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Abstract—3-D reconstruction is essential to defect lo-
calization. This article proposes LCM-MVSNet, a novel
multi-view stereo (MVS) network with learnable cost met-
ric (LCM) for more accurate and complete dense point
cloud reconstruction. To adapt to the scene variation
and improve the reconstruction quality in non-Lambertian
low-textured scenes, we propose LCM to adaptively ag-
gregate multi-view matching similarity into the 3-D cost
volume by leveraging sparse point hints. The proposed
LCM benefits the MVS approaches in four folds, includ-
ing depth estimation enhancement, reconstruction qual-
ity improvement, memory footprint reduction, and com-
putational burden alleviation, allowing the depth infer-
ence for high-resolution images to achieve more accu-
rate and complete reconstruction. In addition, we improve
the depth estimation by enhancing the shallow feature
propagation via a bottom–up pathway and strengthen the
end-to-end supervision by adapting the focal loss to re-
duce ambiguity caused by sample imbalance. Extensive
experiments on three benchmark datasets show that our
method achieves state-of-the-art performance on the DTU
and BlendedMVS dataset, and exhibits strong generaliza-
tion ability with a competitive performance on the Tanks
and Temples benchmark. Furthermore, we deploy our LCM-
MVSNet into our UAV-based infrastructure defect inspec-
tion framework for infrastructure reconstruction and de-
fect localization, demonstrating the effectiveness and ef-
ficiency of our method. More experiment results can be
found in the Appendix at https://github.com/CUHK-USR-
Group/TIE_Appendices/blob/main/TIE_Appendix.pdf.

Index Terms—Defect inspection, depth estimation, diag-
nosis and monitoring, intelligent system, multi-view stereo
(MVS), reconstruction, unmanned aerial vehicle (UAV).
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I. INTRODUCTION AND LITERATURE REVIEW

MULTI-VIEW stereo (MVS) aims to recover the dense
3-D representation of the scene leveraging stereo corre-

spondences as the main cue given calibrated 2-D images from
multiple views (more than two views), essentially equivalent
to solving the pixel correspondences across multi-view images.
Recently, learning-based MVS approaches [1], [2], [3], [4], [5],
[6], [7], [8], [9] have significantly outperformed the traditional
counterparts in MVS benchmarks [10], [11], [12], [13]. Deep
MVS approaches decouple the MVS into a two-stage process:
learning-based depth map estimation and depth map filtering
and fusion. Compared to the handcrafted photometric measures
in traditional approaches, deep MVS approaches encode scene
cues, such as reflective priors and illumination changes into the
network by adopting powerful feature extraction and cost vol-
ume representation to achieve superior reconstruction accuracy
and completeness. Despite the superiority of the learning-based
MVS approaches, the following improvements can be made to
further boost the overall reconstruction quality.

Most learning-based methods [1], [2], [3], [4], [5], [6], [7],
[8], [9] use feature pyramid network (FPN) to extract multiscale
features for constructing cost volume pyramid. We observe that
these methods suffer from oversmoothing depth estimation (see
Fig. 5 of the Appendix) around the object boundaries due to
the lack of shallow feature information containing low-level
features, such as local textures and edges. To tackle this issue,
we introduce a bottom–up pathway with negligible parameter
increases to shorten the propagation of shallow information,
shown to be conducive to both depth estimation and reconstruc-
tion.

Based on multi-view deep features, learning-based methods
construct the cost volume [14] to encode scene context and
geometries into the network, where the cost volume is a 3-D vol-
ume (depth× height × width) measuring the multi-view feature
matching cost between the reference and source-view feature
maps along the depth. The cost volume is then regularized to
produce the depth map estimation. Effective cost volume aggre-
gation is crucial to ensure multi-view photo consistency. Recent
learning-based MVS approaches adopt two types of schemes
for cost volume aggregation: heuristic and learning-based. The
heuristic cost volume aggregation [1], [15] assigns equal signifi-
cance to each of the multi-view feature volumes to aggregate the
cost volume, ignoring the scene variation among different views.
The learning-based cost volume aggregation generally applies

0278-0046 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 29,2024 at 14:35:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5419-5673
https://orcid.org/0000-0002-6075-3245
https://orcid.org/0000-0003-0971-5494
https://orcid.org/0000-0003-2168-9057
https://orcid.org/0000-0002-3839-5787
https://github.com/CUHK-USR-Group/TIE_Appendices/blob/main/TIE_Appendix.pdf
https://github.com/CUHK-USR-Group/TIE_Appendices/blob/main/TIE_Appendix.pdf
mailto:gdyang@mae.cuhk.edu.hk
mailto:xunkuaizhou@cuhk.edu.hk
mailto:cxgao@mae.cuhk.edu.hk
mailto:xichen@mae.cuhk.edu.hk
mailto:bmchen@cuhk.edu.hk
mailto:bmchen@cuhk.edu.hk
https://doi.org/10.1109/TIE.2023.3337697


