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Distributed Optimal Solutions for Multiagent
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Abstract—In this article, distributed optimal solutions are
designed for networked multiagent pursuit-evasion (MPE)
games for capture and formation control. In the games,
the pursuers aim to minimize the distance from their target
evaders while the evaders attempt to maximize it, and at
the same time, all the players desire to maintain cohesion
with their teammates. The goals of agents are obviously
reflected in the obtained optimal control strategies, which
consist of an attracting term and/or a repelling term. Nash
equilibrium is obtained by means of optimal strategies
using the solutions of the Hamilton–Jacobi–Isaacs equa-
tions. Furthermore, three scenarios are considered in the
MPE game: one-pursuer one-evader, multiple-pursuer one-
evader, and multiple-pursuer multiple-evader, where suffi-
cient conditions are given for pursuers in achieving ex-
ponential capture or formation control with ultimate zero
or bounded errors. It is shown that the conditions depend
on the structure of the communication graph, the param-
eters in the controllers, and the expected formation con-
figurations. Finally, both simulations and real flight exper-
iments successfully demonstrate the effectiveness of the
proposed strategies.

Index Terms—Differential games, formation control, mul-
tiagent systems, pursuit-evasion (PE) games.

I. INTRODUCTION

THE last decade has witnessed wide development of mul-
tiagent systems due to their high application values in

cooperative transportation, warehouse management, security
surveillance, and logistic delivery, to name just a few. Pursuit-
evasion (PE) games are one of the most interesting research
topics. They are widely used both in military implementations
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such as missile guidance and aircraft control [1], [2], [3] and
in civilian areas such as sport strategies. In nature, animal
hunting behaviors are also PE differential games. Therefore, the
agents in PE games can be unmanned aerial vehicles, unmanned
ground vehicles, autonomous mobile robots, spacecraft, or living
organisms.

The study of PE games starts from the simplest case with
a single pursuer and a single evader [4], [5]. The PE game
in [5] is formulated as a zero-sum game, which is solved us-
ing the Hamilton–Jacobi–Isaacs (HJI) equations. The result is
extended to the cases of two pursuers versus one evader [6], [7]
and multiple pursuers versus one evader [8], [9]. However, it
is difficult to solve the HJI equations for nonlinear systems.
Instead of solving the HJI equations, the control strategies
were derived by differentiation of a particular value function
in [10]. Geometrical methods are proposed for PE games in [11],
[12], [13].

In recent years, more general multiple-pursuer multiple-
evader PE games [14], [15] have gained much attention, owing
to the increased interest in multiagent problems. In [16], a
distributed hybrid controller is proposed for each pursuer using
both local coordination protocols and time-varying potential
fields. Conditions for guaranteed capture or guaranteed eva-
sion are analyzed in [17] for multiple nonlinear players. Sub-
optimal approaches for the multiplayer PE differential games
were presented in [18] by decoupled player control strategies.
In [19], distributed optimal strategies are obtained for all the
players by using a graph-theoretic approach, which depends
on the player’s teammates and neighbors of the opposite team.
The obstacle avoidance PE games are further studied in [20]. The
framework of [19] was extended by Qian et al. [21] to search
for an adaptive Nash equilibrium solution for the differential
games.

In regard to designing distributed solutions for the multiagent
pursuit-evasion (MPE) games, a local error variable is defined
as the position difference of each agent with respect to both
its pursuer neighbors and evader neighbors [19], [20], [21],
according to the pursuers’ interest of capture of the evader
or the evaders’ interest in avoiding capture. Then, individual
performance index functions are used to find solutions for the
games.

In most PE games, the objective of pursuers is to capture the
target evader, that is, to achieve position consensus [4], [5], [6],
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[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21]. However, this kind of perish-together strategy
may lead to the ruin of pursuers. Instead, formation control or
surrounding control is of more practical [22], [23], [24], [25].
With surrounding the target, the pursuers can jet a mesh to
capture the target and then carry it to a safety zone. Specifically,
a distributed estimation-and-control hierarchical framework is
developed in [22], [23] for, respectively, linear systems and
surface vessels. The surrounding formation control can also be
achieved by defining an expected displacement, under which
the evaders lie in the convex hull formed by the pursuers.
Besides, the evaders may also want to maintain some formation
configurations to better complete their tasks. Compared with the
PE games in [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], the formation control is
also considered in this article in designing the distributed optimal
solutions for MPE games. We will analyze how the expected
displacement and communication graph will influence the
result.

In this article, distributed optimal control strategies for MPE
games for capture and formation control are designed over
complex communication graphs. The MPE games present some
interesting technical difficulties in designing optimal solutions
for all the agents to reach their various goals and in obtaining
the conditions so that the game is in Nash equilibrium. Due to
the complexity of interactions among the pursuers and evaders,
it is nontrivial to formulate their different objectives and analyze
their different behaviors. The objective of formation control
brings extra difficulties for analysis. Therefore, it requires tools
that combine both differential game theory and cooperation
control theory to find the optimal control protocols. The con-
tributions of this article are summarized as follows.

1) Unlike [19], [20], [21], considering the players’ goals
of maintaining cooperation with their teammates and
minimizing (maximizing) the distance to the evaders (pur-
suers), we appropriately defined distinct local error vari-
ables and novel performance indices for players in both
teams, based on which the obtained distributed optimal
solutions consist of an attracting term and/or a repelling
term that reflect the goals of agents. More importantly,
when group cohesion is ignored, the solutions for the
evaders are still valid for them to maximize their distance
from the pursuers.

2) Compared with the PE games in [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], formation control is also studied when developing
optimal solutions for the MPE games. Besides capture,
the formation control can achieve surrounding control of
the target and also considers the case that the evaders
desire to maintain some formation configurations. The
results show that diverse expected formation configura-
tions may result in zero or bounded formation control
error.

3) We present conditions for capture and formation control
for three scenarios: one-pursuer one-evader, multiple-
pursuer one-evader, and multiple-pursuer multiple-
evader, which is different from the works focusing on

one particular scenario [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13]. Under a novel analysis, the results present
that both the communication graph and the expected
configuration will affect the capture and formation con-
trol. Due to the decoupling of the solutions in achieving
the goals of agents, the interdependence of subsystems
caused by the three communication graphs, and the exis-
tence of expected formation configurations, the closed-
loop system is complex to analyze. Besides, possible
conditions for evaders to avoid being captured are also
discussed.

