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Aerial object detection is crucial in various computer vision tasks, including video monitoring, early warning systems, and visual tracking.
While current methods can accurately detect normal-sized objects, they face challenges distinguishing small objects from cluttered
backgrounds. Developing methods that can be deployed on edge devices to achieve fast, accurate, and energy-efficient performance is also
an urgent challenge. This paper proposes a network for aerial object detection by incorporating an attention mechanism to enhance
feature extraction and elevate the accuracy of aerial moving object detection. Additionally, we optimize the channel dimensions of the
feature extraction framework, resulting in a reduction in model parameters, acceleration of inference speed, and alleviation of the
computational burden. Ulteriorly, we optimize the Spatial Pyramid Pooling (SPP) module to enhance detection accuracy and processing
speed. Inspired by the ResNet and RepVGG structures, we design a feature fusion module to combine early-extracted features, improving
speed and accuracy. Based on the design mentioned above principles, we develop a neural network method with an impressively small
model size of only 4.5 M. The proposed approach achieves state-of-the-art performance on five benchmark datasets. Besides its superior
performance, our method demonstrates excellent throughput on edge computing devices. Experimental results show that even when
running on low-performance computing devices, the CPU and GPU temperatures remain below 50°C and achieve a detection speed of 14.8
frames per second (fps) and power consumption of only 2.9 W. These findings suggest that a high-accuracy, low-power, low-latency, and
low-memory footprint aerial object detection solution is achievable.

Keywords: Aerial object detection; energy-efficient; edge computing; deep learning.

us

1. Introduction autonomous systems to respond timely, thereby maintain-

ing or reinforcing their autonomous intelligence interaction

Object detection is one of the crucial research areas on
computer vision and image processing, which guides the
behavior of observers, including animals and robots. In
complex dynamic environments, autonomous robot sys-
tems must detect object motion to understand movement
intention, predict future paths, and react appropriately [1,
2]. For example, detecting potentially dangerous objects
early in and far away would provide enough time for
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and competition [3]. Existing methods perform well in
detecting objects of regular sizes but exhibit subpar per-
formance in detecting small objects in cluttered environ-
ments. This is primarily because small objects appear as
faint patches on the frames, as observed from an observer
or ontological standpoint, making it arduous to determine
most of its visual features. As shown in Fig. 1, these aerial
objects with a few pixels are almost invisible to the human
eye. In addition, striking a balance between accuracy,
computational consumption, and inference speed poses
challenges in object detection algorithms. The practical
implementation of such methods is hindered by their high-
power consumption, demanding computational require-
ments, and substantial memory usage. For instance, when
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Fig. 1. Example of small aerial objects [4, 5]. In each subplot, enlargements of the objects are shown in the red boxes. The UAV and bird
appear as dim speckles, only a few pixels in size, and most of their visual features are difficult to discern. In particular, they all show
extremely low contrast against the cluttered backgrounds with illumination variations.

deploying object detection algorithms on resource-con-
strained devices like Unmanned Aerial Vehicles (UAVs) to
monitor intruding drones captured by the camera, the slow
processing of video frames becomes a significant limitation.
Consequently, this delay may allow the intruding drone to
escape detection before appropriate action can be taken.
Moreover, the elevated power consumption of these algo-
rithms results in increased device heat in a short period,
leading to parameter drift and ultimately impacting the
longevity of the video monitoring system.

Detecting airborne objects is challenging due to the noise
generated during detection. The irregular shapes and sizes
of aerial objects generate noise around them by the video
codec standard, leading to misclassification or undetected
targets. For example, surveillance videos may have inferior
image quality due to limitations in sensor technology and
sampling rates. The resultant blur silhouettes of airborne
objects and noise increase false-positive rates. With the
rapid development of deep learning from 2014 [6], based
on the scheme of feature extraction, feature fusion, target
classification, and localization, numerous deep learning-
based object detection methods are utilized to reduce the
influence caused by noise and improve the detection accu-
racy, such as Cascade RCNN [7], YOLO [8-10] and Retina-
Net [11], etc., have achieved great progress in general object
detection. However, it still struggles to detect small objects
in cluttered environments because of the hard representa-
tion of learning from their tiny appearances. To address this
issue, TPH-YOLOv5 [12] is proposed for drone-captured
small object detection by adding the Transformer Predic-
tion Heads (TPH). To further reduce the complexity and
improve the detection speed of TPH-YOLOV5, the prediction
heads of TPH-YOLOv5 are replaced with the cross-layer

asymmetric transformer to propose TPH-YOLOv5++ [13]
for further improving the detection accuracy. To adaptively
detect both small objects and big objects, Jiang et al. pro-
pose GiraffeDet [14], and they argue that the main factor
affecting detection performance is feature fusion rather
than feature extraction. As such, they incorporate many
convolutional layers in the feature fusion stage to improve
detection accuracy. However, these methods need high
computational resources. For example, the GPU memory
footprint of TPH-YOLOv5++ [13] reaches 4.7 G, and the
computational cost is up to 207.0 GFLOPs. It is worth noting
that TPH-YOLOv5++ [13] achieves a relatively low frame
processing speed of 11.9 frames per second (fps) on an
NVIDIA RTX3090ti GPU. Additionally, even the smallest
version of GiraffeDet, GiraffeDet-D7, still requires a
computational power of 187 GFLOPs. The drawback of slow
frame processing speed renders these computationally de-
manding algorithms unsuitable for deployment on low-
performance devices, significantly impeding their practical
applicability.

