tracking results

We evaluated YOLOv5s, YOLOv8s, YOLOv10s, Faster R-CNN, DETR, 
and our proposed YOLOv10-LCA model on our custom dataset, as 
detailed in Table  2. The YOLOv10-LCA model achieved mAP and 
mAP50-95 scores of 96.4% and 50.4%, respectively, significantly out-
performing the other models. In terms of inference speed, YOLOv10-
LCA demonstrated the best performance, with an inference time of just 
3 ms per image, far exceeding Faster R-CNN’s 167 ms and DETR’s 
83 ms. Additionally, similar to other YOLO models, YOLOv10-LCA 
exhibits low computational resource consumption. In summary, the 
YOLOv10-LCA model excels in accuracy, inference speed, and compu-
tational efficiency.

For the YOLOv10-LCA training process, we used our own dataset by 
dividing it into a training set (2123 images, approximately 70%), a test 
set (304 images, approximately 10%), and a validation set (606 images, 
approximately 20%). The training was based on the YOLOv10-s model 
provided by the official YOLOv10. Without pre-training on any other 
datasets, we trained the model on our dataset for 2000 epochs, using 
stochastic gradient descent (SGD) as the optimizer, and the relevant 
metrics throughout the training process were also recorded per 100 
epoch.

The model’s bounding box prediction loss function is based on the 
IoU metric, as presented earlier. Since the task only requires detect-
ing workers, the binary cross-entropy (BCE) loss was chosen as the 
classification loss function. For the bounding box refinement loss, the 
distribution focal loss (DFL) is employed to reduce the uncertainty 
around the boundary of the target boxes. The relevant formulas are as 
follow: 

BCE Loss = − 𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝) (32)
( )
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Fig. 11. Model training showing the convergence progress.
Fig. 12. Results of real-time worker detection and tracking.
Table 2
Performance comparison of different object detection models on our dataset.
 Model mAP50 mAP50-95 Inference speed (time/image) Computing consumption 
 YOLOv5s 31.5% 28.4% 6.4 ms Low  
 YOLOv8s 33.6% 28.7% 5.6 ms Low  
 YOLOv10s 34.2% 29.1% 7 ms Low  
 Faster RCNN 41.1% 34.8% 167 ms High  
 DETR 45.0% 36.2% 83 ms Medium  
 YOLOv10-LCA (ours) 96.4% 50.4% 3 ms Low  
DFL =
𝑁
∑

𝑖=1
−
(

𝛼𝑖 log(𝑝𝑖) + (1 − 𝛼𝑖) log(1 − 𝑝𝑖)
)

(33)

where 𝑦 is the true label (0 or 1), 𝑝 is the predicted probability, 𝛼𝑖 is 
the weight assigned to each boundary prediction, and 𝑝𝑖 is the predicted 
probability distribution for the target boundaries.

Recall and precision measure the model’s ability to detect all ex-
isting objects and correctly identified objects respectively. mAP@50 
represents the mean average precision across all categories when the 
IoU threshold is set as 50%. mAP50-95 evaluates the performance of 
model across multiple IoU thresholds from 50% to 95%. The relevant 
formulas are as follows: 
Recall = TP

TP + FN (34)

Precision = TP
TP + FP (35)

mAP@50 = 1
𝑁

𝑁
∑

𝑖=1
AP𝑖 (36)

mAP@50-95 = 1
10

0.95
∑

𝑡=0.5

1
𝑁

𝑁
∑

𝑖=1
AP𝑖(𝑡) (37)

The Fig.  11 illustrates the gradual decline in the model’s bounding 
box prediction loss, classification loss, and bounding box refinement 
loss throughout the training process, while mAP@50, mAP@50-95, 
precision, and recall steadily improve, indicating that the training is 
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Table 3
Relevant metrics for evaluation of the trained model.
 Evaluation metrics Related value 
 Images 606  
 Instances 1535  
 Box(P) 0.931  
 R 0.933  
 mAP50 0.964  
 mAP50-90 0.506  
 Inference speed 3 ms/image  

converging. The Table  3 also presents the evaluation results of the 
model after training. For the ‘‘worker’’ category, a total of 1535 workers 
were detected across 606 test images, with a box precision of 0.931 and 
a box recall of 0.933. The mAP@50 and mAP@50-95 are 0.965 and 
0.596 respectively, and the inference speed is 0.2 ms per frame. All 
these metrics indicate that the trained model fully meets the accuracy 
and real-time requirements of the framework under our evaluation.

