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Abstract— The misuse of drones can jeopardize public safety
and privacy. The detection and catching of intruding drones are
crucial and urgent issues to be investigated. This work proposes
VDTNet, an accurate, lightweight, and fast network for visually
detecting and tracking intruding drones. We first incorporate an
SPP module into the first head of YOLOvV4 to enhance detection
accuracy. Model compression is utilized to shrink the model
size and concurrently speed up inference. We then propose and
insert an SPPS module and a ResNeck module into the neck,
and introduce an effective attention module for the backbone to
compensate for the accuracy drop brought on by compression.
With the above strategies, we present the accurate and compact
VDTNet with a model size of merely 3.9 MB, ensuring low
computational cost and fast detection and tracking performance
in real time. Extensive experiments on four challenging public
datasets show that our proposed network outperforms state-
of-the-art approaches. In real-world scenarios, the comparative
ground-to-air detection testing proves the generalization ability
of the VDTNet, and we further demonstrate the portability and
practicability of the network by deploying it on drone onboard
edge-computing devices for air-to-air real-time detection of the
intruding drones.

Index Terms—Drone detection, tracking, lightweight, deep
learning.

I. INTRODUCTION

RONES, or unmanned aerial vehicles (UAVs), have

been widely adopted in various applications due to
their maneuverability and portability [1], [2] and hence have
garnered significant commercial interest and prominent appli-
cation attention [3]. Critical infrastructures such as airports,
seaports, military sites, and prisons face grave security threats
due to the misuse of drone technologies. Consequently, it is
a pressing issue to create effective countering drone sys-
tems [4], [5], [6], including detecting, tracking, and capturing
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intruding drones. Among them, detection and tracking are the
primary problems to solve. Attributed to the great success
of deep learning-based pioneers for object detection, such as
CIMODT [7], SSD [8], Faster R-CNN [9], CONVLSTM [10]
and YOLOv4 [11], detecting and tracking system comprising
a host drone with an onboard camera to autonomously detect
intruding drones based on visual cues have been proven to be
a feasible solution [12].

Based on the significant contributions of their predecessors,
the successors have made substantial efforts to further improve
detection accuracy. Zhai et al. [13] add multi-scale prediction
to enhance the detection ability of small objects. Zhu et al. [14]
propose an enhanced YOLOVS network by incorporating
the self-attention module and convolutional block attention
module (CBAM) [15] into its prediction head to improve
the predicting ability. The networks of the YOLO family
have been improved for model size reduction by redesign-
ing the backbone and neck of the detector [16], [17], [18].
Chen et al. [19] present the DenseLightNet by adapting
DenseNet to reduce the model size and speed up the inference.
Although these networks possess powerful representation
capability and high inference speed, they are computationally
expensive and memory-consuming, thus hard to be deployed
on drones equipped with limited computational resources. For
instance, YOLOv4 contains more than 60 million parameters,
necessitating 60 billion floating-point operations (BFLOPs)
when the input image resolution is just 416 x 416, and the
memory footprint reaches up to 256 MB. Despite the great
efforts to reduce model size, DenseLightNet still takes up
a 50 MB memory footprint.

To deploy the drone detection networks on edge-computing
devices, Sun et al. [20] present a drone detection network
with a tiny iterative backbone (TIBNet) that can reduce
computational burden while compressing the network. How-
ever, TIBNet can not perform real-time drone detecting and
tracking. Jiang et al. [21] propose a lightweight drone detection
network (DTD-YOLOv4-Tiny) by first optimizing the anchor
box generation with the K-means++ clustering and then
recasting the backbone and head of the network to increase
the inference speed and reduce the model size. However, the
detection accuracy is not satisfactory. In conclusion, existing
drone detection networks cannot satisfactorily balance detec-
tion accuracy, inference speed, and model size. In the spirit
of tackling the challenges of [20] and [21] and other prior
work for real-time applications while keeping high accuracy
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Fig. 1. The development pipeline of the proposed VDTNet. The proposed
VDTNet comprises the backbone, neck, and head, where the compression
technology, a new SPP module, and a new neck module are adopted and
proposed to improve the model performance. We train and test the VDTNet
on public datasets, and data augmentation is used to prevent overfitting.

and small size, we design a novel network for visually
detecting and tracking intruding drones, namely VDTNet.
The development workflow of VDTNet is detaily depicted
in Fig. 1. To boost detection accuracy, we first integrate a
spatial pyramid pooling (SPP) module [22] into the first head
of YOLOv4 (termed as YOLOv4-SPP) and then compress
YOLOV4-SPP to decrease its model size (named as YOLOv4-
SPP-s). While the SPP module improves model accuracy,
it tends to degenerate the inference speed. Model compression
can also lead to a loss of accuracy.

Through structural analysis of the SPPF [23], we observe
that utilizing the same pooling size and the concatenation oper-
ation can enhance the inference speed of the network. Inspired
by SPPEF, we adopt a unified pooling size of 7 x 7 in SPP
to increase the perception field. However, unlike SPPF [23],
we simplify the module complexity by excluding the concate-
nation operation. YOLOv3-tiny-prn [24] has demonstrated that
using a residual architecture for feature fusion can improve
inference speed while maintaining accuracy. However, we have
found that most feature fusion structures employ convolutional
operations for downsampling, resulting in feature loss. Pre-
serving complete feature propagation would benefit accuracy
enhancement. Inspired by this, we adopt residual connections
in the feature fusion module. However, unlike YOLOv3-tiny-
prn [24], our approach does not involve connecting with
lower-level semantics; instead, we focus on fusing features
between higher-level layers to save computational resources
and employ a greater number of residual connections. Addi-
tionally, we utilize feature pixel recombination instead of
convolutional operations for downsampling to maintain com-
plete feature transmission, thereby improving model accuracy.
Incorporating attention mechanisms is a strategy to enhance
model accuracy while minimizing the increase in model size.
However, we have noticed that the extensive utilization of
attention modules can lead to a reduction in model inference
speed. To strike a balance between accuracy and speed, we opt
to incorporate only a single attention module.