As shown in Fig. 1, one particularly important but very
difficult aspect is accurately detecting targets in the pres-
ence of many similar objects. For example, in UAV appli-
cations, distinguishing between birds and UAVs is
extremely challenging due to their physical similarity and
similar motion patterns, increasing the difficulty of correctly
classifying UAVs and birds. This interference from similar
objects may result in erroneous detection results, affecting
overall application effectiveness. The color variation of ae-
rial objects can be significantly influenced by dynamic
backgrounds, such as moving clouds and illumination
changes, causing methods based on color extraction to ex-
hibit poor performance. In particular, aerial detection
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encompasses not only bottom-up detection but also
top-down object detection. In contrast to the former with a
singular background, the latter faces more complex ground
backgrounds and lighting variations, further complicating
aerial object detection [15]. The scale of aerial objects can
vary greatly across frames, which presents a significant
challenge to accurately detecting objects. This is because
moving objects have no physical boundaries that constrain
their movement in space.

Extensive research has been conducted to address the
impact of complex backgrounds and similar objects on de-
tection accuracy. Self-adaptive SOM-CNN [16] is a robust
object detection method and decreases the false-positive
rate in Dynamic backgrounds. The cross-scene background
subtraction (CABs) algorithm [17] learns more discrimina-
tive semantic information between the foreground and the
background, suppressing the problems from the dynamic
background. Zhang et al [18] detect moving objects by
adding an explicit dynamic clutter component in the de-
composition framework with realistic dynamic background
modeling. Chen et al. [19] propose a new weighted Kernel
Density Estimation (KDE) to build the Long-Term Back-
ground (LTB) and Short-Term Foreground (STF) models,
respectively, which flexibly represent the long-term state
and the short-term changes in a scene and improve the
robustness of moving object detection. The other is to apply
feature-based mechanisms. Tu et al. [20] propose a moving
object detection method via ResNet-18 with an encoder-
decoder structure to segment moving objects from complex
scenes. However, these methods primarily focus on bottom-
up environmental changes and do not explore the effec-
tiveness of top-down detection. A drone-vs-bird dataset [4]
comprising the drone and bird is proposed in the detection
challenge at IEEE AVSS2021, putting a foundation for aerial
moving object detection with similar objects. MFNet [21] is
also an efficient drone and bird detection method using
multi-feature fusion. However, further improvement of
MFNet [21] in the localization and detection accuracy of the
method would serve as an additional enhancement.

For object detection in aerial scenarios, the simultaneous
presence of complex backgrounds, interference from similar
objects, high energy consumption, and slow reasoning speed
pose significant challenges. These challenges introduce
complexities in accurately detecting moving objects in such
scenarios. This work introduces a Lightweight and Energy-
efficient method Network (LENet) for accurate aerial object
detection to address these challenges. The contributions of
this work can be summarized as follows:

¢ A lightweight yet energy-efficient method is designed for
accurate aerial moving object detection by introducing
the spatial attention mechanism, increasing the ability to
discriminate in the dynamic background. Therefore, small
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aerial object detection could be accurately detected. This
method optimizes each convolutional operation by
employing fewer convolutional kernels, reducing the
model’s parameter count, faster inference speed, and
decreasing computational resource consumption.

¢ Inspired by ResNet and RepVGG, they are commonly used
for feature extraction. A feature fusion module is
designed to retain semantic information and transfer
more information to the latter layer. Additionally, we
utilize pixel reorganization instead of convolutional
operations for downsampling, improving detection ef-
fectiveness and efficiency.

e We conducted systematic ablation studies to validate the
effectiveness of our designed approach. We demonstrate
that our method surpasses state-of-the-art approaches
through extensive comparative experiments on five
challenging public datasets. Furthermore, deploying our
method on edge-computing devices showcased its por-
tability and feasibility in real-world applications. These
findings collectively support achieving a high-accuracy,
low-power, low-latency, and low-memory footprint so-
lution for aerial object detection in practical applications
is attainable.

The remainder of this paper is organized as follows. Related
works are discussed in Sec. 2. Section 3 explains the model’s
theoretical basis and establishment process. Section 4 por-
trays the experimental results and performance evaluation.
Section 5 draws the conclusions and perspective work.

2. Related Works
2.1. Aerial object detection

Detecting small targets in complex natural environments
poses a significant challenge for autonomous robots. Much
research has been done to solve this issue by introducing
block segmentation for characterizing blocks into feature
vectors and then estimating the moving direction based on
feature vectors to measure the motions of blocks and filter
out the major direction. Wang et al. [22] propose a novel
method for accurate small aerial object detection in dy-
namic backgrounds. To enhance the capability to extract
effective features of the aerial object with a few parameters.
TIBNet [5] is proposed by introducing a spatial attention
module circularly. Similarly, DTD-YOLOv4-Tiny [23] is pro-
posed to efficiently detect aerial objects by recasting the
features extraction network of YOLOv4-Tiny and optimizing
the prior anchors. DogFight [24] is an accurate method for
small aerial detection in the dynamic background and
performs state-of-the-art performance in two public data-
sets. However, these methods require a high computational
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cost [22], and the efficiency has improved room [5, 24].
Moreover, Dogfight achieves an inference speed of 1 fps
on the NVIDIA A6000 GPU, making it unsuitable for
deployment on low-performance devices. Additionally,
complicated top-bottom detection is not explored in these
methods [5, 23].