11520 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 71, NO. 9, SEPTEMBER 2024

an additional reweight network to learn the pixelwise weight [4],
patchwise weight [16], channelwise weight [17], or voxelwise
weight [5], [8], [18] for cost volume aggregation. However, the
additional reweight network imposes a computational burden
and ignores the intrinsic correspondences between multi-view
images. To address the aforementioned limitations, we propose
the learnable cost metric (LCM) scheme to achieve a tradeoff
between heuristic and learning-based cost volume aggregation.
Heuristic aggregation methods ignore the scene variation among
different views. Nevertheless, we observe that images from
different views have pixel differences caused by illumination
changes, occlusions, and image content variations. Moreover,
the source image near the reference view without occlusion
can offer more accurate photometric and geometric information
than a far one with partial occlusion. Based on this observation,
LCM computes the per-view significance to account for per-
view scene variation. To alleviate the memory consumption and
computational burden imposed by learning-based aggregation
methods, LCM scheme introduces the sparse point hints of the
scene from SfM into the aggregation process to directly compute
the source-view significance and learn the reference-view signif-
icance from the training data. The resulting LCM scheme adapts
to multi-view scene variation and concurrently alleviates the
computational burden. Abiding by the LCM scheme, we present
two LCM modules including coarse-to-fine LCM and efficient
LCM, both effectively improving the accuracy and completeness
of the depth estimation and reconstruction, while the former one
is more accurate and the later one is more efficient. Meanwhile,
the proposed modules are adaptive to an arbitrary number of
input views, independent of the order of input views, scalable to
large-scale scenarios, and complementary to cost volume-based
MVS approaches.

Most recent learning-based MVS methods adopt two types of
loss functions for end-to-end training: L1 loss [1], [3], [7] and
cross entropy loss [2], [19], [20]. We find that the regression-
based L1 loss represents the mean absolute error between the
ground truth and regressed depth values, leading to imbalance
between the single target depth and multiple possible sets of
weight combination. And the classification-based cross entropy
loss supervises the cross entropy between the ground truth and
classified probabilities, resulting in discretized depth estima-
tions. To alleviate the imbalance and achieve continuous depth
estimation, we adapt the focal loss [8], [9], [21], [22] in the object
detection field to the MVS task to supervise the cross entropy
between the estimated depth bias and ground-truth depth bias
in a continuous manner, shown to achieve more accurate and
complete depth estimation and dense point cloud reconstruction.

To this end, we present a novel MVS network with LCM
for depth estimation, termed as LCM-MVSNet. Our network
follows the coarse-to-fine framework [3] to further boost the
depth estimation and reconstruction performance, concurrently
reduce the memory footprint and speed up the inference. The
network takes as input the multi-view images and outputs per-
view depth map pyramid, from which the depth map at the finest
level is taken as the final output. Multi-View depth maps filtering
and fusion are then conducted to obtain the dense point cloud
reconstruction. Extensive experiments show that our method
achieves state-of-the-art performance on the DTU [10] and

Fig. 1. Our UAV-based infrastructure defect inspection framework for
defect localization.

BlendedMVS [13] datasets, and exhibits strong generalization
ability on the Tanks and Temples [11] benchmark. Systematic
ablation experiments further verify the effectiveness of each
component of our method.

To show the practicality and robustness of our method, we
deploy our method into our proposed UAV-based infrastructure
defect inspection framework for infrastructure reconstruction
and defect localization, with crack as our research target. As
shown in Fig. 1, our inspection framework comprises unmanned
aerial system (UAS), defect detection system [23], proposed
MVS method (green block), and defect localization system. The
UAS with advanced motion planning and control algorithms is
developed to autonomously collect close-range high-resolution
visual images of the target infrastructure. Then, the images are
processed via the defect detection system for defect identification
and the proposed MVS method for 3-D reconstruction, respec-
tively. Finally, the detected defects are localized and registered
into the reconstructed 3-D model of the target infrastructure
through geographic information. Our UAV-based infrastructure
defect inspection framework applies to multiscale scenarios due
to the flexible scalability of our proposed MVS method.

The rest of this article is organized as follows. Our MVS
methodology is illustrated in Section II, followed by Section III
detailing the experiments on the standard MVS benchmarks.
Section IV presents the real-world application for UAV-based
infrastructure defect inspection. Section V discusses the limita-
tions of the proposed method. Finally, Section VI concludes this
article.

