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Accurate LIDAR-Camera Fused Odometry and
RGB-Colored Mapping

Zhipeng Lin"¥, Zhi Gao ", Ben M. Chen

Abstract—Due to the complementary properties between sen-
sors, multi-sensor fusion can effectively promote accuracy and
tackle the challenging scenes in simultaneous localization and map-
ping (SLAM) tasks. To this end, we propose a novel LIDAR-camera
fused method for odometry and mapping using dense colored point
clouds. With the camera well calibrated to the LiDAR, we can
acquire colored point clouds, providing constraints of color and
geometric features for SLAM tasks. Our LiDAR-camera fused
odometry and mapping system leverages the geometric features
from the point cloud and color information from the camera. The
main innovation is projecting the colored point to the local point
cloud plane and formulating an RGB color objective function
for SLAM tasks. We optimize the geometric and color objective
functions jointly to estimate the precise pose of the robot. In
particular, we maintain a color feature map and a planar feature
map separately in the optimization process, which reduces the
algorithm’s computation significantly. The evaluation experiments
are performed on a UGV platform and a handheld platform. We
demonstrate the effectiveness of our LiDAR-camera fusion method
using the solid-state LiDAR and camera on an Intel RealSense
L515 sensor. The results show that our method effectively promotes
localization accuracy, works well in challenging environments, and
outperforms existing methods. We will share the code publicly to
benefit the community (after the review stage).

Index Terms—Localization, mapping, sensor fusion, simul-
taneous localization and mapping (SLAM).

1. INTRODUCTION

OR mobile robots, simultaneous localization and mapping
(SLAM) is an essential and fundamental capability for
environment perception, especially in unknown environments.

Manuscript received 6 November 2023; accepted 5 January 2024. Date of
publication 22 January 2024; date of current version 1 February 2024. This
letter was recommended for publication by Associate Editor R. Sagawa and
Editor P. Vasseur upon evaluation of the reviewers’ comments. This work was
supported in part by Hubei Province Natural Science Foundation under Grant
2021CFAO088, and in part by Science and Technology Major Project under Grants
2021AAA010 and 2021AAA010-3. (Corresponding author: Zhi Gao.)

Zhipeng Lin is with the Department of Mechanical and Automation Engi-
neering, Chinese University of Hong Kong, Hong Kong 999077, China, and
also with the Department of Mathematics and Theories, Peng Cheng Laboratory,
Shenzhen 518000, China (e-mail: zplin@link.cuhk.edu.hk).

Zhi Gao is with the School of Remote Sensing and Information Engi-
neering, Wuhan University, Wuhan 430072, China, and also with the Hubei
Luojia Laboratory, Wuhan University, Wuhan 430079, China (e-mail: gaozhi-
nus @gmail.com).

Ben M. Chen is with the Department of Mechanical and Automation Engi-
neering, Chinese University of Hong Kong, Hong Kong 999077, China (e-mail:
bmchen@cuhk.edu.hk).

Jingwei Chen and Chenyang Li are with the School of Remote Sensing and
Information Engineering, Wuhan University, Wuhan 430072, China (e-mail:
jingweichen @whu.edu.cn; chenyangli@whu.edu.cn).

Digital Object Identifier 10.1109/LRA.2024.3356982

, Fellow, IEEE, Jingwei Chen, and Chenyang Li

Fig. 1. Localization and mapping result of our method using Intel RealSense
L515 mounted on a UGV in our experiment site. The mapping is accurate and
the average localization error is within 3 cm.

Researchers have designed numerous SLAM frameworks for
single perceptual sensors, such as camera and LiDAR [1], [2].
However, every single sensor has its limitations, leading to de-
generate situations. Multi-sensor fusion is one solution to these
problems, as different types of sensors have complementary
properties. Moreover, since the data patterns of sensors are dif-
ferent, multi-sensor fusion can offer additional independent con-
straints for robot pose optimization and enhance the final result.
Recent years have witnessed great progress in the multi-sensor
fused SLAM works. Therefore, sensor-fusion based SLAM is
necessary for the development of robotics and has increasingly
attracted researchers to explore the sensor fusion frameworks
to develop practical SLAM systems. Recently, the introduction
of solid-state LiDAR provides a cost-effective and lightweight
solution for LIDAR SLAM systems. As shown in Fig. 1, solid-
state LiDAR can achieve a very dense point cloud and is often
integrated with other sensors such as a camera. Designing SLAM
methods to make full use of the specifications of the solid-state
LiDAR is of great significance.