Based on the analysis above, we then recast the neck
and backbone of YOLOv4-SPP-s by proposing an SPP-Seven
(SPPS) module, a ResNeck with an SPPS, and introducing an
effective attention module to address the accuracy degradation
brought on by the compression. We employ the mosaic tech-
nique to prevent overfitting in the data training stage. With
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the above strategies, we present an accurate, lightweight, and
fast VDTNet. Our network successfully achieves an excellent
trade-off between the accuracy and inference speed, between
accuracy and computational consumption respectively. Exten-
sive experiments on four public datasets [2], [12], [20], [25] for
drone detection and tracking show that our VDTNet outper-
forms state-of-the-art (SOTA) approaches in terms of accuracy,
inference speed, and model size. In real-world scenarios,
the comparative ground-to-air detection testing proves the
generalization ability of the VDTNet, and we further deploy
the network on drone onboard edge-computing devices for air-
to-air real-time detecting and tracking of the intruding drones
to demonstrate its portability. To summarize, the contributions
of our work are:

o We present a lightweight, effective, and efficient network
for visual detection and tracking of intruding drones.
Our approach utilizes computational resources efficiently,
avoiding the need for expensive computational costs.

o We design the ResNeck and SPPS modules to improve
both accuracy and inference latency. Furthermore,
we incorporate a spatial attention module to emphasize
key feature information, reduce redundancy, and suppress
noise. This results in an enhancement in detection accu-
racy with minimal additional memory overhead.

« We conduct systematic ablation studies to validate the
efficacy of the designed modules. Through extensive
comparative experiments on public datasets and on-site
testing, our method has demonstrated superior perfor-
mance compared to state-of-the-art approaches. The
successful deployment of our method on an edge com-
puting device showcases its portability and feasibility for
real-world applications.

The remainder of this paper is organized as follows.
Related works are discussed in Section II. Section III presents
the designed network, with detailed modular structures. The
benchmarking experimental results of improvements and abla-
tion studies are presented and discussed in Section IV.
The comparative testing results in real-world scenarios are
shown in Section V. Finally, we draw concluding remarks in
Section VI.

II. RELATED WORKS
A. Drone Detection

Numerous studies have been conducted regarding drone
detection and tracking, considering the perspectives involving
non-visual and visual perception. Support vector machines are
employed for the detection and classification of drones by
anwar et al. [26] that can recognize drone acoustic fingerprints.
However, when challenged with similar acoustic frequencies,
the sound recognition accuracy droplets. Radiofrequency sen-
sors and ubiquitous frequency-modulated continuous wave
(FMCW) radar are also used to identify intruding drones
for security purposes [27], [28], [29]. However, these tech-
niques are useless for locating tiny drones that lack signal
transmitters or have weak reflected signals. Conversely, visual
cues may provide solutions to overcome these restrictions.
Ashraf et al. [30] propose a visually-based drone detection
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Fig. 2. The framework of the developing lightweight network. The curly
and gray arrow denotes circulation of these steps.

system with high accuracy, albeit with limited inference speed
(i.e., 1fps on NVIDIA RTX A6000). In their subsequent work,
they introduce Transvisdrone [31] further to enhance the accu-
racy and speed of drone detection. However, Transvisdrone’s
model size of 917M presents a storage burden for devices
with low memory capacity. Additionally, Singha et al. [32]
present an automated drone detection approach based on
YOLOV4 that increases detection speed (20.5fps). Similarly,
Zhai et al. [13] enhance the detection capability of small
drones using YOLOv3 with a frame rate of 21fps. Neverthe-
less, YOLOV3 still has a large model size of 246 MB.

B. Lightweight Model for Drone Detection

The YOLO family has been enhanced by recasting the back-
bone and neck to reduce the model size. Chen et al. propose
YOLOv4-MCA [33] by using MobileViT [34] as the back-
bone and improving PANet to obtain multi-scale attention for
enhancing the detection accuracy. DTD-YOLOv4-Tiny [21] is
proposed by recasting the backbone and head of the network
to improve the inference speed and reduce the model size.
Lv et al. [35] use YOLOVS5s as the baseline, and the spatial
attention mechanism is introduced to reduce the number of
network parameters while improving feature extraction ability.
However, the accuracy is unsatisfactory, although these model
sizes have been reduced [21], [33], [35].

In conclusion, existing drone detection and monitoring
methods can not satisfactorily balance accuracy, latency, model
size, and computational cost. Such as SAG-YOLOvSs [35],
although the model size is reduced to 15 MB, when the pixels
of 96 x 96 as input, the speed is only 15 fps on Nvidia
GeForce RTX 2070 SUPER. This approach would not be
practical for deploying on edge-computing devices.

III. METHODOLOGY

Our general framework for developing an accurate and
lightweight network is shown in Fig. 2. The framework mainly
includes five modules. We adopt network compression to
shrink the original network model size, and before this, the
improvement stage aims to enhance the accuracy of the origi-
nal network, dwindling the accuracy gap between the network
before and after the compression. The specific accuracy gap
is evaluated in the stage of evaluating accuracy loss. The
ablation study then compensates for the accuracy degradation
by integrating several effective modules into the compressed
network. The benefits of the introduced modules are evaluated
in the stage for assessing network performance. Ultimately,
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Network
compression

an accurate and lightweight network is obtained by iteratively
executing the above steps.

With YOLOv4 [11] as a baseline network, we integrate
an SPP module into the first head of YOLOv4 (termed as
YOLOvV4-SPP) to improve the accuracy and then compress
the YOLOvV4-SPP to reduce model size while enhancing the
inference speed. Following the compression workflow, the
VDTNet is presented in Fig. 3, where we propose and integrate
an SPPS module (marked with a light grey block) and a
ResNeck module (marked with a light blue block) into the
neck. In the backbone, we introduce the spatial attention
module (SAM) in the first ResBlock to form SAM-RES.
These blocks annotated with the same number (such as 1:87)
are interconnected. These same numbers can be found in
Fig. 3 and Fig. 6. The details of the adopted compression
technique, and the proposed modular structures in neck and
backbone are illustrated in Subsection III-A, Subsection III-B,
and Subsection III-C, respectively.