It is common that the multiple-pursuer multiple-evader PE
games include the PE games of one-pursuer one-evader and
multiple-pursuer one-evader as special cases [14], [15], [16],
[17], [18], [19], [20], [21]. In this article, due to the complex
communication graphs and formation control, the MPE game
is not a simple combination of the PE games of one-pursuer
one-evader or multiple-pursuer one-evader.

The rest of this article is organized as follows. Section II
provides some preliminaries that include the communication
graphs and definitions of local error variables. Problem
formulations and control strategies for the MPE games
are presented in Section III. In Section IV, conditions for
target capture or formation control are analyzed for three cases.
Simulation and experiments are shown in Section V to verify our
strategies.

II. PRELIMINARIES

Consider a team of N pursuers who have dynamics

ẋp
i = Axp

i +Bup
i , i = 1, . . . , N (1)

where xp
i ∈ Rn and up

i ∈ Rm are the state and input of the ith
pursuer, respectively. Consider also a group of M evaders with
dynamics

ẋe
j = Axe

j +Bue
j , j = 1, . . . ,M (2)

where xe
j ∈ Rn and ue

j ∈ Rm are the state and input of the jth
evader, respectively.

The pursuers (1) and evaders (2) form a group of N +
M agents. Define Gp = (Vp, Ep) as the communication graph
among the N pursuers, where V = {vp1, . . . , vpN} and
Ep = Vp × Vp. (vpk, vpi) ∈ Ep if and only if pursuer i has access
to the information of pursuer k, and we say agent k is a neighbor
of agent i. Let aik be the communication weight of the graph
Gp, with aik = 1 if (vpk, vpi) ∈ Ep, otherwise, aik = 0. Let
Ap = [aik] ∈ RN×N be the weighted adjacency matrix where
aii = 0. Denote by dppi =

∑N
k=1 aik the in-degree of pursuer

i and Dpp = diag{dppi } the in-degree matrix of the graph.
Then, the Laplacian matrix can be defined as Lp = Dpp −Ap.
Similarly, the interaction topology among evaders is represented
by Ge = (Ve, Ee) with the nodes Ve = {ve1, . . . , veM}. The
edge weights are bjl with bjl = 1 if (vel, vej) ∈ Ee and bjl = 0

otherwise. The in-degree of evader j is deej =
∑M

l=1 bjl and
the in-degree matrix Dee = diag{deej }. Define the matrices
Ae = [bjl] and Le = Dee −Ae.
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Let Gpe = (Vpe, Epe) represent the communication topology
among all the agents. Specifically, for i ∈ Vp and j ∈ Ve, the
edge weight cij = 1 if pursuer i can obtain the information of
evader j; otherwise, cij = 0. Similarly, eji = 1 if evader j knows
the information of pursuer i. The in-degree of pursuer i in the
graph Gpe is defined as dpei =

∑M
j=1 cij , and the in-degree of

evader j is depj =
∑N

i=1 eji. The graph is undirected if (i, j) ∈ E
implies (j, i) ∈ E with i �= j. In this article, we assume that the
graph Gpe is undirected.

Based on the above information, we define two local error
variables for each pursuer, with respect to its pursuer neighbors
and evader neighbors, respectively,

x̃pp
i =

N∑
k=1

aik(x
p
k − xp

i ), x̃pe
i =

M∑
j=1

cij
(
xe
j − xp

i +Δxpe
ij

)
(3)

where Δxpe
ij is the expected displacement between the pursuer

i and the evader j, and it can be a zero vector. The justi-
fication for the formation is that, in many practical applica-
tions, the team of pursuers may want to surround the target
evader, instead of achieving state consensus to collide with
it.

Similarly, we define another two local errors for each evader,
with respect to its evader neighbors and pursuer neighbors,
respectively,

x̃ee
j =

M∑
l=1

bjl
(
xe
l − xe

j +Δxee
jl

)
, x̃ep

j =
N∑
i=1

eji
(
xp
i − xe

j

)
(4)

whereΔxee
jl denotes the expected displacement between evaders

j and l. In many application scenarios, the evaders desire to
move in formation to increase the opportunity to complete the
tasks.

Remark 1: It is well known that, for x1, x2 ∈ Rn, x2 − x1

is a vector pointing from x1 to x2. It physically represents an
attracting force of agent 2 to agent 1, and also a repelling force of
agent 1 to agent 2. Thus, x̃pp

i and x̃pe
i denote the attracting forces

from the pursuer neighbors and evader neighbors, respectively,
to pursuer i. Similarly, x̃ee

j and x̃ep
j are the attracting forces

from the evader neighbors and repelling forces from the pursuer
neighbors to evader j, respectively.

III. PROBLEM FORMULATION AND SOLUTIONS FOR MPE
GAMES

In the MPE game, the objective of pursuers is to minimize
the distance from their neighboring evaders to intercept them
or achieve the desired formation for the surrounding control.
Moreover, the pursuers also intend to stay close to their team-
mates to keep the group cohesion. Therefore, the control strategy
of each pursuer can be divided into two parts. The first part is
for remaining close to its teammates, and the second part is for
pursuing the evaders, that is, up

i = up1
i + up2

i .

The goals of each pursuer can be formulated as a scalar

function Jpi

(
x̃pp
i , x̃pp

i , up1
i , up2

i

)
, regarded as the performance

index for pursuer i, which is defined as

Jpi =

∫ ∞

0

[
(x̃pp

i )
T
Qpp

i x̃pp
i +

(
up1
i

)T
Rpp

i up1
i

+(x̃pe
i )

T
Qpe

i x̃pe
i +

(
up2
i

)T
Rpe

i up2
i

]
dt (5)

where Qpp
i , Qpe

i , Rpp
i , and Rpe

i are positive-definite matrices
with appropriate dimension. Pursuer i is, thus, concerned with
minimizing Jpi.

Pursuer i is concerned with the minimization of the perfor-
mance index Jpi. The dependence of Jpi on the local errors x̃pp

i

and x̃pe
i can be explained as the goals of pursuer i to stay close to

its teammates and minimize the distance from its evaders with
the minimum control effort up1

i and up2
i .