For the task of object tracking, we integrated the DeepSORT track-
ing algorithm into YOLOv10-LCA, allowing for real-time tracking dur-
ing detection. Since the drone hovers at each work point, and the 
movement of workers within the drone’s field of view results in minimal 
pixel displacement, any work detected can be continuously tracked. The 
sample figures of the detection and tracking results are shown in Fig. 
12. These examples demonstrate that the framework are capable of 
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Table 4
Impact of hover time on detection accuracy and worker count (averaged over 5
sites).
 Hover time (s) Average detection accuracy Detected workers True number 
 10 91.2% 1.4 5  
 30 92.5% 3.8 5  
 60 93.8% 4.8 5  
 90 93.1% 5.0 5  
 120 94.9% 5.0 5  

Table 5
Performance of YOLOv10-LCA on public UAV datasets.
 Dataset Environment type Precision (%) Recall (%) mAP50 (%) 
 UAVDT Urban/Highway 43.2 45.6 47.1  
 VisDrone Urban/Rural 40.7 42.1 41.5  
 UAV123 Mixed scenarios 41.9 44.0 43.2  

accurately detecting and tracking all workers in the video stream, even 
in challenging conditions such as worker gathering, smoke obstruction, 
small target size, or when target features are less distinguishable in the 
context environment.

We have also validated the relationship between UAV hover time, 
detection accuracy, and the number of detected workers, confirming 
that optimizing hover duration is crucial to ensuring comprehensive 
worker monitoring while maintaining operational efficiency. Table  4 
shows the relationship between UAV hover time, detection accuracy, 
and the number of detected workers. While detection accuracy does 
not exhibit a direct correlation with hover time, shorter hover times 
result in fewer workers being detected compared to the actual number 
of workers (True Number). This suggests that insufficient hover time 
may cause certain workers to be missed during the detection process, 
rather than significantly affecting detection accuracy. These findings 
further emphasize the importance of adaptive hover times in ensuring 
comprehensive monitoring while maintaining operational efficiency.

Furthermore, to validate the model’s generalizability, we tested 
it on three publicly available UAV-based datasets: UAVDT [45], Vis-
Drone [46], and UAV123 [47]. These datasets feature diverse en-
vironmental conditions and drone perspectives, providing a robust 
benchmark for assessing the model’s adaptability. As shown in Table  5, 
our model achieves mAP50 values ranging from 41.5% to 47.1% across 
the three datasets, demonstrating moderate generalizability to diverse 
UAV-based scenarios. While the results indicate the model’s potential 
to adapt to different environments, there is room for improvement, par-
ticularly in scenarios with highly complex backgrounds or low-contrast 
objects.

4.3. Results of worker registration and verification

For the design of our electrical work permit, we created a custom 
GPS locator specifically tailored to this purpose. The figure of the 
permit and its key parameter are shown in Fig.  13 and Table  6. 
This device is capable of providing real-time latitude and longitude 
data with centimeter-level accuracy by utilizing a single SIM card. To 
address the issue of endurance, the locator is equipped with an 1800 
mAh battery, offering approximately 10 h of continuous operation. 
Additionally, the locator supports playback of historical trajectories, 
facilitating the registration and validation of the tracked paths.

To further validate the feasibility of the electrical work permit in 
this task, we conducted tests with and without the permit. Fig.  14(a) 
illustrates the scenario where the worker is equipped with the card, 
while Fig.  14(b) shows the scenario without the card. When the card 
is worn, the worker’s real-time geographic information is accurately 
mapped, as shown in Fig.  14(c). In contrast, without the card, no 
information about the worker is displayed. After measurement, the 
geographic information provided in Fig.  14(c) closely matches the 
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Fig. 13. (a) Design diagram of electronic work permit. (b) Physical representation of 
the electronic work permit.