A. Network Compression

As illustrated in Fig. 4, the representative workflow of the
model compression mainly comprises three iterative steps:
(i) Sparsity training, (ii) Removing channels with small-scale
factors, and (iii) Evaluating network performance. Spar-
sity training is crucial to prevent dramatic degradation of
accuracy [36] in each iteration. Removing channels with small-
scale factors is a pivot procedure for reducing the number of
network parameters. Evaluating network performance assists
in selecting a desired lightweight network that is suitable for
deployment.

In this study, we mainly remove the channels with small-
scale factors in the Batch Normalization (BN) layer [37],
which is formulated as follows:

y= \x/’a—zﬁ Your =Y+, )
where © and o2 are the mean and variance of input activation,
respectively. @ and y represent the learnable scale and shift
parameters, respectively, x;, denotes input features in a mini-
batch, and the o decides the importance of the channel. ¥ is
the normalized activation, and y,,; is the output of the BN
layer. € is a neglecting constant value added to the variance
o2 for numeric stability.

We adopt the following objective function to discriminate
the importance of the channel.

g(a) = Loss(a) + 12 qer llell1, (2)

where « is the learnable scale factor in the BN layer, deter-
mining the importance of the channel. I' denotes the set of
all o, || -||1 represents the Li-norm, Loss(a) is the loss
function of the network to be compressed, and 1 denotes
penalty coefficient balancing the two terms in equation (2),
we set 1 = 0.001 in this study.

After sparsity training, all « values in the BN layers of
the network are stable. We then set the & as the removal
ratio of the channels in the BN layers. Specifically, « x 100%
number of channels in all BN layers of the network will be
removed. To prevent the removing process from destroying
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Fig. 3.

The overall architecture of our VDTNet. The SPPS and ResNeck are proposed and integrated into the neck, while SAM is introduced in the ResNet

of the backbone to form SAM-RES. The yellow block denotes a cross-stage partial network (CSPNet), and CSPX denotes that X CSPNet is concatenated
serially. The gray block represents ResNet, and ResNetX indicates that X ResNet is concatenated serially. The convolutional layer, batch normalization layer,
and mish activation function layer are collectively referred to as CBM. The *1:56’ denotes the block is on the 56th layer of VDTNet. Please zoom in for the

details.
m Sparsity Removing channel
training with small scale factor
Iterative @
Fig. 4. The workflow of network compression, including three iterative

steps. The curly and gray arrow denotes the iteration of these steps, and the
compression process terminates when a desired lightweight model is obtained.

the consistency of the unabridged network, we set B as
the retaining proportion of all the o values in a specific
convolutional layer. In this study, g is 0.01. The procedure of
model compression is performed iteratively. At each iteration,
the model without dramatic accuracy degradation will be
compressed continuously in the next iteration, until a desired
lightweight model is acquired.

B. SPPS and ResNeck Modules in Neck

In this section, we first describe the detailed structure of
SPPS and ResNeck, and then comprehensively introduce the
feature map-extracting procedure in SPPS and ResNeck.

1) SPPS: Through a comprehensive structural analysis of
the SPPF proposed in YOLOVS [23], we have made an intrigu-
ing observation regarding the potential benefits of employing
a consistent pooling size and concatenation operation for
enhancing the network’s inference speed. Drawing inspira-
tion from the SPPF (i.e. Fig. 5(c)), we have incorporated
a unified pooling size of 7 x 7 within the SPP module,
thereby effectively expanding the perception field. It is worth
noting, however, that in contrast to the SPPF [23], we opt
to simplify the module structure complexity by excluding the
concatenation operation.

The SPP can enhance accuracy but decrease inference
speed (i.e. Fig. 5(a)), whereas the SPPF can accelerate the

inference speed [23]. By leveraging the distinctive character-
istics of both SPP and SPPF, we propose a novel module
called SPPS. The SPPS model aims to strike a balance between
accuracy and inference speed by combining the advantages of
SPP and SPPF. The detailed structure of our SPPS module is
shown in Fig. 5(b), where the semantic feature map from the
previous layer is processed by four parallel branches, including
three 7 x 7 MaxPool operations along a spatial dimension and
one identity shortcut. After the above operations, the feature
maps from four parallel branches are concatenated along the
channel dimension to get the output feature map. In this study,
the proposed SPPS module is integrated into the neck of
our VDTNet to accelerate the inference speed and improve
accuracy.

Specifically, our SPPS module defines the mapping between
the input feature map x;, € R€*#*W and output feature map
Your € RACXHXW a5 follows:

Your = Concate[Max Pool(xi,), Xin,
Max Pool(xi,), Max Pool (x;,)], 3)

where Concate represents the concatenation operation along
the channel dimension

2) ResNeck: YOLOv3-tiny-prn [24] has demonstrated the
effectiveness of using a residual architecture for feature fusion,
which improves inference speed while maintaining accuracy.
However, most existing feature fusion structures rely on con-
volutional operations for downsampling, leading to feature
loss. To address this issue and further enhance accuracy,
we propose a different approach in our work. Inspired by
the idea of residual connections, we incorporate them into
the feature fusion module. Unlike YOLOV3-tiny-prn [24],
our approach focuses on fusing features between higher-level
layers to save computational resources and employs a larger
number of residual connections. Moreover, instead of using
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Fig. 5. The structure of the proposed SPPS module, where the semantic feature map from the previous layer is processed by four parallel branches, including
three 7 x 7 MaxPool operations and one identity shortcut. Please zoom in for the best view.
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Fig. 6. The structure of the proposed ResNeck, which includes three necks,
and we use the reorg layer to downsample, BL is a combination for batch
normalization layer, followed by a leaky activation layer. linear also denotes
the activation layers. Please zoom in for the best view.

i

convolutional operations for downsampling, we utilize feature
pixel recombination, ensuring complete feature transmission
and improving model accuracy.