On the contrary, the goals of the evaders are to maximize
the distance from their neighboring pursuers and, at the same
time, to stay close to their teammates. Similarly, the control
input of evader j consists of two parts, i.e., ue

j = ue1
j + ue2

j .
The performance index for evader j can be defined as

Jej =

∫ ∞

0

[(
x̃ee
j

)T
Qee

j x̃ee
j +

(
ue1
j

)T
Ree

j ue1
j

− (x̃ep
j

)T
Qep

j x̃ep
j +

(
ue2
j

)T
Rep

j ue2
j

]
dt (6)

where matrices Qee
j , Qep

j , Ree
j , and Rep

j are positive definite.
Notice that minimizing the third term −(x̃ep

j )TQep
j x̃ep

j equals
maximizing the distance from the pursuers, which implies es-
caping from them.

Based on the above definitions, we define the following MPE
differential games on communication graphs Gpe.

Definition 1 (MPE game): The MPE game is defined as

Vpi = min
up1
i ,up2

i

Jpi

(
x̃pp
i , x̃pe

i , up1
i , up2

i

)
(7)

Vej = min
ue1
j ,ue2

j

Jej
(
x̃ee
j , x̃ep

j , ue1
j , ue2

j

)
(8)

where Vpi and Vej are the values of the MPE game for pursuer
i and evader j, respectively.

Let up
−i and ue

−i be the control strategies of the pursuer neigh-
bors and evader neighbors of pursuer i, respectively, andue

−j and
up
−j be the control strategies of the evader neighbors and pursuer

neighbors of evader j, respectively. The Nash equilibrium is
defined as follows.

Definition 2 (Nash equilibrium): Control strategies up1∗
i ,

up2∗
i , i = 1, . . . , N , and ue1∗

j , ue2∗
j , j = 1, . . . ,M , form a Nash

equilibrium if the inequalities

Jpi

(
up1∗
i , up2∗

i , up∗
−i, u

e∗
−i

)
≤ Jpi

(
up1
i , up2

i , up∗
−i, u

e∗
−i

)
Jej
(
ue1∗
j , ue2∗

j , ue∗
−j , u

p∗
−j

) ≤ Jej
(
ue1
j , ue2

j , ue∗
−j , u

p∗
−j

)
hold for all the agents in the game.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 24,2023 at 02:21:04 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU AND CHEN: DISTRIBUTED OPTIMAL SOLUTIONS FOR MPE GAMES FOR CAPTURE AND FORMATION CONTROL 5227

In the following part of this section, we aim to find the Nash
equilibrium policies of the MPE game.

The optimal control strategy of pursuer i can be obtained by
the Hamiltonian function [8], [26]

Hp
i = (x̃pp

i )TQpp
i x̃pp

i +
(
up1
i

)T
Rpp

i up1
i

+ (x̃pe
i )TQpe

i x̃pe
i +

(
up2
i

)T
Rpe

i up2
i + V̇pi(x̃

pp
i , x̃pe

i )

= (x̃pp
i )TQpp

i x̃pp
i +

(
up1
i

)T
Rpp

i up1
i

+ (x̃pe
i )TQpe

i x̃pe
i +

(
up2
i

)T
Rpe

i up2
i

+ �V T
pi (x̃

pp
i ) ˙̃xpp

i + �V T
pi (x̃

pe
i ) ˙̃xpe

i

where Vpi is the value defined in (7). Following (3), we have

˙̃xpp
i = −

N∑
k=1

aik

(
Axp

i +Bup1
i +Bup2

i

)
+

N∑
k=1

aikẋ
p
k

˙̃xpe
i = −

M∑
j=1

cij

(
Axp

i +Bup1
i +Bup2

i

)
+

M∑
j=1

cij ẋ
e
j .

Letting the partial derivative of Hp
i

∂Hp
i

∂up1
i

=2Rpp
i up1

i −dppi BT�Vpi(x̃
pp
i )−dpei BT�Vpi(x̃

pe
i )=0

∂Hp
i

∂up2
i

=2Rpe
i up2

i −dppi BT�Vpi(x̃
pp
i )−dpei BT�Vpi(x̃

pe
i )=0

gives

up1∗
i =

1

2
(Rpp

i )−1
(
dppi BT�Vpi(x̃

pp
i )+dpei BT�Vpi(x̃

pe
i )
)

(9)

up2∗
i =

1

2
(Rpe

i )−1
(
dppi B

T�Vpi(x̃
pp
i )+dpei BT�Vpi(x̃

pe
i )
)

(10)

which are the optimal control strategies for pursuer i. Vpi is the
solution of the coupled HJI

(x̃pp
i )TQpp

i x̃pp
i +(up1∗

i )TRpp
i up1∗

i +(x̃pe
i )TQpe

i x̃pe
i

+(up2∗
i )TRpe

i up2∗
i + �V T

pi (x̃
pp
i )

(
−

N∑
k=1

aik

(
Axp

i +Bup1∗
i

+Bup2∗
i

)
+ ẋp

k

)
+�V T

pi (x̃
pe
i )

⎛
⎝−

M∑
j=1

cij

(
Axp

i +Bup1∗
i

+Bup2∗
i

)
+ẋe

j

)
=0. (11)

Similarly, the optimal control strategies for evader j are given
by

ue1∗
j =

1

2
(Ree

j )−1
(
deej B

T�Vej(x̃
ee
j )+depj BT�Vej(x̃

ep
j )
)

(12)

ue2∗
j =

1

2
(Rep

j )−1
(
deej B

T�Vej(x̃
ee
j )+depj B

T�Vej(x̃
ep
j )
)
. (13)

The following theorem states that the MPE game is in Nash
equilibrium under the control policies (9)–(13).

Theorem 1: Considering the pursuers (1) and evaders (2) with
local errors (3) and (4). Let (9)–(13) be the control strategies for
pursuer i and evader j, where Vpi and Vej are the values of the
game for pursuer i and evader j, respectively. Then, the MPE
game (7), (8) is in Nash equilibrium. Moreover, the values of
the game for pursuer i and evader j are given by Vpi(t0) and
Vej(t0)− Vej(t∞), respectively.

Proof: The proof process is similar to the case of [19, Th. 1].
We omit it here due to the limit on the number of pages. �

Remark 2: Different from [19], due to various objectives of
pursuers and evaders, we defined distinct local variables x̃pp

i ,
x̃pe
i , x̃ee

j , and x̃ep
j and performances indexes (5) and (6), which

results in new control strategies (12) and (13) such that the game
is in Nash equilibrium. The control strategies (12) and (13) both
consist of two terms that reflect objectives of agents with respect
to their teammates and the opponents, respectively.