Table 6
Key specifications of the electrical work permit.
 Parameter Specification  
 Module 4G: A7670C, GPS: L76K 
 Battery 1800 mAh  
 Battery life 10 h  
 Real-time positioning Supported  
 Historical playback Supported  
 Alert messages Supported  
 Receiving sensitivity 1 cm  
 First-time fix Cold start: Average 32 s 

Algorithm 1 Outdoor Inspection Task Workflow
1: Input: Total inspection sites 𝑁 = 19
2: Output: Report of workers with and without work permits, detailed times 

for each inspection site
3: for 𝑖 = 1 to 𝑁 do
4:  Fly to inspection site 𝑃𝑖 at 𝑇𝑖 ⊳ Fly to the site at the scheduled time 𝑇𝑖
5:  Hover at height 𝐻 = 30𝑚 for 𝑇ℎ𝑜𝑣𝑒𝑟 = 1 minute
6:  Detect and track all workers 𝑊𝑖 at site 𝑃𝑖 using the camera feed
7:  if detection is successful then
8:  Upload detection results 𝑈 (𝑊𝑖) to management platform
9:  Estimate workers’ geographical positions 𝐺(𝑊𝑖)
10:  Cross-verify positions using electronic work permits 𝐸(𝑊𝑖)
11:  for each worker 𝑤𝑗 in 𝑊𝑖 do
12:  if GPS position matches work permit information for 𝑤𝑗 then
13:  Add worker 𝑤𝑗 to authorized workers list 𝐿(𝑊𝑖)
14:  else
15:  Add worker 𝑤𝑗 to unauthorized workers list 𝐼(𝑊𝑖)
16:  end if
17:  end for
18:  end if
19:  Fly to next inspection site 𝑃𝑖+1 ⊳ Continue to the next site after 

hovering for 1 minute
20: end for
21: Generate final report of 𝐿(𝑊1), 𝐿(𝑊2),… , 𝐿(𝑊𝑁 ) and 

𝐼(𝑊1), 𝐼(𝑊2),… , 𝐼(𝑊𝑁 )
22: Include detailed times for each inspection site: 𝑇1, 𝑇2,… , 𝑇𝑁

position in Fig.  14(a), demonstrating the feasibility and accuracy of our 
electronic work permit system.

Throughout the inspection process, the workflow of the task is 
shown in Algorithm. 1. The task consists of a total of 19 inspection 
sites. After all inspections are completed, we collect data on all workers 
detected during the inspections and verify whether they are operating 
illegally. At each inspection site, the UAV hovers for 1 min at a fixed 
gimbal angle and altitude, during which workers are detected and 
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Fig. 14. (a) and (b) Scenarios where worker is wearing and not wearing the work permit. (c) Real-time location information when worker is wearing the work permit.
Fig. 15. (a) Real-time worker detection and tracking from UAV video feed. (b) Real-time status of the UAV. (c) Statistics of workers detected and verified illegal workers.
tracked. After the 1-min hover, the UAV flies to the next site, and 
during this transition, it uploads the detection and tracking results to 
our management platform. The platform then estimates the geographic 
locations of all workers and cross-validates them with the GPS infor-
mation provided by the electronic work permit, integrating the results 
into our database. Once all inspection points have been completed, 
our management platform generates a report summarizing the task and 
produces a line chart for a more intuitive data visualization. The Fig. 
15 shows our management platform, which provides a detailed display 
of all modules in our inspection system. The key modules include: 
(a) the real-time status of the drone during the inspection process, 
including the inspection progress and battery level; (b) the detection 
and tracking results of the real-time video stream transmitted by the 
drone; and (c) the records of all workers detected during the inspection, 
including those with and without authorization. Through verification 
via the electronic work permit, the system identified illegal workers at 
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each site and provided their latitude and longitude information, along 
with the current time of the UAV. The report automatically generates 
as Table  7 and Fig.  16 shown, which presents a statistical excel and 
chart of detected workers, legal workers, and illegal workers at each 
inspection site, offering a clearer visualization of the inspection results.