2.2. Attention mechanism

The attention mechanism plays a crucial role for animals in
searching for food, avoiding predators, and selecting mates
by focusing computational resources on specific regions of
the visual field. For example, bumblebees can select flowers
of certain colors while ignoring differently colored dis-
tractors during visual searches [25]. At the same time,
drosophila fixates on the most salient target in a swarm of
prey and conspecifics that display different contrasts
against complex backgrounds [26]. Additionally, fiddler
crabs adjust their escape behavior to minimize combined
risk when faced with multiple threats and suppress neural
responses to less dangerous predators [27]. Inspired by this
characteristic from animals, many research works achieve
advanced performance in object detection with a few in-
creasing computational costs. SAG-YOLOv5s [28] is pro-
posed for aerial object detection by introducing the SimAM
attention mechanism [29] on YOLOv5s to improve the de-
tection accuracy while reducing the total number of model
parameters. Wang et al. [30] propose a method based on
YOLOX [31] by adding the Squeeze-and-Extraction (SE)
module [32] to address the issue of low detection accuracy
and reduce the computing resource consumption. VAMYO-
LOX [33] is further proposed to improve the efficiency of
the method [30] by replacing the SE module [32] with
Triplet Attention Module (TAM) [34]. To improve the de-
tection accuracy of salient objects, Qin et al. [35] develop an
attentional dense atrous (dilated) spatial pyramid pooling
(AD-ASPP) module to selectively use the local saliency cues
captured by dilated convolutions with a small rate and the
global saliency cues captured by dilated convolutions with a
large rate. However, this dataset [36, 37] is relatively bigger
than the aerial object in size. Additionally, the attention
mechanism is not always efficient when the plugging posi-
tion is unsuitable in the different networks for small target
detection against complex natural backgrounds. The effec-
tiveness of attention mechanisms requires empirical vali-
dation through practical experimentation.

2.3. Feature fusion
In modern network architectures, feature fusion is a per-

vasive technique that combines features from different
layers or branches. This process is frequently accomplished

through elementary operations such as summation or
concatenation. For small object detection, the quality of
feature fusion significantly impacts the detection accuracy.
Therefore, many researchers have extensively explored this
technique. D-A-FS-SSD [38] (Dilated-Attention-Feature Fu-
sion SSD) detects small objects by connecting the dilated
convolutional layer and fusing the low-level feature map
responsible for detecting small objects with the high-level
feature map. Liu et al. [39] propose DBF-YOLO based on
YOLOv5 detect small objects by fusing shallow features.
Zhang et al. [40] revisit feature fusion for mining intrinsic
RGB-T saliency patterns and propose a novel deep feature
fusion network, which consists of the multi-scale, multi-
modality, and multi-level feature fusion modules to improve
the detection accuracy. However, most feature fusion
methods concentrate on enhancing accuracy but neglect the
efficiency of small object detection.

Based on the analysis above, additional experimental
investigations are necessary to ascertain the effectiveness of
attention mechanisms in target detection. The proposition
of a feature fusion approach that enhances precision and
inference speed is crucial for driving advancements in ob-
ject detection. The present work proposes a lightweight and
effective approach, where we first utilize spatial attention
mechanisms for target localization. We employ optimized
pooling modules and feature fusion modules to balance
speed and accuracy. Ultimately, we achieve a model size of
only 4.5 M. Additionally, our approach achieves state-of-the-
art performance on five publicly available datasets.

3. Aerial Moving Object Detection Pipeline

3.1. Framework overview

Our accurate and energy-efficient network is shown in
Fig. 2. To obtain feature maps, we visualize the floating-
point values of network layers converted into pixel values
and save them as a text file. Subsequently, each text file’s
pixel values are transformed into images, yielding the final
desired feature maps. In the feature extraction stage, we
augment the image dataset with a mosaic augmentation to
enhance the network robustness during training. We utilize
lightweight CSP-Darknet53 (i.e. with a few channels) in-
corporated Spatial attention mechanism to extract features.
The spatial attention and convolutional features are
extracted using a residual-spatial attention network (i.e. the
yellow block). Compared to the first-level extraction of pe-
ripheral contour features (i.e. feature map from layer 1), the
attention layer further extracts more profound internal
features and more apparent contour characteristics (i.e.
feature map from attention layer). This feature map is input
into the convolutional downsampling operation to obtain
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(Color online) LENet Framework: In feature extraction, a set of images is captured by a camera input clip for our network. We

utilize a residual network comprising a spatial attention module to extract clear internal features. While filtering out the noise and then
carrying out the downsample operation to extract the more depth feature, in which the optimized SPPS can provide rich semantic features.
In the feature fusion stage, the designed RepNeck comprising an upsampling operation (shown in pink color) and a downsampling
operation is utilized to transfer more semantic information into the latter layers. Finally, the output of the feature vectors of the RepNeck is
sent to the detection head and nonmaximum suppression module to obtain the final detection results.

the depth feature. In the feature fusion stage, we first carry
out the upsample operations (i.e. the pink block) and add
the former layers with the same channels. Downsampling
operations are carried out to reduce the parameters and
speed up the inference speed, where we utilize reorg
layer [41] to downsample among each downsampling op-
eration instead of the convolutional layer to maintain more
semantic information and transfer into latter layers, the
downsampled feature is concatenated with former upsam-
pled layers to obtain the rich semantic feature information
(i.e. feature map from fusion stage). The final result feature
map (i.e. output feature map) obtained after applying
nonmaximum suppression indicates that this method pays
attention to the crucial feature locations of the detected
objects. All operations are in an end-to-end network.
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The network consists of 180 layers, the most computa-
tionally intensive being the 111 convolutional layers. The
convolutional layers have varying kernels, ranging from 1 to
512. Figure 3 presents statistics on the number of kernels in
the computationally intensive convolutional layers. In
Fig. 3(a), the number of kernels is mapped to the corre-
sponding number of convolutional layers, while Fig. 3(b)
provides a statistical distribution of kernel numbers. From
these two figures, it can be observed that convolutional
layers with 79 and 154 kernels have the highest count, with
nine convolutional layers. Most convolutional layers have
kernel numbers within the range of 1-54 from Fig. 3(b),
with 71 convolutional layers. This also implies that more
than half of the convolutional layers in the overall network
architecture utilize a small number of convolutional
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Fig. 3. Statistics on the number of kernels in computationally intensive convolutional layers. (a) The number of convolutional layers
corresponds to the number of kernels. (b) Statistical distribution of kernel numbers.
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Table 1. Computational requirement of the LENet.
Component  Feature extraction  Feature fusion
BFLOPs 5.52 2.56