Existing LIDAR SLAM approaches [3], [4], [5] are mainly
developed for traditional LiDAR sensors, which generate the
sparse point cloud in a low frequency. Although they have
achieved impressive experimental results on large-scale map-
ping, their usage is limited due to the high cost and low angular
resolution. As the data pattern is different, existing LiDAR-
camera fused SLAM work cannot be directly applied to the solid-
state LiDAR. Moreover, some LiDAR-camera fused SLAM
work consists of a visual SLAM aided with LiDAR [6]. The
LiDAR usually provides depth information for visual SLAM [7],
[8]. These methods can not take full advantage of the geometric
information of the LiDAR points. Some other LiDAR-camera

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 03,2024 at 06:41:03 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-4106-3668
https://orcid.org/0000-0003-3325-1183
https://orcid.org/0000-0002-3839-5787
mailto:zplin@link.cuhk.edu.hk
mailto:gaozhinus@gmail.com
mailto:gaozhinus@gmail.com
mailto:bmchen@cuhk.edu.hk
mailto:jingweichen@whu.edu.cn
mailto:chenyangli@whu.edu.cn

2496

fused SLAM works are two-stage loosely-coupled fusion meth-
ods [9], [10]. These methods typically estimate robot pose
using camera and LiDAR separately thus cannot achieve global
optimal result and is easily affected by sensor failure. Moreover,
there are tightly-coupled fusion methods based on the Kalman
filter or graph optimization. However, these complex methods
usually rely on an IMU odometry [11], [12] and take up a
significant computation load. Our method can be considered
as a tightly coupled LiDAR-camera fused odometry that saves
computation resources and achieves high accuracy.
In this work, we propose a LiDAR-camera fused odometry
and mapping system for devices that generate dense colored
point clouds such as solid-state LiDAR. To the best of our knowl-
edge, this is the first work of LiDAR-camera fused odometry
using the dense colored point cloud. The main novelty is that we
project the colored point to a local plane and approximate the
color using a linear function by calculating the color gradient
in RGB channels and formulating the color objective in joint
optimization with the geometric objective to promote accuracy
and robustness in localization and mapping. Our method fuses
LiDAR and the camera at the data level by generating the colored
point cloud and fuses their features directly in the optimiza-
tion process. The experimental results prove the advantages of
our LiDAR-camera fused framework that exceeds the existing
works. The main contributions of our work are as follows:
® We propose a LiDAR-camera fused odometry framework
for dense colored point clouds. We perform the first-order
approximation of the point color in the local point plane
and optimize the color and geometric objectives jointly in
scan-to-map matching for pose estimation and mapping.

® We introduce a novel RGB-channel color and geometric
feature extraction method based on plane fitting and color
gradient computation. We maintain color and geometric
feature maps separately in scan-to-map matching to reduce
computational costs.

® We perform extensive experiments to evaluate our pro-

posed method. More specifically, we integrate an Intel
RealSense L515 sensor to UGV and a handheld platform
to test the performance of our proposed method, which
outperforms the state-of-the-art techniques.

II. RELATED WORK

Fusing these multi-sensor measurements, particularly from
camera and LiDAR, is often addressed within a SLAM frame-
work. Here, we survey the works related to LIDAR-camera fused
SLAM and odometry. Specifically, we adopt SSL-SLAM [13]
as the baseline, the state-of-the-art SLAM work for solid-state
LiDAR sensors. SSL-SLAM will fail in LiDAR degenerate
scenes as it only uses edge and planar features from laser points.

A. Visual SLAM Aided With LiDAR Depth

There are many LiDAR-camera fused SLAM works that adopt
visual SLAM as their main framework and use LiDAR points
to generate the depth map to enhance the visual SLAM. Some
work [8], [14] extract depth from LiDAR measurements for
camera feature tracking and estimates pose among keyframes
based bundle adjustment, which formulates an RGBD odometry
system. In addition, some works [7] use the sparse LiDAR
depth to enhance a direct visual SLAM system and iteratively
minimize photometric errors. In CamVox [15], the LIDAR points
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provide depth information associated with camera images to
enable the RGB-D mode of ORB-SLAM [16]. These methods
only use the depth information extracted from LiDAR points.
They cannot take full advantage of the environmental geometric
information from laser points in their LiDAR-camera fusion
framework.

B. Two-Stage Loosely-Coupled Fusion Method

Recently, some works have proposed loosely-coupled fusion
methods as they optimize robot pose using the data from the
camera and LiDAR in different stages. One typical work [9]
starts with LIDAR-enhanced RGBD odometry to estimate the
ego-motion and then uses lidar odometry to refine motion esti-
mates and remove distortion. DV-LOAM [10] is a direct vision
LiDAR fusion SLAM framework that first adopts a two-staged
direct visual odometry to estimate the accurate pose efficiently.
Then, the LIDAR mapping module is utilized to refine the pose of
the keyframe. The limitation of these methods is that different
sensor measurements are not jointly used in the optimization
process. And the more recent approaches rarely adopt this kind
of fusion framework.