IV. CONDITIONS FOR CAPTURE AND FORMATION CONTROL

IN THREE SCENARIOS

In this section, we consider the MPE game in three scenar-
ios: one-purser one-evader, multiple-pursuer one-evader, and
multiple-pursuer multiple-evader.

Suppose that for i = 1, . . . , N and j = 1, . . . ,M , the value
functions Vpi and Vej have the form

Vpi = αi1(x̃
pp
i )TP pp

i x̃pp
i + αi2(x̃

pe
i )TP pe

i x̃pe
i (14)

Vej = βj1(x̃
ee
j )TP ee

j x̃ee
j − βj2(x̃

ep
j )TP ep

j x̃ep
j (15)

where P pp
i , P pe

i , P ee
j , and P ep

j are positive-definite matrices.
Taking �Vpi into (9)–(13) and following the fact that up

i =

up1
i + up2

i and ue
j = ue1

j + ue2
j , we, thus, have

up
i =

(
(Rpp

i )
−1

+ (Rpe
i )

−1
)

· (αi1d
pp
i BTP pp

i x̃pp
i +αi2d

pe
i BTP pe

i x̃pe
i

)
(16)

ue
j =

((
Ree

j

)−1
+
(
Rep

j

)−1
)

· (βj1d
ee
j BTP ee

j x̃ee
j −βj2d

ep
j BTP ep

j x̃ep
j

)
. (17)

Remark 3: One can note that the control strategy up
i for

pursuer i reflects the two attracting forces from its neighboring
teammates and evaders, which will drive it to stay close to
its teammates and, meanwhile, to capture the target. On the
contrary, the repelling force −x̃ep

j in ue
j for evader j prevents it

from being intercepted by its neighboring pursuers. When group
cohesion of the evader team is not considered, i.e., deej = 0, the
repelling force still holds. In [19], when deej = 0, it becomes that
ue
j = βj2d

ep
j (Rep

j )−1BTP ep
j x̃ep

j , which, conversely, represents
the attracting forces from its neighboring pursuers.

Remark 4: αi1, αi2, βi1, and βi2 are scalar gains for pursuers
and evaders whose values can be selected according to the
objectives of the game. αi1 and αi2 can be seen as the priorities
of pursuers to, respectively, stay close to their teammates and
capture the target. The largerαi2, the higher priority of capturing
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the evader. Similarly, βi1 and βi2 imply the priority of evaders
to stay close to their teammates and to escape from the pursuers.
The larger βi2, the higher priority of escaping from the pursuers.
In [19], there is one scalar gain for the evaders to set priority to
stay close to each other.

Without loss of generality, the R matrices in (16) and (17) are
selected as identity matrices, and the P matrices are solutions
of the Lyapunov equation

PA+ATP − PBBTP = −I. (18)

Note that the equation is solvable if all the eigenvalues ofA have
nonpositive real parts. The control strategies, thus, become, for
i = 1, . . . , N and j = 1, . . . ,M ,

up
i = 2

(
αi1d

pp
i BTP x̃pp

i + αi2d
pe
i BTP x̃pe

i

)
(19)

ue
j = 2

(
βj1d

ee
j BTP x̃ee

j −βj2d
ep
j BTP x̃ep

j

)
. (20)

Now, the control policies depend on the coefficients αi1, αi2,
βj1, and βj2. In the following, we will analyze how the coeffi-
cients affect the PE games in three scenarios.

A. PE Game for the One-Pursuer One-Evader Problem

When the evaders increase their distance with respect to each
other to separate the pursuers, each pursuer must select a single
evader as its target. Suppose that pursuer i has selected evader i
as the target using the target selection algorithm. In such a case,
the local error for pursuer i with respect to the evader is defined
as x̃pe

i = xe
i − xp

i . Similarly, x̃ep
i = −x̃pe

i . Following the steps
in Section III, the control strategies for pursuer i and evader i
are, respectively,

up
i = αi2B

TP x̃pe
i , ue

i = −βi2B
TP x̃ep

i = βi2B
TP x̃pe

i .
(21)

Theorem 2: Consider the multiagent system with N pursuers
and N evaders with dynamics (1) and (2), respectively, and with
the control policies (21). Assume that pursuer i selects evader i
as its target. Then, if αi2 ≥ 1

2 + βi2, we have limt→∞ x̃pe
i = 0

exponentially for any initial conditions.
Proof: The derivative of x̃pe

i satisfies

˙̃xpe
i = [A− (αi2 − βi2)BBTP ]x̃pe

i . (22)

We define the Lyapunov function candidate Vi = (x̃pe
i )TP x̃pe

i

whose derivative along the trajectory of (22) is

V̇i = (x̃pe
i )T(ATP + PA− 2(αi2 − βi2)PBBTP )x̃pe

i

= − (x̃pe
i )Tx̃pe

i − [2(αi2 − βi2)− 1](x̃pe
i )TPBBTP x̃pe

i .

It is obvious that if αi2 ≥ 1
2 + βi2, V̇i ≤ −(x̃pe

i )Tx̃pe
i . Since

λmin(P )‖x̃pe
i ‖2 ≤ Vi(x̃

pe
i ) ≤ λmax(P )‖x̃pe

i ‖2, and V̇i ≤ −‖
x̃pe
i ‖2, we have limt→∞ x̃pe

i = 0 exponentially. �

B. MPE Game for the Multiple-Pursuer One-Evader
Problem

When there are multiple pursuers and one evader, the pursuers
may want to intercept the target evader or to achieve the sur-
rounding formation control, and the evader aims to maximize the

distance from all the pursuers. In such a case, we have dpei = 1,
Ree

j = 0, deej = 0, and depj = N for the unique evader j = 1.
For simplicity, we denote βj2 = β. We, thus, have

ue
1 = −βNBTP x̃ep

1 . (23)

Theorem 3: Consider the multiagent system with N pursuers
and one evader with dynamics (1) and (2), respectively, and
with control policies (19) and (23), respectively. Then, if αi2 ≥
(2βN2 + 1)/4 for all i = 1, . . . , N , and

(i) if Δxpe
i1 = 0 for all i = 1, . . . , N , we have limt→∞ x̃pe

i

= 0 exponentially for any initial conditions;
(ii) if ∃i such that Δxpe

i1 �= 0 but
∑N

i=1 Δxpe
i1 = 0, and

αi1d
pp
i = 0 for all i = 1, . . . , N , we have limt→∞ x̃pe

i

= 0 exponentially for any initial conditions;
(iii) if

∑N
i=1 Δxpe

i1 �= 0, the equilibrium of the closed sys-
tem is globally exponentially input-to-state stable (ISS)
with input Δxpe, i.e.,

lim
t→∞ sup

t′≥t
‖x̃pe(t′)‖ ≤ π1

(‖Δxpe‖2)
for some class K function π1, where x̃pe =
col(x̃pe

1 , . . . , x̃pe
N ) and Δxpe = col(Δxpe

11, . . . ,Δxpe
N1).