As shown in Fig. 6, based on the aforementioned analysis,
we design a ResNeck module to improve the accuracy and
speed. ResNeck includes three neck structures where we adopt
the reorg layer [38] (marked with a yellow block) instead of
the convolution layer to downsample and enlarge the receptive
field, retaining the semantic information of the previous con-
volutional layers. To transfer information to each succeeding
layer, we utilize the residual structure on each neck. From
left to right, the three necks are termed as neck-1, neck-2,
and neck-3, respectively. For simplicity, in the following,
we denote that CBL is a combination of a convolutional layer,
batch normalization layer, and leak activation layer. CL is the
combination of the convolutional layer and the leak activation
layer.

In the neck-1 on the left, the input feature map F; €
RE>HXW g obtained from the 136th convolutional layer
of the VDTNet (see Fig. 3). Afterwards, the enhanced fea-
tures F, € RE2XHXW pay attention to additional feature

information through the CBL layer, SPPS layer, and CBL layer
successively. Next, the weight w; € RC2*#*W can be learned
from Fj, through a residual structure, and the output feature is
marked by Fy, € RE2XH*W Subsequently, by concatenating
a residual structure again, the weight w, € R€2*H>*W can be
learned from Fj, we label the output as Fj. € RE2XHXW The
final output of the neck-1 Fiy € RE3>*H#*W can be obtained
from a CL layer, which can be expressed by:

Fiq = CBL(SPPS(CBL(F}))),
F1p = leak(F14 + w1 * F1a),
Fic = leak(Fp + wp * F1p),

Fiqg = CL(F1), “)

where * represents the channel-wise multiplication, leak
denotes the leak activation layer.

After the downsampling operation with the reorg layer,
the second neck in the middle obtains the input of Fip €
RAC2% Gxy , we concatenate this features and the feature from
128th convolutional layer of the VDTNet (see Fig. 3) to be a
fusion feature of F»+ € RC“X%X% Afterward, the enhanced
feature F», € RC*TX% can be obtained by the CBL layer.
Subsequently, the weight w3 € RE5> 2% can be learned from
F>,, and the output Fp, € RCsX 5% is obtained through
the residual structure. The final output F. of the neck-2 is
obtained with the three convolutional operations, which can
be expressed by:

F, = CBL(Fay),
Frp =leak(Foq + w3 x Fay),

Fe = CL(CBL(CBL(F))). (&)

Similarly, following the steps from neck-2, we concatenate
the features obtained by the operation of the reorg layer and
the 118th convolutional layer, referred to as F3 € RC7% Ix %.
and then the enhanced feature F3, € ROSXTXT is obtained
by the CBL layer. Subsequently, the weight w4 € RCsx 4 x %
can be learned from F3,, and the final output of the neck-3
F3j, € R69 X% is obtained through the CL layer, which can
be expressed by:

F3, = CBL(F3y),

F3p = CL(leak(F3q + w4 * F34)). (6)

With the multiple necks fusing feature collaboratively, VDT-
Net can detect and track drones with different sizes, and
inference time can also be accelerated by using the simpler
downsampling operation than convolution.
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C. Spatial Attention Module in Backbone

In most cases, the accuracy of small-drone detection is
inferior to medium-drone or large-drone detection, partly due
to the limited feature information extracted by the network.
The attention mechanism can focus on the crucial information
of the feature map, only with small extra parameters. Inspired
by the feature aggregation in the SAM [39], we experimentally
compare the detection accuracy when integrating the SAM
into different locations of the ResBlock in VDTNet. The
best detection accuracy can be achieved when integrating the
SAM into the first ResBlock (SAM-RES), as shown in Fig. 7,
where ‘Convn-k’ represents the k convolutional kernels with
the size of n x n, ‘Batchnorm’ is the batch normalization layer,
‘Sigmoid’” and ‘Mish’ are activation functions, and ‘Concate’
means the concatenation operation concatenating the feature
maps along the channel dimension.

To illustrate the detailed operations of the SAM, we denote
the input feature map as x;, € REXHXW where C, H, W
represents the channel, height, and width number, respectively.
The SAM will output the enhanced feature map y,,; €
RE*HXW The relationship between y,, and x;, can be
formulated as follows:

Your = SAM (x5)
= U(Conv7X7([Angool(xi,,); Max Pool(xiy)]) ® Xiy,
= U(Conv7X7([MaPavgp§ Mapmaxp]) ® Xin, N

where ® denotes element-wise multiplication, o denotes the
sigmoid activation function, and Conv’*7 represents a convo-
lutional operation with the filter size of 7 x 7.

We use two pooling operations to obtain channel
information of a feature map, and then generate two 2D
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maps: Mgygp and Myyp, each denotes the average-pooled
features and max-pooled features across the channel. The
information features of two 2D maps are combined to be
an entirety feature (EF), convolved EF by using a standard
convolutional layer to get convolutional information (CF),
and multiply CF with the previous convolutional layer to
produce a 2D spatial attention map.

IV. EXPERIMENTS
A. Datasets and Evaluation Metrics

1) Dataset: Due to the lack of publicly available large-scale
datasets for drone detection, this study utilizes the Det-fly [12],
TIB-Net [20], FL-Drone [25], and DUT [2] for training,
validation, and testing, respectively.

Det-Fly [12] and FL-Drone [25] (air-to-air drone detection)
are captured by a flying drone. TIB-Net [20] is gathered by a
fixed camera on the ground (ground-to-air drone detection),
as shown in Fig. 8. Compared with Det-Fly, TIB-Net has
a more complex environment and contrast of foreground-
background, and most of the object size is smaller than
Det-Fly, while its totality is smaller than Det-Fly. FL-Drone
contains a mix of indoor and outdoor scenes. In our study,
we extract the frames annotated in Dogfight [30] as images
for training and testing. DUT [2] dataset comprises images
with varying resolutions, this substantial difference in image
sizes introduces challenges during training, as the image data
undergoes compression and stretching, resulting in varying
degrees of deformation for the target objects. Consequently,
the training data may exhibit deviations from the actual
shapes of drones encountered in real-life scenarios, posing a
significant challenge for achieving high-accuracy detection in
practical applications.