II. METHODOLOGY OF MVS

In this section, we illustrate our two-stage MVS method for
automated point cloud reconstruction: LCM-MVSNet for depth
inference, depth map filtering and fusion strategy for the point
cloud generation. Fig. 2 depicts the outline of the network, taking
as input multi-view images {Ii ∈ RC×H×W }Ni=0 of the scene
from N + 1 views with known camera parameters, where I0
represents the reference image, {Ii}Ni=1 denotes N neighboring
source images, and C, H , W is the channel number and spatial
dimension of the input image, respectively. The network infers
the depth map D0 for the reference image I0, where each image
Ii from {Ii}Ni=0 is iteratively treated as the reference image.
The estimated depth maps {Di}Ni=0 are then filtered and fused
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Fig. 2. Overview of our proposed LCM-MVSNet (see Appendix for best
view).

to generate the point cloud reconstruction. In the following,
we successively detail each component of our method: feature
pyramid extraction, adaptive cost volume pyramid aggregation,
cost volume regularization and depth estimation, loss function
for optimization, and depth map filtering and fusion strategy.

A. Feature Pyramid Extraction

Most recent learning-based methods [7], [8], [9] adopts the
coarse-to-fine depth estimation strategy and utilizes FPN to
extract multiscale image features for constructing cost volumes
at different resolutions. We observe that these methods suf-
fer from oversmoothing depth estimation (see Fig. 5 of the
Appendix) around the object boundaries due to the lack of
shallow feature information containing low-level features, such
as local textures and edges, we hence enhance the shallow
feature information flow by introducing a bottom–up pathway
to augment the propagation of low-level features and enlarge
the receptive field to incorporate global context information for
more accurate and robust feature matching under low-textured
regions. Our feature pyramid extraction network takes as input
multi-view images {Ii}Ni=0 and output (L+ 1)-level feature
pyramids {fl,i ∈ RFl×H/2l×W/2l}Ll=0 for each image Ii, where
l represents the level ordinal, l = L is the coarsest level, l = 0
is the finest level, Fl is the channel number of the feature map
at level l, H/2l and W/2l is the height and width of the lth level
feature map downsampled to 1/2l of the original input image
resolution, respectively.

Specifically, the network comprises 20 convolutional layers,
including 16 layers for FPN [3], and four layers for bottom–up
path augmentation (BPA), please refer to Fig. 2 for detailed layer
settings of BPA where (A, B, C, D) denotes channel number,
kernel size, stride, and padding size, respectively. We replace
batch normalization with in-place activated batch normalization
(ABN) to reduce memory footprint in a computationally efficient
way [24]. L is set to 3 to construct a 3-level (3-stage) feature
extraction network. The spatial resolution of feature pyramid
at level l = 0, 1, 2 is H ×W , H/2×W/2, and H/4×W/4,
respectively. Fl is set to 8, 16, 32 for l = 0, 1, 2, respectively, to
build up the Fl-level pixel descriptors for encoding the origi-
nal neighboring information, preventing the subsequent dense
matching from losing useful context information. Systematic

ablation experiments in Section III-C show that the BPA can
improve the depth estimation and reconstruction quality.

B. Adaptive Cost Volume Pyramid Aggregation

The next step is to encode the extracted image features
{fl,i ∈ RFl×H/2l×W/2l}Ni=0 of (N + 1)-view images {Ii}Ni=0

and camera parameters into the network for multi-view feature
volumes construction and cost volume aggregation.

For level l, we uniformly sample (Ml + 1)-layer depth hy-
potheses in 3-D space from the depth range [dmin,l, dmax,l] for
the reference camera frustum

dm,l = dmin,l +m
dmax,l − dmin,l

Ml
(1)

wheredmin,l, dmax,l represents the minimum and maximum depth
at level l, respectively,m ∈ {0, 1, . . .,Ml} stands for the sample
index of depth hypothesis where its normal vector n0 is the prin-
cipal axis of the reference camera, andMl + 1 is the total sample
number of depth hypotheses at level l. Notably, the depth range
[dmin,L, dmax,L] of the coarsest level l = L is predefined and
the depth range [dmin,l, dmax,l] for the finer level is dynamically
determined by centering the depth range at the depth estimation
(detailed in Section II-C) of the previous level, concurrently
reducing depth interval and sample number [3]. Please refer
to Section III-B of the Appendix for the coarse-to-fine depth
estimation strategy.

With sampled depth hypotheses, source-view feature volumes
are constructed in the 3-D space through differentiable homog-
raphy by warping the extracted 2-D source-view image features
into the reference camera frustum. For level l, the homography
matrix Hi(dm,l) between ith source-view feature map and ref-
erence feature map at depth dm,l is defined as follows:

Hi(dm,l) = Kl
iRi

(
I− (C0 −Ci)n

T
0

dm,l

)
RT

0 (K
l
0)

−1 (2)

where I ∈ R3×3 is the identity matrix, {Kl
i,Ri} ∈ R3×3 refers

to the scaled camera intrinsic at level l and rotation matrix
of the ith source view respectively, and Ci ∈ R3×1 is inho-
mogeneous coordinates of the camera center of the ith source
view. Kl