Proof: This theorem presents sufficient conditions for cap-
ture. We, thus, analyze the result from the viewpoint of the
pursuers. Let x̂p

i = xp
i −Δxpe

i1 . It follows from (3) that x̃pe
i =

xe
1 − x̂p

i , whose dynamics satisfies

˙̃xpe
i = A(xe

1 − x̂p
i )− βNBBTP x̃ep

1 −Bup
i

= Ax̃pe
i − βNBBTP

(
−

N∑
i=1

x̃pe
i +

N∑
i=1

Δxpe
i1

)

− 2B
(
αi1d

pp
i BTP x̃pp

i + αi2B
TP x̃pe

i

)
=
(
A− 2αi2BBTP

)
x̃pe
i + βNBBTP

N∑
i=1

x̃pe
i

− 2αi1d
pp
i BBTP x̃pp

i − βNBBTP
N∑
i=1

Δxpe
i1 . (24)

On the one hand, from the definition of x̃pp
i in (3), we have

x̃pp
i =

N∑
k=1

aik(x
p
k−xe

1−Δxpe
k1−xp

i +xe
1+Δxpe

i1 +Δxpe
k1−Δxpe

i1)

=

N∑
k=1

aik(x
pe
i − xpe

k ) +

N∑
k=1

aik(Δxpe
k1 −Δxpe

i1 ). (25)

Denote x̃pp = col(x̃pp
1 , . . . , x̃pp

N ). Then, the compact form of
(25) is

x̃pp = (Lp ⊗ In)x̃
pe − (Lp ⊗ In)Δxpe. (26)

Define the Lyapunov function candidate for the closed-loop
system x̃pe as V = (x̃pe)T(IN ⊗ P )x̃pe. Its derivative along
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the trajectory of (24) gives

V̇ =

N∑
i=1

[
(x̃pe

i )T(ATP + PA− 4αi2PBBTP )x̃pe
i

+ 2βN(x̃pe
i )TPBBTP

N∑
i=1

x̃pe
i

− 4αi1d
pp
i (x̃pe

i )TPBBTP x̃pp
i

−2βN(x̃pe
i )TPBBTP

N∑
i=1

Δxpe
i1

]
. (27)

Denote α2 = min{αi2} for i = 1, . . . , N . By (18), it follows
that

V̇ ≤ − (x̃pe)Tx̃pe − (4α2 − 1)(x̃pe)T(IN ⊗ PBBTP )x̃pe

+ 2βN(x̃pe)T(1N1TN ⊗ PBBTP )x̃pe

− (x̃pe)Tdiag{4αi1d
pp
i PBBTP}

· ((Lp ⊗ In)x̃
pe − (Lp ⊗ In)Δxpe)

− 2βN(x̃pe)T(1N1TN ⊗ PBBTP )Δxpe (28)

≤−(x̃pe)Tx̃pe−(4α2−1−2βN2)(̃xpe)T(IN⊗PBBTP )x̃pe

+ (x̃pe)Tdiag{4αi1d
pp
i PBBTP}(Lp ⊗ In)Δxpe

− 2βN(x̃pe)T(1N1TN ⊗ PBBTP )Δxpe (29)

where the last inequality holds because Lp and PBBTP are
positive semidefinite.

Note that if αi2 ≥ (2βN2 + 1)/4 for all i = 1, . . . , N , and
the first two terms of (29) are negative, then whether or not V
decreases to zero depends on the last two terms. It is obvious
that V̇ ≤ −(x̃pe)Tx̃pe under the conditions in (i) and (ii), which
finally results in limt→∞ x̃pe

i = 0. If
∑N

i=1 Δxpe
i �= 0, the last

term in (29) is nonzero. Then, we have

V̇ ≤ −
(
1− κ1

2
λ2
max

(
diag{4αi1d

pp
i PBBTP} (Lp ⊗ In)

)
−κ2λ

2
max

(
1N1TN ⊗ PBBTP

) ) ‖x̃pe‖2 +
(

1

2κ1

+
1

κ2

)
‖Δxpe‖2

where λmax(·) denotes the maximum eigenvalue of a
symmetric matrix. Choose κ1 and κ2 small enough such that
1− κ1

2 λ2
max (diag {4αi1d

pp
i PBBTP}(Lp ⊗ In))− κ2λ

2
max

(1N1TN ⊗ PBBTP )>0. By the ISS Lyapunov theorem
(see [27, Th. 1] and [28, Lemma 3.2]), the equilibrium of (24)
is globally exponentially ISS, i.e.,

lim
t→∞ sup

t′≥t
‖x̃pe(t′)‖ ≤ π1(‖Δxpe‖2)

for some class K function π1. �
Remark 5: The result (i) in Theorem 3 indicates that pursuers

can achieve intercept if they put more effort than the evader.
The condition αi1d

pp
i = 0 implies that the pursuers are not

influenced by their neighbors but to intercept the evader. The
condition

∑N
i=1 Δxpe

i1 = 0 implies a symmetric formation, un-
der which the sum of repelling forces of the pursuers to the evader
is zero. The two conditions, thus, contribute to interception. In
result (iii), the asymmetric formation leads to asymmetric forces
from the pursuers’ neighbor, and the forces do not align with the
attractive force from the evader, which, thus, leads to a bounded
formation error. Moreover, the greater the asymmetry, the larger
the formation error.

C. MPE Game for the Multiple-Pursuer Multiple-Evader
Problem

In the multiple-pursuer multiple-evader case, each pursuer
desires to intercept its target individually or cooperatively with
its neighbors. On the contrary, the evaders will try their best to
prevent themselves from being intercepted and simultaneously
achieve a desired formation.