In this study, we train our network and benchmark the
testing results on Det-Fly, TIB-Net, FL-Drone, and DUT,
respectively, by following the same data partition rule in [2],
[12], [20], and [30]. The annotation labels are unified into the
YOLO format for easy training in advance.

2) Evaluation Metrics: To evaluate and compare the perfor-
mance of the proposed network with SOTA approaches, we set
the IoU threshold between predictions and ground truth to be
0.5. Therefore, detections matching with ground truth with
IoU>0.5 are counted as the true positives; this study focuses
on four key aspects: (i) drone detection accuracy, (ii) inference
speed (measured in ms), (iii) model size (measured in MB).
The mean Average Precision (mAP) is adopted for accuracy
evaluation [40] on Det-Fly. For the TIB-Net and FL-Drone,
we follow their evaluation rule in [20] and [30]. The inference
speed, model size, and BFLOPs are critical criteria to evaluate
if deploying the network on edge-computing devices is feasible
for real-time drone detection and tracking.

B. Implementation Details

1) Training: We train and evaluate our VDTNet on the
Det-Fly, TIB-Net, and FL-Drone, respectively. During train-
ing, we set the number of overall training iterations to 40k,
200k, 40k, and 60k on the Det-Fly [12], TIB-Net [20],
FL-Drone [25], and DUT [2], respectively, and choose the
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(c) FL-Drone (d) DUT

Fig. 8. Partial images of Dataset. TIB-Net is more complicated than Det-Fly. FL-Drone is RGB images collected in indoor and outdoor scenarios. DUT data

includes 35 types of drone images. Please zoom in for the best view.

stochastic gradient descent optimizer ( SGD ) with an initial
learning rate njniriar = 1.3 x 1073. At 80% and 90% of
the setting iterations, the learning rate drops to ten times the
previous learning rate. The weight decay is 0.0005, and the
momentum is 0.949, respectively. In Det-Fly and TIB-Net, the
batch size and the mini-batch are 64 and 32, respectively; in
FL-Drone, the batch size and the mini-batch are 64 and 8,
respectively. In DUT, the batch size and the mini-batch are
64 and 16, respectively. All experiments are trained with an
RTX 3090 GPU.

2) Evaluation: In Det-Fly [12], we test the inference time
and BFLOPS on RTX 3090 GPU. Following the original
paper [20], [30], in TIB-Net [20] and FL-Drone [30], we uti-
lize NVIDIA TITAN Xp and 1080Ti to test inference time,
respectively. For the DUT dataset, the inference time is tested
with RTX 2080super GPU devices; since we are a lake of RTX
2080super GPU, we just use a low-performance device of RTX
1080Ti to test the inference time of VDTNet. In each testing
experiment, for testing inference time and BFLOPS. We input
the same original resolution image from the testing set in three
datasets [12], [20], [30], respectively, and the accuracy (mAP)
is gauged on the testing set.

C. Improving and Compressing Network

As shown in Fig. 9, we improve the YOLOvV4 by integrating
SPP into its first head (termed as YOLOvV4-SPP) and then
compress the YOLOvV4-SPP iteratively by following steps in
Section III-A. We compress YOLOv4-SPP in three iterations,
and set the compression rate from 0.1-0.9 in each iteration,
and select the model with little loss of accuracy to compress
in the next iteration. Finally, the experimental results from the
chosen model in each iteration are shown in Table I.

With 608 x 608 input image resolution to train. the mAP of
YOLOvV4-SPP is improved by 0.3% w.r.t. original YOLOvA4.
After three iterations of compression are complete, model C
with the model size of 3.5 MB is obtained, and the model size
has been reduced by about 98.6%, while its accuracy barely
drops about 2.5%, and the inference accelerates about 37%.

D. Ablation Studies on Proposed Modules

To compensate for the accuracy loss of model C, we propose
ResNeck and SPPS, and we introduce SAM. The effectiveness
of each optimization method is verified by adding modules
step by step, with input images at a resolution of 1024 x
1024 from Det-Fly [12] to train. Eventually, we present these
results in Table II.

/ Conv-layer /

—

[ Maxpool 5 x 5 }

Max—;x)‘ol9x9 } [Maxpool 13><13}

/ Conv-layer / SPP
A 4
/ 3*Conv-layer /

Fig. 9. SPP is positioned between the penultimate forth and fifth convolution
layers of the first head. Please zoom in for the best view.

TABLE I
COMPRESSION RESULTS BASED ON YOLOV4 ON DET-FLY

Model Method description mAP 1T  Latency | model size |
YOLOv4  baseline 94.65%  12.1ms 256M
V4-SPP integrate SPP 94.95%  13.0ms 259.6M

A compress V4-SPP (0.4)  94.20% 11.4ms 108.5M

B compress A (0.6) 93.91%  9.56ms 28.1M

C compress B (0.8) 92.15%  7.6ms 3.5M

14 ({) indicates that larger (smaller) values lead to better (worse) performance.
V4-SPP is an abbreviation of YOLOv4-SPP.

2°0.4’, ’0.6°, and ’0.8" in the second column denote the compression rate of
models YOLOvV4-SPP, A, and B, respectively.

TABLE I
EFFECTS OF VARIOUS COMPONENTS ON PERFORMANCE ON DET-FLY

Modules From Model C to VDTNet
ResNeck v v v
SAM v v
SPPS v
model size 3.5M 3.9M 3.9M 3.9M
Improvement - +0.4M oM oM
Latency/per image 12.7ms 11.3ms 13.5ms 13.2ms
Improvement - -1.4ms +2.2ms -0.3ms
mAP 95.10% 95.65% 95.95% 96.12%
Improvement - +0.55 +0.30 +0.17

! The evaluation metric marked with red (green) color denotes the
performance degradation (improvement).
2 The v denotes that the module is integrated into this ablation study.

1) Benefits of ResNeck: In Table II, since the residual
structure provides more rich information, the reorg layer can
transfer previous rich information to the next neck, it improves
the mAP by 0.55% and inference time by 1.4ms, which is in
line with our original philosophy for designing this module.