0,R0,C0 refer to counterparts of the reference view.
n0 denotes the principal axis of the reference camera and T
stands for the matrix transpose. The warping process is then
achieved by differentiable bilinear interpolation to sample the
source-view image features {fl,i ∈ RFl×H/2l×W/2l}Ni=1 into
the reference view to generate source-view feature volumes
{Vl,i ∈ RFl×Ml×H/2l×W/2l}Ni=1. The reference volumeVl,0 ∈
RFl×Ml×H/2l×W/2l is acquired by repeating the reference-view
image features fl,0 ∈ RFl×H/2l×W/2l Ml times. Please refer to
Section III-C of the Appendix for the graphic demonstration of
the cost volume construction.

To adapt to the arbitrary number of input views,
the next step is to aggregate (N + 1)-view volumes
{Vl,i ∈ RFl×Ml×H/2l×W/2l}Ni=0 into a single cost volume
C ∈ RFl,c×Ml×H/2l×W/2l for multi-view feature matching
similarity measurement. This process can be defined as a
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mapping function M : RVl × · · · × RVl︸ ︷︷ ︸
N

→ RVl,c , where

Vl = Fl ×Ml ×H/2l ×W/2l and Vl,c = Fl,c ×Ml ×
H/2l ×W/2l. The heuristic cost volume aggregation scheme
assigns equal significance to the reference view and each source
view when aggregating cost volume, with the assumption
that volumes of all views contribute equally to the 3-D cost
volume. Nonetheless, we observe that images from different
views have pixel differences caused by illumination changes,
occlusions, and image content variations. Thus, feature volumes
from different views should contribute differently to the cost
volume aggregation. As the depth map of the reference image
needs to be inferred, its image features should be critical to
the cost volume aggregation process. Furthermore, the source
image near the reference view without occlusion can offer more
accurate photometric and geometric information than a far one
with partial occlusion. Based on this important observation,
we propose the learnable cost metric (LCM) scheme for cost
volume aggregation: the reference-view significance is learned
from the training data and the corresponding normalized
matching score is adopted as the source-view significance to
make the network adaptive to the input scene variation, where
the matching score measuring the feature similarity between the
source image and reference image is computed by utilizing their
common sparse points obtained through the structure from mo-
tion (SfM). In the following, we introduce two modules abiding
by the LCM scheme: coarse-to-fine LCM and efficient LCM.

Coarse-to-fine LCM: The coarse-to-fine LCM module at net-
work level l is defined as follows:

Cl = M(Vl,0, . . . ,Vl,N )

= αl(Vl,0 −Vl)
2 +

N∑
i=1

Si∑N
i=1 Si

(Vl,i −Vl)
2 (3)

where Cl ∈ RFl×Ml×H/2l×W/2l represents the cost volume, N
represents the number of input views, αl, l ∈ {0, . . . , L} is the
level-dependent learnable significance of the reference view. Vl

is the mean of (N + 1)-view volumes {Vl,i}Ni=0. {Si}Ni=1 repre-
sents the matching score between ith source image {Ii}Ni=1 and
the reference image I0, and {Si}Ni=1 is computed by leveraging
common sparse points from SfM process, the computational
procedure is detailed in the Appendix.

Specifically, coarse-to-fine LCM first compute the mean vol-
ume Vl and measure the per-view feature differences (Vl,i −
Vl)

2. Then, coarse-to-fine LCM abides by the coarse-to-fine
framework by setting different learnable al at different level
l ∈ {0, 1, . . . , L} of the network, expecting the network to learn
the significance of the reference-view feature differences from
the training data. The level-dependental enables the cost volume
aggregation to adapt to network levels for more accurate multi-
view matching similarity measurement. We set the normalized
matching score Si∑N

i=1 Si
as the significance of each source-view

feature differences to make the network adaptive to the input
scene variation. This adaptability is attributed to the intrinsic
nature of the matching score {Si}Ni=1, as its computational
process relies on the common sparse points hints between the
reference image and source images. The common sparse points

are obtained from the SfM process, taking the raw image repre-
sentations of the scene into consideration where the illumination
changes, occlusions and image content variations are better
revealed. Consequently, the matching score {Si}Ni=1 varies and
adapts to different input scenes, enhancing the generalization
ability of the network by improving the depth estimation and
overall reconstruction quality.