We assume that the numbers of pursuers and evaders are the
same, i.e., M = N . If there are more pursuers, the problem can
be decoupled into several multiple-pursuer one-evader cases,
and the results follow Theorem 3. If there are more evaders,
some of them would be able to escape not unexpectedly. In
this section, each pursuer aims to capture the target, and it is
trivial to form a formation; we, thus, assume that Δxpe

ij = 0 for
i = 1, . . . , N and j denotes the target evader. For simplicity, we
also assume that pursuer i selects evader i as its target.

Theorem 4: Consider the multiagent system with N pursuers
and N evaders with dynamics (1) and (2), respectively, and with
control policies (19) and (20), respectively. Then, for any βj1 ≥

1
4min{dee

j }λmin(Le)
for each evader j, there exists anα∗

2(βj2), such

that if αi2 ≥ α∗
2(βj2), and

(i) if Δxee
jl = 0 for any evaders j and l, we have

limt→∞ x̃pe
i = 0 exponentially for any initial condi-

tions;
(ii) if ∃j, l such that Δxee

jl �= 0 but αi1d
pp
i = 0 for all i =

1, . . . , N , we have limt→∞ x̃pe
i = 0 and limt→∞ x̃ee

j =
0 exponentially for any initial conditions;

(iii) if∃j, l such thatΔxee
jl �= 0 and∃i such thatαi1d

pp
i �= 0,

the equilibrium of the closed system is globally expo-
nentially ISS with input Δxee

1 , i.e.,

lim
t→∞ sup

t′≥t
‖col(x̃pe(t′), x̃ee(t′))‖ ≤ π2(‖Δxee

1 ‖2)

for some class K function π2, where x̃pe =
col(x̃pe

1 , . . . , x̃pe
N ), x̃ee = col(x̃ee

1 , . . . , x̃ee
N ), and

Δxee
1 = col(

∑N
k=1 a1kΔxee

1k, . . . ,
∑N

k=1 aNkΔxee
Nk).

Proof: Similar to Theorem 3, we analyze the conditions for
capture from the viewpoint of pursuers. By (3), the derivative of
the relative position between pursuer i and its target satisfies

˙̃xpe
i = Ax̃pe

i +

N∑
j=1

2cijBBTP (βj1d
ee
j x̃ee

j − βj2x̃
ep
j

− αi1d
pp
i x̃pp

i − αi2x̃
pe
i )
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=

⎛
⎝A−

N∑
j=1

2cij(αi2 − βj2)BBTP

⎞
⎠ x̃pe

i

+

N∑
j=1

2cijBBTP (βj1d
ee
j x̃ee

j − αi1d
pp
i x̃pp

i ) (30)

where the second equality holds because x̃ep
j = −x̃pe

i , which
represent the relative position between a pair of pursuer and
evader from the perspective of evader and pursuer, respectively.
It is easy to note that the dynamics of x̃pe

i depends on x̃ee
j and

x̃pp
i . From (3) and (4), we have

˙̃xpp
i = Ax̃pp

i +

N∑
k=1

2aikBBTP (αk1d
pp
k x̃pp

k − αi1d
pp
i x̃pp

i )

+

N∑
k=1

2aikBBTP (αk2d
pe
k x̃pe

k − αi2d
pe
i x̃pe

i ) (31)

and

˙̃xee
j =

N∑
l=1

bjl(Ax
e
l −Axe

j +AΔxee
jl )

+

N∑
l=1

2bjlBBTP (βl1d
ee
l x̃ee

l −βl2x̃
ep
l

−βj1d
ee
j x̃ee

j +βj2x̃
ep
j )

= Ax̃ee
j +

N∑
l=1

2bjlBBTP (βj2x̃
ep
j − βl2x̃

ep
l )

+
N∑
l=1

2bjlBBTP (βl1d
ee
l x̃ee

l − βj1d
ee
j x̃ee

j ). (32)

The system composed of (30)–(32) is complex, and the dynamics
of each one are affected by the other two ones. It is difficult to
analyze them together. However, it is because they influence
each other; we can express x̃pp

i by the other two variables. We,
thus, have

x̃pp
i =

N∑
k=1

aik(x
p
k − xe

k + xe
k − xp

i + xe
i − xe

i )

=

N∑
k=1

aik(x̃
pe
i − x̃pe

k ) +

N∑
k=1

aik(x
e
k − xe

i +Δxee
ik)

−
N∑

k=1

aikΔxee
ik .

Let x̃pp = col(x̃pp
1 , . . . , x̃pp

N ). For analysis convenience, we as-
sume that all the players have the same values on αi1, αi2, βj1,
βj2, and in-degree, and they are redenoted as α1, α2, β1, β2,
dpp, dpe, dee, and dep, respectively. Then, the compact form of
x̃pp
i satisfies

x̃pp = (Lp ⊗ In)x̃
pe + (dee)−1(Lp ⊗ In)x̃

ee −Δxee
1 . (33)

Taking (33) into the compact of (30) gives

˙̃xpe = [IN⊗(A−2(α2−β2)BBTP )]x̃pe

+(IN⊗2β1 d
eeBBTP )x̃ee−(IN ⊗ 2α1 d

ppBBTP )x̃pp

= [IN⊗(A−2(α2−β2)BBTP )]x̃pe

+(IN⊗2β1 d
eeBBTP )x̃ee−(Lp ⊗ 2α1 d

ppBBTP )x̃pe

− (dee)−1(Lp ⊗ 2α1 d
ppBBTP )x̃ee + Ξee (34)

where

Ξee = (IN ⊗ 2α1 d
ppBBTP )Δxee

1 . (35)

Now, we define the following Lyapunov function candidate for
the system (34):

Vpe = (x̃pe)T(IN ⊗ P )x̃pe

whose derivative along the trajectory of (34) gives

V̇pe=(x̃
pe)T[IN ⊗ (A− 2(α2 − β2)BBTP )]T(IN ⊗ P )x̃pe

+(x̃pe)T(IN ⊗ P )[IN ⊗ (A− 2(α2 − β2)BBTP )]x̃pe

− (x̃pe)T(Lp ⊗ 2α1 d
ppBBTP )T(IN ⊗ P )x̃pe

− (x̃pe)T(IN ⊗ P )(Lp ⊗ 2α1 d
ppBBTP )x̃pe

+ 4β1 d
ee(x̃pe)T(IN ⊗ PBBTP )x̃ee

− 4α1 d
pp(dee)−1(x̃pe)T(Lp ⊗ PBBTP )x̃ee

+ 2(x̃pe)T(IN ⊗ P )Ξee

≤ − (x̃pe)Tx̃pe

− (4(α2 − β2)− 1) (x̃pe)T(IN ⊗ PBBTP )x̃pe

+ 4β1 d
ee(x̃pe)T(IN ⊗ PBBTP )x̃ee

− 4α1 d
pp(dee)−1(x̃pe)T(Lp ⊗ PBBTP )x̃ee

+ 4α1 d
pp(x̃pe)T(IN ⊗ PBBTP )Δxee

1 . (36)