2) Benefits of SAM: The mAP increases by 0.3% when inte-
grating SAM into the first ResBlock with 29 filters, as shown
in Fig. 7. In our study, the mAP decreases when integrating
SAM into the last ResBlock with 199 filters. We consider
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TABLE III
QUANTITIVE BENCHMARKING RESULTS ON DET-FLY

Model Image size mAP 1 Recall 1 Precision 1 Fl-score 1 Latency | Model size |
Cascade R-CNN [12] [640,640] 79.4% - - - - 552.6M
RetinaNet [12] [600,600] 77.9% - - - - 80.0M
RefineDet [12] [320,320] 69.5% - - - - 78.1M
FPN [12] [600,600] 78.7% - - - - 97.7TM
Faster R-CNN [12] [1000,600] 70.5% - - - - 333.5M
Grid R-CNN [12] [600,600] 82.4% - - - - 493.0M
SSD512 [12] [416,416] 78.7% - - - - 96.3M
YOLO-Fastest [41] 78.5% 81.1% 73.5% 77.1% 6.0ms 1.2M
YOLOV3-Tiny-Prn [24] 25.1% 20.6% 81.0% 32.9% 1.8ms 19.4M
YOLO-Lite [42] 25.5% 37.0% 33.8% 35.3% 1.4ms 2.2M
YOLOV2 [38] 67.1% 69.9% 75.7% 72.7% 3.1ms 202.3M
YOLOV3 [43] [416,416] 87.8% 89.7% 88.9% 89.3% 6.3s 246.3M
YOLOvV4-Tiny [11] 26.7% 20.5% 85.8% 33.1% 2.2ms 23.5M
SlimYOLOvV3-SPP3-50 [37] 86.4% 89.1% 88.2% 88.7% 6.6ms 133.5
SlimYOLOv3-SPP3-90 [37] 83.5% 85.4% 86.3% 85.9% 4.6ms 32.2M
SlimYOLOv3-SPP3-95 [37] 82.1% 84.2% 86.7% 85.4% 4.0ms 20.4M
[320,320] 83.4% 82.7% 85.4% 84.0% 5.1ms 250.5M
YOLOV3-SPP [43] [416,416] 87.5% 89.4% 88.5% 89.0% 6.5ms 250.5M
[1024,1024] 89.2% 89.6% 87.2% 88.4% 24.4ms 250.5M
[416,416] 78.1% 80.2% 83.3% 81.7% 7.1ms 255.6M
YOLOvV3-SPP3 [37] [608,608] 84.2% 85.1% 85.1% 85.1% 11.8ms 255.6M
[1024,1024] 91.7% 90.4% 91.9% 91.1% 26.7ms 255.6M
[416,416] 89.4% 90.0% 88.1% 89.0% 7.5ms 256.0M
YOLOv4 [11] [640,640] 94.9% 95.5% 90.5% 92.9% 12.6ms 256.0M
[1024,1024] 95.3% 96.1% 89.4% 92.6% 27.2ms 256.0M
[416,416] 86.3% 84.3% 89.5% 86.8% 0.3ms 3.6M
YOLOVS5n [23] [640,640] 94.0% 93.0% 92.1% 92.6% 0.4ms 3.6M
[1024,1024] 94.2% 93.5% 92.1% 92.8% 0.6ms 3.6M
[416,416] 87.5% * * * 0.4ms 9.3M
YOLOv6n [44] [640,640] 93.0% * * * 0.6ms 9.3M
[1024,1024] 94.7% * * * 1.3ms 9.3M
[416,416] 85.8% 78.7% 94.5% 85.9% 4.0ms 23.0M
YOLOvV7-Tiny [45] [640,640] 88.8% 86.5% 88.1% 87.3% 4.6ms 23.0M
[1024,1024] 94.1% 93.3% 94.7% 94.0% 8.0ms 23.0M
[416,416] 90.3% 91.3% 89.8% 90.5% 4.1ms 3.9M
VDTNet (Ours) [640,640] 94.8% 94.9% 92.1% 93.5% 6.4ms 3.9M
[1024,1024] 96.1% 96.6% 92.4% 94.5% 13.2ms 3.9M
[2048,1440] 96.2% 96.6% 92.7% 94.6 % 32.8ms 3.9M

1>_> denotes no official metric report in the original paper, and ’*’ denotes no evaluation metrics computed by the open source codes.

2 The best results in each evaluation metric column are in bold.

that the integration of SAM provides more critical information
compensation for the low-level feature map while adding
SAM to the last ResBlock with 199 filters results in noisy
feature extraction. Notably, the SAM can improve accuracy
with negligible extra parameters, beneficial to deploying the
network on memory-limited edge-computing devices.

3) Benefits of SPSS: The SPPS module expands the seman-
tic information with three simple MaxPool layers. the SPPS
improves the mAP by 0.17%, and the inference time accel-
erates by 0.3ms, the result is in line with our expectations.
where we only replace the two SPP with SPPS (see Fig. 3
and Fig. 6).

V. BENCHMARKING AND REAL-WORLD TESTING

In this section, we first present and analyze the benchmark-
ing results of our VDTNet on three public challenging datasets
stated in subsection V-A. We then demonstrate the portability
of our network through real-world testing in subsection V-B.