kernels. This design choice helps to reduce parameter
count, further decreasing the computational burden and
accelerating the inference speed of the model. From Table 1,
we determined that the feature extraction stage consumes
only 5.52 BFLOPs. In comparison, the computational con-
sumption during the feature fusion stage is 2.56 BFLOPs,
demonstrating the low computational costs of our method
and indicating its lightweight nature.

3.2. Spatial features combination with
convolutional features

Human perception relies heavily on attention. Rather than
attempting to process an entire scene simultaneously, the
human visual system utilizes partial glimpses and selec-
tively focuses on significant elements to capture visual
structure better. Inspired by this idea, we obtain the
spatial features by refining the feature maps and exploring
the inter-spatial relationship of features. The process for
computing spatial attention involves applying average-
pooling and max-pooling operations along the channel
axis for convolutional features, which are then concatenated
to create a feature descriptor. This attention method has
been demonstrated to highlight informative regions [42] ef-
fectively. After concatenating the feature descriptor, a convo-
lution layer is applied to produce a spatial attention map,
denoted as F, € R®*W, which indicates where to emphasize or
suppress.

After four convolutional operations for the input images,
to aggregate channel information from a feature map, we
utilize two pooling operations that generate two 2D maps:
Foavg € RUMWand Fgpo € RV*HW These maps represent
the average-pooled and max-pooled features across the
channel, respectively. They are concatenated and then
convolved by a standard convolution layer to produce the
2D spatial attention map. The attention map is added with a
convolutional feature map. In summary, the computational
process of spatial attention can be formulated as follows:

F; = Conv™1(F),
F, = Conv3*3(Fy),
Fiap = 0(Conv”*7([AvgPool(F;); MaxPool(F;)]))

(1)

(ConV7X7[FSan’ smax])a
;tt = F®Fmapv
asltt = att +F,

where o represents the sigmoid function and Conv’*7
denotes a convolutional operation with convolutional ker-
nel of 7 x 7, the ® denotes elements-wise multiplication,
F3. is the final output of spatial attention operation, and
F ¢ RO*HXW i an intermediate feature map.

The attention feature map is convoluted with a con-
volutional layer. Followed by a convolutional layer, the
obtained feature concatenated with the second convolu-
tional layer will be regarded as the input feature of the
downsample stage.

3.3. SPPS for riching feature

We argue that the SPP [43] operation for extracting features
is complex, influencing inference efficiency. As such, we
simplify the extraction feature process with MaxPool of
7 x 7 to replace the original pool operation and integrate
the module into the downsample stage. In this way, more
features will be retained, and the same operation extension
improves efficiency. Concretely, we define the inputting
feature as F € ROH*W the process operation is formulated
as follows:

F = Conv(F),

F; = Concate[F., MaxPool,,;(F,.),
MaxPool;,,(F.), MaxPool,, 7 (F¢)],

Fopps = Conv([Fy),

(2)

where Fgp,s € R*H*W denotes the final output through
SPPS, and the Concate represents the concatenation oper-
ation along the channel dimension.

3.4. Feature fusion with RepNeck

We make statistical data for the aerial object size in
NPS-Drone [44], the small aerial object size distributes in
NPS-Drone distribution from 10 x 5 to 70 x 20, and all the
object sizes with width and height less than 5% of the
image size. Recognizing these objects at vastly different
scales is a fundamental challenge in computer vision since
the object moves against cluttered environments, and using
a single high-level feature for detecting small objects is
suboptimal. The top-down architecture, which includes
lateral connections for constructing high-level semantic
feature maps at all scales is an effective design. By aug-
menting the bottom-up path, accurate localization signals
are incorporated into lower layers of the feature hierarchy,
which enhances the entire feature hierarchy and shortens
the information path between lower layers and the topmost
feature. However, the bottom-up path method down-
samples by convoluting and missing the semantic infor-
mation. As such, we design a feature fusion method inspired
by ResNet [6] and RepVGG [45] that usually are utilized to
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extract features. Unlike ResNet and RepVGG, which perform
addition operations between a single convolutional feature
layer and the original feature layer, our RepNeck incorpo-
rates multiple convolutional layers with the original feature
layer through addition. Additionally, we employ the Reorg
operation instead of convolutional downsampling. Com-
pared to convolutional downsampling, the Reorg operation
does not consume computational resources too much and
assures overall computational savings in our method. Rep-
Neck shown in Fig. 4 comprises three branch necks for
enhancing accuracy and efficiency. We orderly denote three
necks as Neck1, Neck2, and Neck3 from left to right. The
details are introduced as follows.