Efficient LCM: The efficient LCM at network level l is defined
as follows:

Cl = M(Vl,0, . . . ,Vl,N )

= M(Bl,0, . . . ,Bl,N )

= AvgPool

(
αlBl,0 �

N∑
i=1

Si∑N
i=1 Si

Bl,i

)
(4)

where Bl,i ∈ RK×(Fl/K)×Ml×H/2l×W/2l stands for the batched
volumes after evenly separating the original volumes Vl,i into
K batches along the channel dimension. Similar to the coarse-
to-fine LCM, we set different learnable αl at different level
l ∈ {0, 1, ..., L} of the network to learn the reference-view sig-
nificance and set the normalized matching score Si∑N

i=1 Si
as the

source-view significance to adapt to the scene variation. Then,
we adopt Hadamard product � to merge multi-view weighted
volumes and apply average pooling along the channel dimen-
sion to compute the multi-view feature matching similarity for
obtaining the cost volume Cl ∈ RK×Ml×H/2l×W/2l . Compared
to the square sum operation, the Hardmard product and average
pooling can significantly reduce the memory footprint and speed
up the inference time. By setting K as a small positive integer
(such as 2, 4, 8), the channel number of the cost volume can
be compressed, further shrinking the memory consumption and
alleviate the computational burden both in the cost volume
aggregation process and subsequent regularization based on 3-D
CNN.

Systematic ablation experiments in Section III-C demon-
strates the effectiveness and efficiency of the proposed coarse-
to-fine LCM and efficient LCM, they both outperform the heuris-
tic and learning-based cost volume aggregation schemes by
achieving more accurate and complete depth estimation and
point cloud reconstruction.

C. Cost Volume Regularization and Depth Estimation

Following recent learning-based MVS methods [3], [7], [9], a
four-scale 3-D CNN is adopted to regularize the aggregated cost
volume pyramid {Cl}Ll=0 and output probability volume pyra-
mid {Pl,est}Ll=0 through sigmoid activation. Here, we replace the
softmax activation with sigmoid for greater numerical stability
when combined with the focal loss [21], [22]. For level l, the
per-pixel depth estimation is achieved via the winner-take-all
operation to get the discrete depth estimation. To get continuous
depth estimation, we further refine the discrete depth estimation
with the estimated bias between the target depth and discretized
depth

Dl,est = arg max
dm,l∈[dmin,l,dmax,l]

Pl,est(dm,l)︸ ︷︷ ︸
discrete depth
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+
(dmax,l − dmin,l)

Ml︸ ︷︷ ︸
depth interval

maxPl,est(dm,l)︸ ︷︷ ︸
normalized bias︸ ︷︷ ︸

estimated bias

(5)

where Pl,est(dm,l) is the probability map at depth hypothesis
dm,l, Dl,est is the depth estimation at level l. Note that the depth
estimation D0 at the finest level is taken as the output.

D. Loss Function

Most recent learning-based MVS approaches [3], [7], [25] use
Soft-argmin operation to learn a weight combination of discrete
depth hypotheses and get the depth estimation.L1 loss is adopted
to minimize the mean absolute distance between regressed Dest

and ground-truth depth Dgt. However, the imbalance between
the single target depth and multiple possible sets of weight
combination imposes ambiguity to the learning process [8],
[9]. To alleviate this ambiguity, we adapt focal loss [8], [9],
[21], [22] into the MVS training to directly supervise on the
probability volume by extending the binary cross entropy into
its complete form and generalizing the scaling factor into the
absolute difference between the estimated Pest and ground-truth
probability volume Pgt, defined as the normalized bias between
the ground-truth depth and the discrete depth hypotheses. For
network level l, the adapted focal loss is as follows:

Ll =
∑

x∈{xvalid}
−βl|Pl,gt(x)−Pl,est(x)|γl

· ((1−Pl,gt(x)) log(1−Pl,est(x)) +Pl,gt(x) log(Pl,est(x)))
(6)

where Pl, est(x) is the estimated probability volume at pixel x
from set {xvalid} denoting the set of pixels with valid ground
truth, βl and γl is the tunable balancing and focusing parameter
at level l, respectively. The total loss function is defined as the
weighted sum of the per-level loss Ll

L =

L∑
l=0

λlLl (7)

where λl denotes the loss weight at level l. Systematic abla-
tion experiments in Section III-C show that the adapted focal
loss effectively boosts the depth estimation and reconstruction
quality.

E. Depth Maps Filtering and Fusion

Depth maps filtering and fusion are conducted to fuse the
estimated multi-view depth maps {Di}Ni=0 into the final 3-D
point cloud. For depth map filtering, we impose photometric
and geometric constraints by setting the probability threshold
τ to discard depth outliers and the number of consistent views
Nc to reduce the depth inconsistency, respectively, where the
photometric constraint estimates the multi-view matching qual-
ity and geometric constraint represents the multi-view depth
consistency. After filtering, we fuse the estimated depth maps
into the final 3-D point cloud as previous works [7], [8], [9].

III. EXPERIMENTS ON THE BENCHMARK DATASETS

In this section, we first demonstrate the effectiveness and
superiority of our LCM-MVSNet on multiple MVS benchmarks
including: DTU [10], [26], BlendedMVS [13], and Tanks and
Temples [11]. We then conduct extensive ablation experiments
to verify the effectiveness and efficiency of the method compo-
nents. Finally, we show the scalability of our method in terms
of domain and scale adaptability.