For real-time worker registration, Fig.  17 illustrates an example at 
inspection site 4, where the UAV detected and tracked three workers. 
Their latitude and longitude information was estimated through projec-
tion, as shown in Fig.  17(a). Subsequently, all their trajectories during 
the UAV’s one-minute hover were converted into GeoJSON format 
and registered onto the geo-referenced 3D model we previously estab-
lished, as shown in Fig.  17(b), providing a direct visualization of the 
workers’ movement at this inspection site. However, our management 
platform only received GPS data for two of the workers at this site. 
Through cross-verification, we identified that the worker with ID 3 was 
operating illegally.
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Table 7
Worker statistics at each inspection site during a subsequent inspection task.
 Inspection site Detected workers Illegal workers Geolocation of illegal workers Hover time (min) Current time 
 Site 1 W01-1; W01-2 None None 1 10:01:33  
 Site 2 W02-1; W02-2; W02-3; W02-4; W02-5 None None 1 10:03:29  
 Site 3 W03-1; W03-2; W03-3 None None 1 10:05:03  
 Site 4 W04-1; W04-2; W04-3 W04-1 22.4749360, 114.1448692 1 10:06:21  
 Site 5 W05-1 None None 1 10:08:55  
 Site 6 W06-1 None None 1 10:10:40  
 Site 7 None None None 1 10:12:25  
 Site 8 W08-1; W08-2; W08-3; W08-4; W08-5 W08-2 22.4718796, 114.1388772 1 10:14:03  
 Site 9 W09-1; W09-2; W09-3 None None 1 10:15:24  
 Site 10 W10-1; W10-2; W10-3 None None 1 10:16:59  
 Site 11 None None None 1 10:18:14  
 Site 12 W12-1; W12-2; W12-3; W12-4; W12-5; W12-6 None None 1 10:19:38  
 Site 13 W13-1; W13-2; W13-3; W13-4 W13-1 22.4750975, 114.1376703 1 10:21:47  
 Site 14 W14-1 None None 1 10:24:14  
 Site 15 W15-1 None None 1 10:26:02  
 Site 16 W16-1; W16-2 None None 1 10:27:52  
 Site 17 W17-1; W17-2; W17-3 W17-2 22.4768613, 114.1396474 1 10:30:33  
 Site 18 W18-1; W18-2; W18-3; W18-4 None None 1 10:32:45  
 Site 19 W19-1; W19-2; W19-3 None None 1 10:34:21  
Table 8
Comparison of UAV-based monitoring systems.
 System Data integration level Real-time performance Visualization capability  
 Proposed system High High Advanced (geo-referenced 3D DT)  
 Singh et al. [64] Medium Medium Limited (focus on network design)  
 Zhou et al. [65] High High None (focus on routing and service network design) 
Fig. 16. Line chart displaying statistics of legal and illegal workers across 19 inspection 
sites.

We also compared our proposed framework with existing systems, 
noting that while these frameworks are not directly related to our 
specific task, their methodologies are adaptable to our research goals. 
We present a quantitative comparison to emphasize the strengths of 
our system in data integration, real-time performance, and advanced 
visualization. Table  8 highlights the key differences between our system 
and those of Singh et al. [64] and Zhou et al. [65] Singh et al.’s system 
offers moderate data integration and real-time monitoring but lacks 
advanced visualization and worker verification. Zhou et al.’s system 
focuses on routing and service network design with high real-time 
performance but does not include comprehensive worker monitoring 
or dynamic visualization. In contrast, our system provides superior 
integration, real-time updates, and advanced 3D visualization, making 
it a more comprehensive solution for construction site monitoring and 
worker management.
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5. Conclusions and future work

5.1. Conclusions

This paper presented a UAV-enabled DT framework for real-time 
worker monitoring and authorization in large-scale construction sites, 
addressing the limitations of traditional surveillance. By integrating 
UAV-based visual detection with GPS tracking, the system automates 
worker verification and enhances detection accuracy and speed us-
ing the YOLOv10-LCA model. Additionally, automated 2D–3D spatial 
alignment ensures precise worker localization, improving site secu-
rity and operational efficiency. Real-world validation confirms its ef-
fectiveness in data-driven site management, reducing the need for 
manual supervision while optimizing workforce allocation. Its adapt-
ability to complex construction environments makes it a scalable solu-
tion for enhancing compliance monitoring, site security, and resource 
management, contributing to smart city initiatives through automated 
workflow optimization and reduced environmental impact.