3.4.1. Neckl

After feature extraction, we upsample the feature map three
times from top to bottom. Each upsampling operation
increases the resolution by a factor of two compared to the
previous level. We utilize five convolutional layers to ex-
tract features between the bottom upsample and the SPP
module. Concretely, given the bottom upsampling feature
map F € ROHXW Fo ¢ RCHXW denotes the outputting of
the feature map through five convolutional layers and an
SPP module, F; € RE2*HxW denotes the outputting of the
feature map from the first residual network, and F,, €
RE3*HxW denotes the outputting of the feature map from
the second residual network, where the C, C1, and C2

LENet: Lightweight and Effective Detector for Aerial Object 1111

indicate the channels of filters. The H and W represent the
height and width of the bottom-level upsampling feature
map, respectively. The process of Neckl is formulated as
follows:

F, = SPP(Conv1(F)),

F.1 = Conv2(F) + Conv(Fy),

FrZ = Fl‘l + COI’]V(Frl)7

Freck1 = ConV(FrZ),

(3)

where Convl, and Conv2 denote the operations performed
after passing through 1 and 2 convolutional layers,
respectively. Fyecq € REAXW is the final outputting of
feature map in Neckl, where C4=3x (N+5), and N
represents the number of object categories detected.

3.4.2. Neck2

The intact feature information F..q € RC>*2X% s trans-
ferred from Neckl by downsampling reorg operation col-
ored in orange block instead of convolution. F..q is

concatenated with middle upsampling feature map F,, €
RC6X7%7 to obtained Fy, € R(€5t€6)*2x% and then followed
by a parallel branch inspired by RepVGG [45]. The opera-
tion process is formulated as follows:

Fne = Concate[Fp,, Freq,

Fim1 = Conv2(Fyc) 4+ Conv4(Fye) + Conv(Fp), (4)
Conv3(Frm1),

FNeckZ

F I

3 X3

N
| A
3x3
N g
v y
(a) ResNet (b) RepVGG

1x1
3 X3
1x1

N S1

L

y Frm1 >

|_ i\
81 « Frmz
FNeckZ 1x1
FNeck3

(c) RepNeck

Fig. 4. Sketch of RepNeck architecture. RepNeck has three subpart Neck1, Neck2, and Neck3. Inspired by ResNet [6] and RepVGG [45], we

employed a binary and ternary branching structure.
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where Fop; € RE7*2%7 is the output feature map of parallel

branch network. Fyeqe € RE4¥2*7 is the final output fea-
ture map of Neck2.

3.4.3. Neck3

Similar with Neck2, we denote the F, € RC7*%*% as the top
feature map before upsampling operation, F,.; € RC8xExY
is transformed from Neck2, F,. € R(C7+C8)x5*% js the con-
catenation feature map from F; and F,., with the operation
of reorg. The operation process is formulated as follows:
Fyc = Concate[Fy, Frep),

Fimz = Conv2(F,.) + Conv6(Conv(F,))

+ Conv(Fy),

Freas = ConV(Frml)v

(5)

where the Fyeqs € REV*9F is the final output of Neck3.

3.5. Loss function

We implement three loss functions to optimize our method:
(i) Objectness loss. (ii) Classification class. (iii) Localization
loss.

3.5.1. Objectness loss

The feature map F,,, is considered as an S x § grid, and B
bounding boxes are predicted in each cell, and the predic-
tion losses are applied. As shown in the following equation,
the objectness loss is calculated by following the condition
if the object is present or not in the cell.

Lobj — Z ZAob]

m=0 n=
noob]ZZ lfA;)nbt; meAm)za (6)
m=0 n=

where Afnb,; is indicator binary function which takes value 1
if nth bounding box in cell m contains the object. Ao is @
hyperparameter that is set to 5. ¢, and c,, denote the
predicted and ground-truth confidence scores, respectively.

3.5.2. Classification loss

As shown in Eqg. (7), a class-specific loss is computed using
binary cross entropy:

Lys = ZZA%"L > Balc)log(pa(c)
m=0 n= ceclasses
+ (1 = pu(c)log(1 — pu(c))), (7)

where p;(c) and p;(c) denote the probability scores from the
predicted class and ground-truth class.

3.5.3. Localization loss

The localization loss can be defined as follows:

2b
Lipe = 1—IOU+ ( )+ﬂ¢,
BNB 1%
_BnB v (8)
|BU B (1-10U) +v

4 %, w 2
¢ = — <arctan P arctanh> ,
where B = (.7, &, il) denotes the ground-truth box, and B =
(x,y,w, h) denotes the predicted box. b and b represent the
central points of B and f?, p() is the Euclidean distance, and ¢
denotes the diagonal length of the smallest enclosing box
covering the two boxes. The total loss is formulated as follows:

Lossiora = /\1 Lobj + >‘2 Lgs + /\3Lloca (9)
where \; = 1,\, = 1,and \; = 0.07.

4. Experiment

4.1. Implementation details

4.1.1. Training phase

We train our LENet on the MFNet [21], Det-Fly [46], TIB-
Net [5], NPS-Drone [44], and DUT [47], respectively. When
training the model on the five datasets by using 1 GTX 3090
GPU, we choose the stochastic gradient descent optimizer
(SGD) with an initial learning rate 7, = 1.3 x 1073, At
80% and 90% of the setting iterations, the learning rate
drops to 10 times the previous learning rate. The weight
decay is 0.0005, and the momentum is 0.949, respectively.
The other parameters are shown in Table 2.

4.1.2. Test phase

In Det-Fly [46], we test the inference time and BFLOPs on
RTX 3090 GPU. The testing of the remaining datasets fol-
lows the principles outlined in the original paper. In each
testing experiment, for testing inference time and BFLOPs.
We input the same original resolution image, and the ac-
curacy (mAP) is gauged on the testing set.

4.2. Compared methods results

MFNet. The detection performance of the proposed method,
as well as two representative detectors, namely
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Table 2. Computational requirement of the LENet.