A. Benchmarking and Analysis

We conduct extensive experiments to compare and bench-
mark the performance of our VDTNet with SOTA approaches
for drone detection. The performance is evaluated in four
aspects, including (i) drone detection accuracy (measured by

mAP), (ii) inference speed (measured in ms), (iii) model size
(measured in MB), and (iv) computational consumption (mea-
sured in BFLOPs). For fair comparison with our lightweight
VDTNet, we choose YOLOv5n [23], YOLOv6n [41], and
YOLOV7-Tiny [42] as the lightweight representatives of
YOLOVS [23], YOLOV6 [41], and YOLOV7 [42], respectively.
We then train and test different networks on Det-Fly, TIB-Net,
FL-Drone, and DUT, respectively. For experiments on Det-
Fly [12], TIB-Net [20], FL-Drone [30], and DUT [2], all the
models are trained on NVIDIA RTX 3090, and the first three
datasets are tested on NVIDIA RTX 3090, 2080Ti, and TATIN
xp for a fair comparison, the DUT dataset is tested on RTX
1080Ti. The benchmarking results are analyzed in detail as
follows:

1) Benchmarking on Det-Fly Dataset: The quantitative
benchmarking results on Det-Fly [12] are reported in Table III.
Our VDTNet achieves SOTA performance in terms of
mAP, concurrently maintaining the most compact model size
(3.9 MB only). Additionally, the improvement in recall means
that VDTNet has more room to enhance and the increase in
F1 score means that VDTNet is more robust, and the higher
precision means the correctness of detection. Notably, our
VDTNet outperforms YOLOv7-Tiny by 2.0% points in terms
of mAP, showing that our network has the best performance
and strongest generalization ability. Besides, VDTNet infers

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 04,2024 at 01:19:28 UTC from IEEE Xplore. Restrictions apply.



9836

Det-Fly Detection Det-Fly Detection

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 8, AUGUST 2024

TIB-Net Detection FL-Drone Detection

2 96 90| * * 8~ Mask-RCNN
95 yolovs-tph
» ® 95 —— Dogfight
— 94 — ™ - —@— TransVisDrone
§ § § 85 - Em:RCNN (R50) X 90 —— VDTNt (Ours)
B 90 Lk I51°%) 5 > oo b ('M) 8
5 5 5 801 -@ vorow g 85
" —k— YOLOV3-SPP - N o Zgigli > /A
t 85 YOLOV3-SPP3 190 t 75 L ﬁgi t 80
~ = YOLOV:‘ ] ] :-A: VD'l-'Nth (Ours) ]
2 Tees | Ew v 2 275 o
80 —k— YOLOV7-Tiny —#— YOLOvV6n 70 ¢
—*— VDTNet (ours) —k— YOLOVI-Tiny 70
[ 2048,1440] 86 —k— VDTNet (ours) *
0 10 20 30 0 100 200 300 0 100 200 300 0 500 1000
Faster<= Speed (ms/img) Better<+= BFLOPs Faster « Speed (ms/img) Faster «= Speed (ms/img)
p g
(a) (® (0) ()]

Fig. 10. (a) Inference speed versus accuracy on Det-Fly. (b) BFLOPs versus accuracy on Det-Fly. (c) Inference speed versus accuracy on TIB-Net. (d) Inference

speed versus accuracy on FL-Drone. Please zoom in for the best view.

TABLE IV
QUANTITIVE BENCHMARKING RESULTS ON TIB-NET

Model Image size mAP 1 Latency | Model size |
Faster RCNN (R50) [9] 87.2% 217ms 333.5M
Faster RCNN (M) [9] 67.5% 125ms 162.5M
Cascade R-CNN (M) [43] 78.0% 164ms 384.9M
YOLOV3 [44] 84.9% 66ms 234.1IM
YOLOvV4 [11] [1333,800] 86.0% 19ms 256.0M
YOLOVSs [23] 86.2 % Sms 14.9M
EXTD [45] 85.1% 274ms 696.9KB
TIBNet [20] 89.2% 290ms 697.0KB
YOLOvV4-Tiny [11] 78.5% - 23M
[960,540] 80.3% 1.4M
DTD-YOLOv4-Tiny [21] [1344,756] 83.3% [.AM
[1920,1080] 85.1% - [.AM
VDTNet (Ours) [1024,1024] 89.7% 25ms 3.9M

1>_> denotes no official metric report in the original paper. "M’
and 'R50’ represent the backbone of MobileNet and ResNet50,
respectively.

2 The best results in each evaluation metric column are in bold.

twice as fast as YOLOv4 [11] can. We get a series of
VDTNet results by changing the input size of the image.
Fig. 10(a) shows that VDTNet results have advantages in
the balance of speed and accuracy, VDTNet maintains high
accuracy and speed when the inputting size is 2048 x 1440 at
the highest point, additionally. We also demonstrate that the
VDTNet has a better balancing between the requirement of
computation resource and accuracy for identical inputting
images in Fig. 10(b), the low point denotes the inputting size
is 416 x 416, the middle point denotes the inputting size is
640 x 640, and the high point denotes the inputting size is
1024 x 1024. Compared with YOLOv4, even if the inputting
size of 1024 x 1024, the BFLOPs (48.1) of VDTNet is lower
than the BFLOPs (59.6) of YOLOv4 at the inputting size of
416 x 416, VDTNet delivers the highest detection accuracy,
and less computing power required. Compared with the rest
of the methods in Fig. 10(b), our VDTNet requires only
cheap computing resources to achieve better accuracy, such
performance is very competitive in drone applications.

2) Benchmarking on TIB-Net Dataset: The quantitative
benchmarking results on TIB-Net are shown in Table IV. Our
VDTNet outperforms all the approaches in terms of mAP and
model size by a significant margin. For instance, when com-
pared with TIBNet, the best-performing model on the TIB-Net,

although VDTNet is larger than TIBNet [20] in model size,
our VDTNet gets higher accuracy and runs faster inference
speed than TIB-Net, which is because multiple spatial attention
module used in TIBNet [20] that can degenerate the inference
speed. We visualize the results of inference speed versus
accuracy, as shown in Fig. 10(c), which demonstrates our
VDTNet has already achieved a satisfactory trade-off between
the accuracy and inference speed.

3) Benchmarking on FL-Drone Dataset: We train VDTNet
on FL-Drone [30] with the input image resolution of 640 x480,
as shown in Table V, it shows the VDTNet gets a better
accuracy and speed on FL-Drone, and VDTNet is 30% both
more accurate and faster than TransVisDrone that is a new
model for air-to-air drone detection, and the speed is almost
90 times faster than doglight. We visualize the results of
inference speed versus accuracy, as shown in Fig. 10(d), which
demonstrates our VDTNet has already achieved a satisfactory
trade-off between the detection accuracy and inference speed.