A. Datasets and Evaluation Metrics

Datasets: We train our LCM-MVSNet on the DTU training
set and then evaluate it on the DTU evaluation set for quantitative
benchmarking of the reconstruction performance. To benchmark
the reconstruction performance on the Tanks and Temples, we
further fine-tune the trained model on the BlendedMVS training
set with more complex scene variations and diverse camera
trajectories to improve the generalization ability. As our network
is dedicated to depth map estimation, we also benchmark the
depth map estimation quality on the BlendedMVS validation
set.

Evaluation metrics: 1) Reconstruction performance—DTU
adopts accuracy and completeness of MVS reconstruction in
mean error distance metrics (mm, lower the better), while the
Tanks and Temples utilizes the percentage metrics (%, higher
the better). To acquire a summary measure of accuracy and
completeness, the DTU and the Tanks and Temples dataset uses
the arithmetic mean (termed as overall score) and the harmonic
mean (termed as F-score) of them, respectively. 2) Depth estima-
tion performance—BlendedMVS adopts end point error (EPE),
1-threshold error e1, and three-threshold error e3 to measure
the depth estimation quality. Please refer to the Appendix for
more detailed illustration on datasets, evaluation metrics, and
implementation details.

B. Benchmark Performance

Benchmark on DTU dataset: We benchmark our method on
the DTU evaluation set and conduct a comprehensive compar-
ison with traditional (geometric) and state-of-the-art learning-
based MVS approaches. We follow the standard evaluation pro-
cedure [10] for quantitative benchmark and summarize the mean
error distance metrics (in mm, lower the better) including recon-
struction accuracy, completeness, and overall score, as shown
in Table I. With different settings, including the changes of N ,
τ , and Nc (detailed in the Table II of the Appendix), our method
performs an excellent tradeoff between the reconstruction accu-
racy and completeness. It achieves the best performance in terms
of the accuracy, completeness, and overall score compared with
the existing traditional and learning-based methods, indicating
the state-of-the-art performance of our method. We qualitatively
compare the depth estimation and reconstruction results of sev-
eral reflective and low-textured scenes with illumination changes
on DTU evaluation set in Figs. 3 and 4, respectively, where
our method achieves more complete depth estimation and dense
point cloud reconstruction with fine-grained details preserved
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TABLE I
QUANTITATIVE BENCHMARKING RESULTS ON DTU EVALUATION

SET (W ×H = 1152× 864)

Fig. 3. Qualitative comparison of the depth map estimations on
Scan13 (1st row) and Scan33 (2nd row) of the DTU evaluation set.

Fig. 4. Qualitative comparison of the point cloud reconstruction of
Scan12 (1st row), Scan13 (2nd row), and Scan77 (3rd row) on the DTU
evaluation set.

benefiting from the proposed LCM scheme, qualitatively veri-
fying the quantitative comparison results.

Benchmark on Tanks and Temples dataset: We benchmark
our method on both the intermediate set and the advanced set of
the Tanks and Temples benchmark and report the F-score (in %,
higher the better) in Table II. Our method achieves competitive
reconstruction performance compared to the state of the arts,
demonstrating the effectiveness and strong generalization ability
of our method on both indoor and outdoor scenes. The visualiza-
tion of the reconstruction errors, as shown in Fig. 5, indicates the
superiority of our method in comparison to the state of the arts.

Fig. 5. Visualization of the reconstruction errors of the four scenes
including family, francis, auditorium, and courtroom on the Tanks and
Temples benchmark. τ is the per-scene point distance threshold defined
by the benchmark and darker color indicates a larger reconstruction
error with respect to τ .

Notably, our method underperforms when reconstructing several
scenes with strong backlight or slim structures, we analyze the
specific reason in the Appendix.

Benchmark on BlendedMVS dataset: To further demonstrate
the superiority of our method for accurate depth map estima-
tion, we quantitatively compare our method with state-of-the-art
methods on the BlendedMVS validation set. We adopt the orig-
inal input image resolution 768 × 576 and set the number of
input views to 5 for all methods to ensure a fair comparison. As
shown in Table III, our method obtains impressive results with
the lowest EPE, e1, and e3, showing the ability of our method
for inferring high-quality depth maps.

C. Ablation Study

In this section, we conduct systematic ablation experiments
to analyze the effectiveness and efficiency of each component
of our method. All the ablation experiments are conducted on
the DTU evaluation set. Please see more ablation studies (BPA,
experimental settings) in the Appendix.