Dataset Input-size Iteration Batchsize Mini-Batchsize
MFNet [21] [416, 416] 200k 64 4
Det-Fly [46] [416, 416]

[640, 640] 40k 64 32

[1024, 1024]

TIB-Net [5] [1024, 1024] 200k 64 32
NPS-Drone [44] [1024, 1024] 200k 64 32
DUT [47] [640, 640] 200k 64 8

YOLOvVS5s [8] and MFNet [21], is presented in Table 3. Our
method demonstrates a significant improvement over the
state-of-the-art approaches. Concretely, our method exhi-
bits several advantages, including lower computational
costs measured in BFLOPs, fewer parameters, and higher
Intersection over Union (IOU) scores. For instance, com-
pared to the well-performing MFNet-M, our model is more
than half its size while achieving a nearly three-point im-
provement in detection accuracy. Notably, our model out-
performs MFNet-M by approximately 17 points regarding
I0U, yet our computational resource consumption is only
about one-ninth of MFNet-M. These findings highlight that
despite the compact size of our LENet, it maintains high
accuracy and localization quality. Furthermore, the quali-
tative visualization in Fig. 5 vividly illustrates the superi-
ority of our method compared to the advanced MFNet,
particularly in challenging background scenarios. Notably,
the samples in the first three rows of Fig. 5 were captured
from a distance. Our method consistently achieves superior
detection performance, with an average confidence score of
94.8 compared to 87.0 for MFNet. Furthermore, from these
qualitative visualization results, it can be observed that our
method demonstrates excellent performance not only in
detecting small objects but also in detecting large objects.
Our method outperforms MFNet and YOLOv5s in multi-
object and single-object detection tasks.

TIB-Net. We present detailed comparisons of our
method with other state-of-the-art techniques in Table 4.
Although our approach possesses a bigger model size than

LENet: Lightweight and Effective Detector for Aerial Object 1113

the advanced TIBNet [5], we achieve higher accuracy and
low latency by a large margin. This is due to the extensive
usage of attention layers in TIBNet [5] that can slow the
inference speed. This is also reflected in our ablation study
in Sec. 4.3, where we observed the impact of attention
layers on inference speed. Furthermore, our method out-
performs some approaches based on heavyweight back-
bones, such as Faster RCNN [48] (based on ResNet50).
Det-Fly. The experimental results on the Det-Fly [46]
dataset are displayed in Table 5. Our method performs
state-of-the-art in terms of both mAP and latency. More-
over, the model size of our method is 3% of the advanced
method YOLOv7 [10], and the memory footprint is lower
than YOLOv7 [10], which means our method enjoys a low
computational complexity. Compared to the state-of-the-art
model YOLOv7X, our model achieves a two-point higher
accuracy while possessing faster inference speed, smaller
model size, and lower GPU memory usage and computa-
tional resource consumption than YOLOv7X. As shown in
Fig. 6, we visualize the three methods’ mAP, latency, and
BFLOPs. Our red curve encloses the other two, demon-
strating our method has a relative trade-off among accura-
cy, latency, and BFLOPs. Also, our method achieves superior
accuracy and inference speed with minimal computational
resource consumption, which is favorable for devices with
weaker computational capabilities. Such performance is
competitive for deploying it on edge-computing devices.
The qualitative visualization shown in Fig. 7 also exhibits
the effectiveness of LENet compared to YOLOv7 and
YOLOv7X. Although all methods detect the target, we pos-
sess a higher detection score (98.5 vs 76.6 on average).
NPS-Drone. Table 6 presents the quantitative bench-
marking results on NPS-Drones [44], where our LENet
outperforms all other approaches in terms of mAP.
Although LENet possesses the lower precision and F1-Score
than Dogfight [24], LENet achieves higher precision (0.91
vs. 0.89), and recall (0.92 vs. 0.91) than the advanced
Dogfight [24]. The improvement in recall suggests that
LENet has further potential for enhancement. Upon
analysis, the small aerial object size distributes in

Table 3. Quantive benchmarking results on MFNet.

Method Model size (M), FLOPs (B)] mAP (%)t IOU (%)t
YOLOvSs [8] 14.9 — 90.6 49.4
MFNet-S [21] 5.2 18.9 90.8 19.1
MFNet-M [21] 9.9 75.3 915 51.1
MFNet-L [21] 19.5 157.6 90.9 49.0
LENet (ours) 4.5 8.1 94.3 67.8

Notes: The best method is shown in Red and the second best method is
shown in Blue. T (|) indicates that larger (smaller) values lead to better

(worse) performance.
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YOLOvS5s
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Fig. 5. Qualitative visualization on comparison with state-of-the-art methods. Each row represents the different scenarios. Each column
demonstrates the visualization results from YOLOv5s, MFNet-S, MFNet-M, MFNet-L, and LENet from left to right. LENet has higher
confidence scores than MFNet, which can demonstrate accurate detection performance. Please zoom in for the best view.

Table 4. Quantive benchmarking results on TIBNet.

Method Backbone mAP (%)t Latency (ms)] Model sizel
Faster RCNN [48] ResNet50 87.2 217 333.56M
Faster RCNN [48] MobileNet 67.5 125 162.5M
Casecade RCNN [7] MobileNet 78.0 164 384.9M
YOLOV3 [49] DarkNet53 84.9 66 234.1M
YOLOv4 [50] CSPDarkNet53 86.0 19 256.0 M
YOLOVS5 [8] YOLOV5s 86.2 5 14.9M
EXTD [51] MobileFaceNet 85.1 274 696.9 KB
TIBNet [5] IB-Net 89.2 290 697.0KB
DTD-V4-Tiny [23] — 85.1 — 1.4M
LENet (ours) — 90.0 26 4.5 M
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Table 5. Quantitative benchmarking results on det-fly.