We note that (36) depends on x̃ee.
By (32), the compact form is

˙̃xee = [IN ⊗A− 2β1 d
ee(Le ⊗BBTP )]x̃ee

− 2β2(Le ⊗BBTP )x̃pe. (37)

Let

Vee = (x̃ee)T(Le ⊗ P )x̃ee. (38)

Since the graph is undirected, Le is symmetric and Le1N = 0.

Then, there exists an orthogonal matrixC =
[

1N√
N
, D
]

withD ∈
RN×(N−1), such thatCTLeC = Λ = diag{0, λ2, . . . , λN}. Let
(CT ⊗ In)x̃

ee = ζ = col{ζ1, . . . , ζN}; we then have

ζ1 =

(
1TN√
N

⊗ In

)
x̃ee =

1√
N

N∑
j=1

x̃ee
j = 0.

The last equality holds because the graph Le is undirected. It
implies that ζi, i = 2, . . . , N , will not be all zero if x̃ee �= 0.
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Then, Vee can be written as

Vee = (x̃ee)T(C ⊗ In)(Λ⊗ P )(CT ⊗ In)x̃
ee

= ζT(Λ⊗ P )ζ =

N∑
i=2

λiζ
T
i Pζi.

It is obvious that Vee is positive definite. Therefore, Vee can be
chosen as a Lyapunov function candidate.

The derivative of Vee along the trajectory of (37) is

V̇ee=(x̃
ee)T[IN ⊗A− 2β1 d

ee(Le ⊗BBTP )]T(Le ⊗ P )x̃ee

+ (x̃ee)T(Le ⊗ P )[IN ⊗A− 2β1 d
ee(Le ⊗BBTP )]x̃ee

− 4β2(x̃
ee)T(Le ⊗ P )(Le ⊗BBTP )x̃pe

=− (x̃ee)T(Le ⊗ In)x̃
ee−4β2(x̃

ee)T(L2
e ⊗ PBBTP )x̃pe

− (x̃ee)T
(
(4β1 d

eeL2
e − Le)⊗ PBBTP

)
x̃ee (39)

since

x̃ee = (C ⊗ In)ζ =

([
1N√
N

,D

]
⊗ In

)[
0 ζT2 · · · ζTN

]T
= (D ⊗ In)ζ2N (40)

where ζ2N = col{ζ2, . . . , ζN}. Since CTLeC = Λ and C is an
orthogonal matrix, we have Le = CΛCT and L2

e = CΛ2 CT.
Then, taking (40) into (39) gives

V̇ee = −
N∑
i=2

λiζ
T
i ζi − ζT

(
(4β1 d

eeΛ2 − Λ)⊗ PBBTP
)
ζ

− 4β2ζ
T(Λ2 CT ⊗ PBBTP )x̃pe.

Since Λ = diag{0, λ2, . . . , λN} with λi > 0 for i = 2, . . . , N ,
choose

β1 ≥ 1

4 deeλmin{λi} =
1

4 deeλmin(Le)
. (41)

Then, the matrix (4β1 d
eeΛ2 − Λ)⊗ PBBTP is positive

semidefinite. We, thus, have

V̇ee ≤ −
N∑
i=2

λiζ
T
i ζi − 4β2ζ

T(Λ2 CT ⊗ PBBTP )x̃pe. (42)

Let V = Vpe + Vee. By combining (36) and (42), we obtain

V̇ ≤ − (x̃pe)Tx̃pe −
N∑
i=2

λiζ
T
i ζi

− (4(α2 − β2)− 1) (x̃pe)T(IN ⊗ PBBTP )x̃pe

+ 2β1 d
ee

[
1

ε1
(x̃pe)T(IN ⊗ PBBTP )x̃pe

+ε1(x̃
ee)T(IN ⊗ PBBTP )x̃ee

]

+ 2α1 d
pp/dee

[
1

ε2
(x̃pe)T(L2

p ⊗ PBBTP )x̃pe

+ε2(x̃
ee)T(IN ⊗ PBBTP )x̃ee

]

+ 2β2

[
1

ε3
(x̃pe)T(Λ4 ⊗ PBBTP )x̃pe

+ε3ζ
T(CTC ⊗ PBBTP )

]
ζ

+ 2α1 d
pp

[
1

ε4
(x̃pe)T(IN ⊗ PBBTP )x̃pe

+ε4Δxee
1 (IN ⊗ PBBTP )Δxee

1

]

≤ − (x̃pe)Tx̃pe − γ1(x̃
pe)T(IN ⊗ PBBTP )x̃pe

− γ2(ζ2N )Tζ2N + γ3Δxee
1 (43)

where

γ1 = 4(α2− β2)−1−2β1 d
ee/ε1−2α1 d

ppλmax(L2
p)/(d

eeε2)

− 2β2λmax(L4
e)/ε3 − 2α1 d

pp/ε4

γ2 = (λ2 − (ε1 + ε2)‖DTD‖‖PBBTP‖ − ε3‖PBBTP‖)
γ3 = ε4λmax(PBBTP )

and λ2 and λN are the minimum and maximum nonzero eigen-
values of Le, respectively. Choose ε1–ε5 small enough such that
γ2 ≥ 0; then, there exists a α∗

2(β2), when α2 ≥ α∗
2(β2), γ1 ≥ 0.