4) Benchmarking on DUT Dataset: We train VDTNet on
DUT [2] with the input image resolution of 640 x 640,
as shown in Table VI, although we use an RTX 1080Ti that
inferior to the original paper of RTX 2080super to test the
latency, VDTNet still gets the better accuracy and faster speed
than other SOTA methods on DUT than Cascade(ResNet50),
it is faster than YOLOX that is the fastest in original paper [2]
by 7ms.

5) Lightness Analysis: We arrange the values of these
model sizes from smallest to largest, as shown in Fig. 11, the
VDTNet (3.5 MB) is just 17% of YOLOv7-Tiny (23.0 MB)
[42], and take up memory is only 1.5% of YOLOv4
(256.0 MB) [11]. While six models are lighter than VDTNet
they struggle to precisely localize drones. The rest of the mod-
els presented take more memory than VDTNet, highlighting
the practicality of our method.

B. Real-World Testing

1) Comparative Testing for Ground-to-Air Drone Detection:
To show the superiority and generalization ability of our
VDTNet, we comparatively test the VDTNet (trained on Det-
Fly) through on-site experiments. The on-site environment
and qualitative testing results are shown in Fig. 12, where
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Fig. 11.  Comparison model size to SOTA methods, VDTNet memory usage is barely 17% of advanced YOLOvV7-Tiny. the ‘M’ and ‘R50’ denote the

MobileNet and ResNet50 used as the backbone of this network. Please zoom in for the best view.

TABLE V
QUANTITIVE BENCHMARKING RESULTS ON FL-DRONE

Model mAPT Latency]
SCRDet-H [46] 52% -
SCRDet-R [46] 52% -

FCOS [47] 69% -
Mask-RCNN [48] 68% 57.1ms
MEGA [49] 65% -

SLSA [50] 61% -
YOLOVS-tph [14] 69% 40.0
Dogfight [30] 72% 1000.0ms
TransVisDrone [31] 75% 46.3ms
Ours 98 % 11.6ms

1>_> denotes no official metric report in the original paper.
2 The best results in each evaluation metric column are in bold.
3 The original paper [31] does not report the model size values.

TABLE VI
QUANTITIVE BENCHMARKING RESULTS ON DUT

Model Backbone mAPT Latency|
ResNet50 65.3% 78.1ms
Faster-RCNN [9] ResNet18 60.5% 51.5ms
VGGI16 63.3% 107.5ms
ResNet50 68.3% 93.5ms
Casecade-RCNN [43] ResNet18 65.2% 68.0ms
VGG16 66.7% 125.0ms
ResNet50 64.2% 75.2ms
ATSS [51] ResNetl8 61.0% 48.8ms
VGG16 64.1% 105.3ms
ResNet50 42.7% 46.1ms
ResNet18 40.0% 18.6ms
YOLOX [52] VGG16 55.1% 43.5ms
Darknet 55.2% 19.5ms
SSD [8] VGG16 63.2% 30.1ms
VDTNet (Ours) - 68.6 % 11.7ms

! The latency marked with cyan is tested by using RTX 2080super
GPU in original paper [2], and the latency of VDTNet is tested
on RTX 1080Ti GPU that the performance is inferior to RTX
2080super GPU.

2 The original paper [2] does not report the model size values.

3 The best results in each evaluation metric column are in bold.

the two columns of Fig. 12 represent two different scenarios
comprising two and three drones to be detected, respectively.
From top to bottom, each row demonstrates the testing results
of YOLOvV4 [11], YOLOv5n [23], YOLOvV6n [41], YOLOV7-
Tiny [42], and VDTNet for intruding drone detection and
tracking. We can find that the YOLOv4 only detects one
drone in both scenarios, while the YOLOv5n, YOLOv6n,
YOLOV7-Tiny, and VDTNet can detect all drones. How-
ever, YOLOvV7-Tiny possesses one false positive in both
two scenarios by mistakenly detecting the trees and power
lines as drones, partly due to the limited feature extraction
ability of its backbone. Notably, the confidence score of
our VDTNet (0.86 on average) is significantly higher than

JUAV 0.7/] ey

(UAZ O_Z0] o

[awzs o

Fig. 12.

Comparison with SOTA methods by practical ground-to-air detec-
tion, where the two columns represent two different scenarios comprising two
and three drones to be detected, respectively. From top to bottom, each row
demonstrates the testing results with the same methods, which demonstrates
that VDTNet has an accurate detection performance. Please zoom in for the
best view.

YOLOV5n (0.73 on average) and YOLOv6n (0.65 on average).
In conclusion, our VDTNet shows the strongest generalization
ability in real-world scenarios.

2) Deployment for Air-to-Air Drone Detection: As shown in
Fig. 13. To demonstrate the deployment capability of VDTNet
on edge-computing devices, we deploy our VDTNet on an
onboard computer, NVIDIA Jetson Xavier NX device with
7025MB GPU memory and 6 CPU cores. In our experiment,
the task of our host drone is to visually detect and track the
intruding drone (DJI Mavic Enterprise 200). With input frames
at a resolution of 640 x 480, our 416 resolution model can
accurately detect the intruding drones and achieve 14.9 fps
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Fig. 13. Air-to-air detection of VDTNet deployed on drone with Jetson NX,
the detection speed is 14.9fps, and the confidence is 78% this moment.

without any optimization, which confirms that our network
satisfies the requirements for portability and practicality.

VI. CONCLUSION

An accurate, lightweight, and fast network for real-
time drone intrusion detection and tracking is presented
in this work. We discovered that adding the spatial atten-
tion module to the first ResBlock in the backbone can
enhance detection accuracy. Specifically, we proposed SPPS
and ResNeck to improve inference speed and accuracy.
Our method significantly reduces model size and achieves
state-of-the-art performance on four real-world datasets. The
proposed technique demonstrates clear advantages, as evi-
denced by ground-to-air testing in actual settings. We have
also demonstrated the feasibility of deploying our network on
edge-computing systems for air-to-air detection. In the future,
we aim to further enhance detection speed and improve multi-
drone detection and tracking accuracy.
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