Method Image size  mAP (%)t Latency (ms)| Model size (M) ] Memory footprint (M) FLOPs (B){
YOLOV7 [10] [416,416] 83.3 6.9 139.4 1607 436
[640,640] 89.9 11.0 139.4 2179 103.2
[1024,1024] 93.8 23.0 139.4 3447 264.3
YOLOVTX [10]  [416,416] 86.1 14.9 270.4 1995 79.5
[640,640] 90.1 15.8 270.4 2603 188.1
[1024,1024] 94.2 33.5 270.4 4387 481.4
LENet (ours)  [416,416] 91.6 4.3 45 1135 8.1
[640,640] 95.0 6.9 45 1441 19.1
[1024,1024] 96.3 13.6 4.5 2209 49.0

YOLOVT
— YOLOvTx
—— Ours

400

300

200

BFLOPs <- Better

100

Map 40

60 25
80 0

o
8
E‘Pfe_,.

Fig. 6. Trade-off performance of accuracy, latency, BFLOPs on
Det-Fly. This left arrow indicates that the closer to the left, the
better, and vice versa.

NPS-Drone [44] distribution from 10 x 5 to 70 x 20, and all
the object sizes with width and height less than 5% of the
image size. These objects in NPS-Drone tend to occupy a
small portion of the field of view in real-world settings.
Accordingly, most common detection methods may not be
suitable for detecting such small targets.

DUT. On the DUT [47] dataset, our LENet achieves
similar performance with state-of-the-art methods yet
processes many frames simultaneously. As shown in
Table 7, the original paper’s inference speed was tested on a
GTX 2080 super. Due to the unavailability of this device
model (GTX 2080 super) at our disposal, we use an RTX
3060 that is inferior to the original paper of RTX 2080
super to test the latency. LENet still gets better accuracy
and faster speed than other state-of-the-art methods by a
large margin on DUT [47]. Specifically, compared to the

highest-accuracy model Cascade-RCNN, our model achieves
a 0.8-point higher accuracy while being 8 faster in infer-
ence speed. Compared to the fastest model YOLOX, our
model remains faster while achieving an almost 30-point
higher detection accuracy. Such performance is highly
favorable and competitive for deploying our method on
low-performance computing devices.

Upon analysis, our proposed method obtains the state-
of-the-art performance on the five datasets compared with
all the baseline methods. Figure 8 shows the representative
small object images and their corresponding visualization
results in TIBNet [5], NPS-Drone [44], and DUT [47]. Our
model demonstrates excellent performance in detecting
small targets with high confidence in different scenarios.
Specifically, the third row in Fig. 7 and the second row in
Fig. 8 represent top-to-bottom detection scenarios with
complex backgrounds. Despite the challenging background
conditions, our model still performs well. This indicates that
our model performs well in detecting aerial targets at long
distances, making it highly competitive for applications
such as object video surveillance and warning systems,
particularly for airborne intruder drones.

4.3. Ablation study

To validate the contributions of aerial object detection and
scale estimation to detection improvement, we conduct
extensive experiments on Det-Fly [46]. In the following
experiments, the input size of the detector in the test phase
is set to 1024 x 1024 pixels. To validate if the module can
consistently improve performance by removing or replacing
related modules.

Effect of RepNeck. We use a neck without multiple
branches and apply a convolution layer for downsampling
(i.e. remove the red line, skip connection with 3 x 3 con-
volutional layer, and reorg in Fig. 4). The experimental
results are listed in Table 8. We note that the mAP, model
size, and FLOPs decrease. Inversely, the latency increases
without RepNeck, which means the inclusion of RepNeck
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YOLOv7 YOLOv7X

Fig. 7. Qualitative visualization on comparison with state-of-the-art methods. Each row represents the different scenarios. Each column
demonstrates the visualization from YOLOv7, YOLOv7X, and LENet from left to right. Please zoom in for the best view.

Table 6. Quantitative benchmarking results on NPS-drones.

Method Precision (%)t  Recall (%)t F1 Score (%)t mAP (%)1
SCRDet-H [52] 81 74 77 65
SCRDet-R [52] 79 71 75 61
FCOS [53] 88 84 86 83
Mask-RCNN [54] 66 91 76 89
MEGA [55] 88 82 85 83
SLSA [8] 47 67 55 46
Dogfight [24] 92 91 92 89
LENet (Ours) 88 92 90 91

leads to improvements in accuracy and latency while also
introducing a high computational cost. This is because the
RepNeck has introduced many Reorg operations while op-
erating maintains more feature information. The Reorg

operation in RepNeck is simply a way of recombining in-
formation instead of convolution. As such, the latency
improves, and model size increases if adding RepNeck. For
RepNeck, the trade-off of a small increase in parameter
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Table 7. Quantitative benchmarking results on DUT.

Method Backbone mAP (%)t Latency (ms)l
Faster-RCNN [48] ResNet50 65.3 78.1
ResNet18 60.5 51.5
VGG16 63.3 107.5
Casecade-RCNN [7]  ResNet50 68.3 93.5
ResNet18 65.2 68.0
VGG16 66.7 125.0
ATSS [56] ResNet50 64.2 75.2
ResNet18 61.0 48.8
VGG16 64.1 105.3
YOLOX [31] ResNet50 42.7 46.1
ResNet18 40.0 18.6
VGG16 55.1 43.5
Darknet 55.2 19.5
SSD [57] VGG16 63.2 30.1
LENet (Ours) SCANet 69.1 11.9

count has proven worthwhile as it has improved accuracy
and speed.

Effect of Attention. From Table 8, since the pooling
operation does not introduce any extra parameters except

NPS-Drone TIBNet

DUT
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for one convolutional layer in attention, and the operation
can filter out noisy feature information, we note that the
latency decreases by a large. However, the model size and
FLOPs do not change much compared with LENet without
attention, meaning attention operation enhances the accu-
racy but degrades the efficiency.