The continuous UAV-driven data collection enables iterative model 
retraining, steadily improving detection robustness and verification 
accuracy. By centralizing workforce data and automating site surveil-
lance, the framework minimizes manual inspections, reduces super-
visory costs, and streamlines real-time workforce management. The 
system’s ability to detect unauthorized personnel and provide real-
time analytics ensures enhanced site safety and operational efficiency. 
These capabilities establish a scalable and intelligent construction mon-
itoring solution, advancing the digital transformation of construction 
site management while enabling more autonomous and data-driven 
decision-making.

However, as this framework is based on a single UAV, it is inher-
ently constrained by the UAV’s battery life and flight duration, limiting 
the maximum length of a single inspection cycle. For larger or more 
complex construction environments, future implementations can con-
sider dividing the site into sub-regions to allow sequential inspections 
or employing multi-UAV collaborative strategies to achieve comprehen-
sive monitoring and management across expansive work zones. Such 
extensions would further enhance the scalability and adaptability of 
the system, making it suitable for even more demanding construction 
scenarios.
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Fig. 17. (a) Real-time detection and tracking of workers with GPS information. (b) Historical trajectories of workers’ localization on geo-referenced 3D model, with the red box 
indicating working region.
Moreover, the high-quality data generated provides substantial 
opportunities for expanded analytical applications, such as assessing 
workers’ safety compliance and verifying protective equipment stan-
dards. This system thus represents a breakthrough in both research and 
operational practice, paving the way for innovative, data-driven site 
management. Its adaptability and comprehensive data integration es-
tablish a strong foundation for monitoring solutions within large-scale, 
dynamic construction environments.

5.2. Future work

The potential of this UAV-enabled DT modeling method extends 
beyond the current system’s capabilities, and several avenues for fu-
ture research and development could further enhance its robustness, 
adaptability, and functionality in real-world applications. One priority 
for future work is to improve the system’s resilience under varied 
environmental conditions, including adverse weather, low-light envi-
ronments, and densely built urban areas where GPS signal interference 
may be common. Integrating additional sensing technologies, such as 
infrared, LiDAR, or micrometer-wave imaging, will expand the frame-
work’s applicability, allowing it to perform consistently across diverse 
and challenging operational settings. These sensor integrations could 
also enable the detection of worker health conditions and environ-
mental hazards, thus enhancing the safety monitoring functions of the 
platform.
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Moreover, while this DT modeling method demonstrates strong 
potential for worker monitoring and management, one limitation lies 
in its generalization capabilities across diverse construction environ-
ments. The current framework is trained and validated on specific 
datasets, which may not fully capture the variability in construction 
site conditions, such as differing terrains, lighting, and worker be-
haviors. Addressing this limitation requires expanding the training 
dataset to include more diverse construction scenarios, collected from 
various geographic locations and project types. This will enhance the 
model’s ability to generalize, ensuring robust performance in real-
world applications. Expanding the scope of this DT modeling method to 
include asset tracking, equipment monitoring, and automated anomaly 
detection represents another essential step in transforming it into a 
fully comprehensive site management tool. Integrating AI-based pre-
dictive analytics could enable the system to assess potential safety 
risks proactively, allowing managers to take preventive measures and 
thereby reduce accidents on-site. Material tracking and equipment 
usage monitoring would further streamline logistics, improving overall 
resource allocation and ensuring timely project progression. Addition-
ally, incorporating real-time anomaly detection would allow the system 
to identify potential safety or operational issues before they escalate, 
supporting faster, more proactive responses. By addressing the current 
limitations and continuously expanding its capabilities, this framework 
has the potential to evolve into a versatile and intelligent solution for 
modern construction site management.
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In summary, this study establishes a foundation for the UAV-enabled 
DT technology application in large-scale urban construction manage-
ment, offering a scalable and sustainable solution for smart city devel-
opment. By enhancing workflow efficiencies, improving worker safety, 
and enabling more sustainable site management, the integration of 
UAV and DT technologies promises to contribute significantly to the 
resilience, safety, and sustainability objectives of modern urban infras-
tructure projects. Future developments will aim to expand the system’s 
scope, flexibility, and intelligence, positioning it as a core component 
in the digital transformation of the construction industry.
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