Baseline method: CasMVSNet [3] has been serving as the
baseline method for almost all the state-of-the-art methods [6],
[7], [8], [9] as it proposes the cascade coarse-to-fine cost volume
formulation to allow the high-resolution depth map estimation
and point cloud reconstruction. To fairly compare with the
state of the arts and show the effectiveness of our proposed
method components, we adopt CasMVSNet as our baseline
method, which applies FPN for feature extraction, the heuristic
variance-based scheme for cost volume aggregation, andL1 loss
for optimization.

Bottom–up path augmentation: As aforementioned, we intro-
duce the BPA to augment the propagation of low-level features
and incorporate more context information for robust feature
matching and continuous depth estimation. Benefiting from
BPA, Model A addresses the oversmoothing depth estimation
(see Fig. 5 of the Appendix) around the object boundary and
improves the reconstruction completeness (0.370 → 0.344) and
overall score (0.367 → 0.354).

LCM modules and adapted focal loss: Based on Model A, we
adopt the proposed coarse-to-fine LCM (Model B), efficient LCM
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TABLE II
QUANTITATIVE BENCHMARKING RESULTS ON THE TANKS AND TEMPLES BENCHMARK

TABLE III
QUANTITATIVE BENCHMARKING RESULTS ON BLENDEDMVS VALIDATION SET

Fig. 6. Comparison of mean absolute depth error by proposed LCM
modules for cost volume aggregation (a) during training on the DTU
training set; (b) during validation on the DTU validation set.

(Model C) to adaptively fuse multi-view feature volumes into the
cost volume. Fig. 6(a) and (b) shows the descent curve of the
mean absolute depth error by different cost volume aggregation
modules on the DTU training and validation set, respectively,
demonstrating that the models with LCM modules produce more
accurate depth estimations. The quantitative ablation results on
the DTU evaluation set shown in Table IV further verify that both
LCM modules effectively improve the reconstruction accuracy,
completeness, and overall score by a large margin. Notably, the
adapted focal loss effectively boosts the reconstruction quality

TABLE IV
ABLATION EXPERIMENTS ON DIFFERENT COMPONENTS OF PROPOSED

METHOD (N = 5, W ×H = 1152× 864, τ = 0.3, AND Nc = 3)

TABLE V
ABLATION EXPERIMENTS ON RUNTIME AND MEMORY

in terms of completeness and overall score to the state-of-the-art
performance (Model D and Model E).

Comparison with adaptive aggregation (AA) module: We
compare the proposed LCM modules with AA module [5], [8]
(Model G and Model H, as shown in Table IV) adopting an
additional reweight network to compute the weight for each
feature volume. The results show that our coarse-to-fine LCM
(Model B, D) and efficient LCM (Model C, E) outperforms AA
in terms of reconstruction accuracy, completeness, and overall
score.

Runtime and memory: To further show the efficiency and
effectiveness of the proposed LCM modules, we report the
memory footprint, inference time per image (runtime), and
F-score, as shown in Table V. Here, we evaluate the memory
footprint on the DTU training set, and then test the runtime
and F-score on the Tanks and Temples training set to verify
the generalization ability of the proposed modules. For memory
footprint, the introduction of ABN reduces memory footprint
by 12.58%. The coarse-to-fine LCM and efficient LCM further
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shrink memory footprint by 21.06% and 24.19%, respectively.
For runtime, the integration of ABN and coarse-to-fine LCM
effectively speeds up the runtime by 4.33%while the integration
of ABN and efficient LCM significantly speeds up the runtime
by 15.65%. Compared to AA module, ours are more efficient in
terms of memory footprint and runtime, concurrently possessing
higher F-score indicating stronger generalization ability.

D. Scalability

We demonstrate the scalability of our method in two-fold:
domain adaptability and scale adaptability.

For the domain adaptability (outdoor → indoor), we regard
it as one of the bases to verify the scalability because the
illumination condition, scene texture distribution, depth range,
and scene scale greatly vary from outdoor to indoor scenes.
Although our method is fine-tuned on the outdoor scenes from
the BlendedMVS training set, our method achieves superior
reconstruction performance over the state of the arts for all the
indoor scenes (auditorium, ballroom, courtroom, and museum)
on the advanced set of the Tanks and Temples benchmark,
as shown in Table II. Specifically, our method outperforms
the TransMVSNet [9] (with transformer) by 2.38%, 0.14%,
4.44%, 6.53% in terms of F-score on the auditorium, ballroom,
courtroom, and museum, respectively. We visualize and compare
the reconstruction errors (darker color indicates a larger recon-
struction error) of our method and state-of-the-art methods on
complex indoor scenes auditorium and courtroom, as shown in
Fig. 5, where our method exhibits more accurate and complete
reconstruction.

For the scale adaptability (tiny scale → large scale), we
naturally regard it as an indication of the scalability because
it represents the adaptability of the method to the scene scale.
We first differentiate the scene scale [41] as follows.