As shown in Fig. 9, we present the color feature maps
with and without integrated attention mechanisms (first
two rows). For the convenience of visual observation, we
also display grayscale feature maps (the last two rows). The
first and third rows represent the feature maps without an
attention mechanism, while the second and fourth rows
represent those with an attention mechanism. The first
column corresponds to the input image, and the subsequent
three columns represent outputs from different layers.
From the second column, it can be observed that our
method extracts more prominent features and clearer
contours compared to the case without an attention
mechanism. Similarly, the third column demonstrates that
our method produces sharper internal and contour features
relative to the absence of an attention mechanism.
Additionally, the feature map output from the final layer

Fig. 8. Representative images of the small aerial object image sequences and their corresponding visualization results in [5, 44, 47], in
which each image represents a different scenario. Please zoom in for the best view.

Table 8. Ablation study on det-fly.

Ablation setting mAP (%)  Latency (ms)] Model size (M)]  FLOPs (B)|
w/o RepNeck 952 (|1.1) 145 (10.9) 3.7 (10.8) 19.1 (]21.0)
w/o Attention 95.6 (10.7) 7.8 (/5.8) 44 (10.1) 47.6 (11.4)
w/o SPPS 95.8 (]0.5)  13.8 (10.2) 45 49.0
LENet (Baseline) 96.3 13.6 4.5 49.0
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Table 9. Our method displays the temperature and power consumption before and after its execution.

Static temperature Running temperature Increment Static power  Running power Increment
CPU:46.12°C  GPU:43.69°C  CPU:49.03°C  GPU:47.19°C CPU:2.91°C  CPU:3.50°C 0.582 W 3.50 W 2.918 W
Layer with/
Input Layer 0 without attention Output layer
=
2
=
Q
B
<
=
S
k=
=
=
2
=
8
w
k=i
=

With attention Without attention

Fig. 9. (Color online) Feature map extracted from different layers. The first column represents the input image, the second column shows
the output feature map from the first layer, the third column displays the output feature maps with and without attention mechanism, and
the fourth column exhibits the final output feature map. The grayscale feature maps are provided to aid in observing the effects without

being influenced by color images.

(last column) reveals that our method pays more attention
to relevant object features while ignoring irrelevant infor-
mation. Figure 10 provides a qualitative visualization of the
detection results for both cases. It is evident that the inte-
gration of the attention mechanism leads to higher detec-
tion accuracy (0.99 vs. 0.98, 0.92 vs. 0.74). The feature map
visualization and detection result visualization analysis
confirm the effectiveness of integrating the attention
mechanism in our approach.

Effect of SPPS. After replacing SPP with SPPS in the
downsampling stage, we note that the speed of processed
images increases to 13.8 ms. This is because the SPP module
partitions the feature map into pieces with different-size
pooling operations, aggravating the complexity problem
when performing pool operations. While the operation does
change the number of parameters, the model size and
FLOPs are not improved. In addition, we see that the mAP

decreases 0.5% because pooling operations with different
sizes can obtain extra noisy feature information.

To further demonstrate the effects of SPPS on accuracy
and latency, we replace SPP with SPPS in YOLOv3-SPP [49].
As shown in Table 10, compared with YOLOv3, the SPPS
improves the accuracy and the latency. Inversely, both
accuracy and latency were enhanced compared with
YOLOv3-SPP.

4.4. Deployment for testing: Jetson NVIDIA Orin NX

To demonstrate the deployment capability of LENet on
edge-computing devices, we deploy our LENet on an on-
board computer, NVIDIA Jetson Orin NX device with 16 GB
GPU memory and 8 CPU cores. To demonstrate whether the
temperature remains within the normal operating range
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) With attention

Fig. 10. Qualitative visualization on comparison with state-of-the-art methods. Each row represents the different scenarios. From left to
right, each column demonstrates the visualization results without attention and with attention. Please zoom in for the best view.

Table 10. Ablation study of YOLOv3 on det-fly.

Ablation setting mAP (%) Latency (ms)]
YOLOV3 [49] 87.8 6.3
YOLOvV3-SPP [49] 87.5 6.5
YOLOv3-SPPS 88.4 6.4

(i.e. below 60° Celsius) during the execution of our method,
we conduct temperature experiments. With input frames at
a resolution of 640 x 480, our 416 resolution model can
accurately detect the drones and achieve 14.8 fps without
any optimization and keeping the board temperature well
below 50°C. Compared to the static state, the temperature
increase is insignificant when our model runs. Furthermore,
the power consumption on the Orin NX platform is only
2.9 W, confirming that our network satisfies the portability,
practicality, and energy-efficient requirements. Table 9
shows the sensors’ temperature and power consumption
values in two scenarios.

5. Conclusion

In this study, we proposed an energy-efficient and accurate
approach for detecting aerial moving objects. The suggested
approach is based on attention mechanism and feature fu-
sion. The proposed method’s overall efficiency was evalu-
ated using five standard datasets. The performance
assessment shows a satisfactory balance between the pro-
posed method’s detection accuracy, inference time, energy
efficiency, and memory footprint. In these respects, our

approach effectively relieves the burden of processing video
sequences for resource-constrained surveillance devices.
We also further deploy our method on edge-computing
devices to test to demonstrate the feasibility and porta-
bility of our method. For future work, we plan to extend
the method to other moving object domains, such as
moving robotics and cars, and improve its detection effi-
ciency. Our research demonstrates the proposed method’s
effectiveness and practicality in aerial moving object
detection, paving the way for its application in various
real-world scenarios.
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