In such a case, we have

V̇ ≤ −(x̃pe)Tx̃pe − γ2(ζ2N )Tζ2N + γ3Δxee
1 . (44)

Therefore, whenΔxee
jl = 0 for all evaders j and l, which implies

that there is no desired formation among evaders, we have V̇ ≤
−(x̃pe)Tx̃pe − γ2(ζ2N )Tζ2N , which will lead to limt→∞ x̃pe

i =
0 exponentially. However, when Δxee

jl �= 0 and α1 d
pp �= 0, the

system composed of (34) and (37) is exponentially ISS with
input Δxee

jl .
Note that when α1 d

pp = 0, the last term in (36) equals
zero. Thus, (43) holds with ε4 = 0. Then, there exists α∗

2(β2),
when α2 ≥ α∗

2(β2), V̇ ≤ −(x̃pe)Tx̃pe − γ2(ζ2N )Tζ2N , which
leads to the fact that limt→∞ x̃pe

i = 0 and limt→∞ x̃ee
j = 0

exponentially. �
Remark 6: Note that inequality (41) is a sufficient condition

for interception. β1 denotes the attractive forces from its team-
mates for the evader. Equation (41) means that the attractive
force reaches a certain level; otherwise, the evaders may separate
from each other. When pursuers pursue the evaders, the separat-
ing would cause large attractive forces from other pursuers for
each pursuer. It will cause a failure of capture or the closed-loop
system would diverge. Note that this fact provides a strategy for
evaders to prevent themselves from being interception. Under
condition (41), if Δxee

jl = 0 or αi1d
pp
i = 0, the interception is

achieved. Otherwise, the attractive force from its teammates for
each pursuer under the formation Δxee

jl is actually a resistance
for capture, which conversely leads to the formation of evaders
with a bounded error.

Remark 7: Different from [19], which considers the PE
game for multiple pursuers and multiple evaders, novel anal-
yses are given for three scenarios in this article: one-pursuer
one-evader, multiple-pursuer one-evader, and multiple-pursuer
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Fig. 1. PE game for the one-pursuer one-evader problem.

Fig. 2. Capture occurs under the conditions in (i) of Theorem 3.

multiple-evader, and the formation control is also considered.
Conditions for capture and formation are different in different
scenarios. Compared with the asymptotic convergence of [19],
our control strategies contribute to exponential behaviors of
agents.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, both simulation and experimental results
are presented to verify our control strategies. Players are
double-integrator systems described by (1) and (2) with A =[
02×2 I2

02×2 02×2

]
and B =

[
02×2

I2

]
.

Fig. 1 shows capture results that verify the control law (21)
designed for the one-pursuer one-evader PE game. In the control
law (21), for i = 1, 2, 3, we set αi2 = 3 and βi2 = 1, which
obviously satisfies the condition αi2 ≥ 1

2 + βi2.
For the case that multiple pursuers try to capture one evader,

the pursuers and evader use control strategies (19) and (23),
respectively. In this example, we assume that there are four
pursuers; therefore, N = 4. To satisfy the sufficient condi-
tion αi2 ≥ (2βN2 + 1)/4 for target capture in Theorem 2, we
choose αi2 = 9 and β = 1. We first consider the case that
Δxpe

i1 = 0. The value of αi1 is chosen randomly. Fig. 2 shows
that capture occurs, which verifies the result (i) in Theorem 3.
Next, we assume that the pursuers try to achieve surround-
ing control of the evader, rather than capture it. Let the de-
sired state displacement between the pursuers and the evader

be
[
Δxpe

11 Δxpe
21 Δxpe

31 Δxpe
41

]
=

⎡
⎢⎣0 −2 2 0

2 0 0 −2

02×4

⎤
⎥⎦ .Let

Fig. 3. Trajectories and formation errors for the result (ii) of Theorem 3.

Fig. 4. Trajectories and formation errors for the result (iii) of Theo-
rem 3.

αi1 = 0 for i = 1, 2, 3, 4. It is obvious that the above settings
satisfy the condition in (ii) of Theorem 3. The trajectories
of players and the formation errors are presented in Fig. 3,
which shows that the formation error finally converges to zero.
Now, we modify the desired state displacement between the

pursuers and the evader as
[
Δxpe

11 Δxpe
21 Δxpe

31 Δxpe
41

]
=⎡

⎢⎣ 0 −1.9 2 0

2.01 0 0 −1.94

02×4

⎤
⎥⎦, which does not satisfy

∑4
i=1

Δxpe
i1 �= 0. The simulation results in Fig. 4 show the bounded

formation error.
Finally, we consider the PE game for multiple pursuers and

multiple evaders, who cooperate with their teammates to achieve
their objectives. Suppose that there are four pursuers and four
evaders. The communication topology is shown in Fig. 5. We,
thus, have dee = 2 and λmin(Le) = 1. A value of βj1 = 1, j =
1, 2, 3, 4, is used to satisfy the conditionβj1 ≥ 1

4min{dee
j }λmin(Le)
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Fig. 5. (Left) Communication topology for the PE game with multiple
pursuers and multiple evaders. (Right) Capture occurs under the condi-
tions in (i) of Theorem 4.

Fig. 6. Trajectories of players, formation errors of evaders, and x and y
distances between each pair of pursuer and evader under the conditions
(iii) of Theorem 4.

of Theorem 4. The values of other parameters are set as βj2 = 6,
αi1 = 1, and αi2 = 10 for i = 1, 2, 3, 4. First, let Δxee

jl = 0.
Fig. 5 shows that capture occurs. Furthermore, let the desired

formation among evaders be
[
Δxee

12 Δxee
23 Δxee

34 Δxee
41

]
=⎡

⎢⎣2 0 −2 0

0 2 0 −2

02×4

⎤
⎥⎦ .Fig. 6 displays the simulation result, where

Fig. 7. Experimental environment of our flight test.

Fig. 8. Real trajectories of quadrotors in our three flight tests.

the distances between each pair of pursuer and evader and for-
mation errors of evaders are bounded. If we further set αi1 = 0,
it will cause capture and zero formation errors.

The experiment is done in an indoor environment, as shown
in Fig. 7. We use a kind of nano quadrotor helicopter Crazyflie
2.1 as the flying platform, and the localization system we use
is VICON. The Crazyflie 2.1 is an open-source platform that
weighs only 27 g and is equipped with low-latency/long-range
radio. We can control them by combing them with the Crazyradio
PA and display data in our computer. A laptop with Intel Core
i7CPU is used to run our algorithm.

A group of four Crazyflie is used in our flight test. The actual
flight video can be found at https://www.bilibili.com/video/
BV1rd4y1x7X3/ and https://youtu.be/uM_U1lQLLLU, and the
corresponding real trajectories of quadrotors are shown in Fig. 8.
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