1) Tiny-scale scene, such as an object on the table.
2) Small-scale scene, such as a statue.
3) Medium-scale scene, such as a single architecture.
4) Large-scale scene, such as a group of architectures.

We then visualize point cloud reconstruction results on mul-
tiscale scenes with varying depth ranges. As shown in Fig. 7
(a), our method reconstructs fine-grained details of the tiny-
scale objects with highly complex curved structure. Fig. 7(b)
shows that our method performs complete dense reconstruction
on small-scale scenes with specular and low-textured surfaces.
Fig. 7(c) demonstrates that our method can reconstruct medium-
scale scenes in high completeness with fine details. Fig. 7(d)
shows the effectiveness of our method in generating complete
reconstruction on large-scale scenes. In conclusion, our method
can scale from tiny-scale scenes to large-scale scenes with
competitive reconstruction performance.

IV. REAL-WORLD APPLICATION FOR UAV-BASED

INFRASTRUCTURE DEFECT INSPECTION AND LOCALIZATION

We deploy our method into our UAV-based infrastructure
defect inspection framework (see Fig. 1) for infrastructure recon-
struction and defect localization, with crack as our target defect.
As shown in Fig. 8(a), we adopt three UAVs to cooperatively

Fig. 7. Point cloud reconstruction results of multiscale scenes with
varying depth ranges. Symbol †, �, �, and � under each reconstruction
result denotes that the corresponding input multi-view images are from
BlendedMVS, DTU, Tanks, and Temples, and our self-collected dataset,
respectively. (a) Tiny-scale scenes. (b) Small-scale scenes. (c) Medium-
scale scenes. (d) Large-scale scenes.

Fig. 8. Experiments for (a) multi-UAV-based data collection; (b) defect
detection results.

collect multi-view images for reconstruction and close-range
images for defect inspection autonomously (see Appendix for
more illustration).

Reconstruction: 826 multi-view images with the resolution of
1152 × 832 are collected for 3-D reconstruction. As shown in
Fig. 1, we follow our MVS method (green block) to achieve
complete and dense point cloud reconstruction of the target
warehouse while preserving highly detailed texture information.
Our MVS method outperforms the MVS solutions adopted in the
state-of-the-art defect localization methods [23], [42], [43], as
shown in Table VII (Appendix) and Fig. 9. In comparison to DJI
TERRA (6 h 39 mins), our MVS method (44.928 mins: 24.378
mins for SfM, 6.569 mins for view selection, and 13.981 mins
for MVS) significantly speeds up the reconstruction process
by 8.88 times on an NVIDIA RTX 3090Ti GPU, facilitating
the overall defect inspection process (see Appendix for more
runtime analysis).

Defect detection and localization: We train YOLOv6-l on our
self-established defect dataset (see Appendix) and it achieves
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Fig. 9. Comparison of point cloud reconstruction between DJI TERRA
and our method.

82% mean average precision on the validation set. We then test
it on the collected 923 close-range images. As shown in Fig. 8(b),
the model detects small cracks with low false and miss detection
rates. We adopt the similar methodology as [44] to register the
detected cracks onto the reconstructed infrastructure model. The
global geographic coordinates of the detected defects can be
achieved, providing a solid reference for the maintenance.

V. LIMITATIONS

First, our network produces less accurate depth estimation
under specular scene with extreme backlight and less complete
depth estimation under scene with slim structure. Second, the
uneven distribution of sparse points from SfM will affect the
computation accuracy of the normalized matching score, which
may limit the reconstruction performance of our method. Third,
similar to other state of the arts, our method is sensitive to the
inference hyperparameters, such as the number of input views,
the number of consistent views, and probability threshold.

VI. CONCLUSION

We presented the LCM-MVSNet for accurate and
complete multi-view depth estimation and dense point cloud
reconstruction, proposed the LCM scheme for adaptive cost
volume aggregation, enhanced the shallow feature information
flow to smooth depth estimation, and adapted the focal loss
into the end-to-end MVS supervision to reduce ambiguity. The
LCM-MVSNet was extensively evaluated on three benchmark
datasets to verify the point cloud reconstruction performance
and depth estimation quality. The experimental results showed
that the proposed LCM-MVSNet achieves 0.313 mm overall
score, 63.33% mean F-score, and 38.54% mean F-score on the
DTU evaluation set, Tanks and Temples intermediate set, and
Tanks and Temples advanced set, respectively, demonstrating
the superior point could reconstruction performance. The
benchmarking results on the BlendedMVS validation set
presented the state-of-the-art depth estimation performance of
our method with lowest estimation error.

We also made a step toward automated infrastructure inspec-
tion by deploying our LCM-MVSNet into our UAV-based infras-
tructure defect inspection framework for infrastructure recon-
struction. In our future work, we will develop depth refinement
module to enhance the depth estimation and develop dynamic
consistency checking strategy to improve the reconstruction.
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