C. Tightly-Coupled Fusion Method Based on Filter or Graph
Optimization

Many tightly-coupled filter based fusion method includes
stereo camera, laser, and IMU methods. They usually use EKF
(Extended Kalman Filter), or MSCKF (Multi-State Constraint
Kalman Filter) for pose estimation, which is fast and need
low computational cost, but are sensitive to time synchroniza-
tion [17]. LIC-fusion [18], [19] fuses the LiDAR odometry
and visual-inertial odometry tightly within a Multi-State Con-
strained Kalman Filter MSCKF) framework. To further enhance
the robustness of the LiDAR scan matching, R3LIVE++ [11]
is a tightly-coupled LiDAR-visual-inertial fused SLAM work,
which achieves an accurate state estimation by extracting LIDAR
and image features and then includes re-projection error within
the Iterated Error State Kalman Filter framework.

The graph optimization based methods adopt local maps or
sliding windows to reduce the effect of time synchronization.
In addition, they optimize history poses and achieve real-time
performance with bundle adjustment. LVI-SAM [12] fuses a
visual-inertial system and a LiDAR-inertial system in a factor
graph [20]. In these methods, point cloud features and vision
features are not used jointly in the optimization of pose estima-
tion. Thus, they cannot take full advantage of the complementary
properties between LiDAR and the camera.

Different from the above methods, our method is a tightly
coupled LiDAR-camera fused odometry and mapping for dense
colored point clouds. We fuse the color feature and geometric
feature in the optimization formulation directly. In this way,
we reduce the computation burden and achieve state-of-the-art
performance.

III. METHODS

In this section, the proposed method is introduced in detail.
The overview of our method is shown in Fig. 2, which mainly
consists of a feature extraction module, an odometry estimation
module, and a mapping module. We first introduce the extrac-
tion of geometric features and RGB color features. Then, we
show the objective formulation and optimization process of the
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Fig. 2. Overview of the architecture of our proposed method.
fused odometry estimation. Finally, we present the method of
probability map construction.

A. Geometric Feature Extraction

A solid-state LIDAR usually has higher resolution and higher
update frequency compared to mechanical LiDAR [13]. Reg-
istering the raw point clouds can be a heavy computational
burden. Traditional methods such as LOAM [3] usually leverage
edge and planar matching. As the edge is the intersection of
planes, the edge feature cannot provide additional constraints for
optimization. Many other works [21], [22], [23] adopt this idea
in their framework and achieve high performance. We conduct
voxel filtering on the point cloud in advance for more robust
feature extraction. Also, the point cloud is downsampled to
reduce the computation.

In our odometry system, we use point-to-plane objectives
to construct geometric constraints. The plane formulation in
3D space is ax + by + cz+d =0, and when d # 0 can be
formulated as ax + by + cz + 1 = 0, the normal vector is n =
(a, b, c¢). For a point from the source cloud, find n nearest points
in the target point cloud and extract a plane. For n points, we
have:

ary +by; +cz1+1=0
axe +bys +czo+1=0

axy + by, +cz, +1=0 (1)

We solve a, b, c using QR decomposition. And we investigate
the distance of the plane and sampled point to validate if it is a
planar feature point, which will finally be used for the geometric
objective optimization.

B. RGB Color Feature Extraction

For well-calibrated LiDAR and camera, we can get the correct
correspondence of the laser point and the pixel in the image.
Otherwise, our method cannot utilize color information and will
degenerate into a pure LiDAR-based method. For RGB color
information, we process 3 channels independently. For other
color spaces, such as HSV, the gradient computing is more
complex than that in RGB color space. Also, the RGB color
space is used in most visual SLAM works. So we adopt RGB
color space only. Using the Gaussian-Newton method, we need
to perform differential operations in color space to compute the
Jacobian matrix. However, suppose a color function C(p) that

Color constrain

L ————

can output the color of any existing point p in a point cloud.
Apparently, C(p) is not a continuous function and does not
even have an analytical formula. The first work to enable the
optimization is performing approximation [24].

For a point p from a point cloud, now we can get its plane
formula from Section III-A, and the normal vector is n,. We
have a nearby point q. The projection of q on the p-plane is

fc(q) =q—np(q—p) 'np 2)

We suppose Cp(q) is a continuous function that describe the
color of a point q near p, and it can be approximated as:

Cp(aq) ~ C(p) + g. (fc(a) — p) 3)

The g is defined as the gradient of color, and we have to
calculate it in the following part. We project the point to the
plane because the color is a kind of 2-D information. And (12)
shows the assumption that the color changes linearly in a small
area.

Then compute the color gradient g . We suppose the Cp(q)
perform well in p nearby set V. Then we can formulate an
optimization objective:

ge A arg H;inZ(C(p) +g! (fo (@) — p)—C(a)°
quNp

~ argminy((fe (a) — p) ‘g (C (@) -CP)) &)

qeNp

which is the form of quadratic programming without con-
straint [24]. Or it can be considered as a least squares problem,
whose formis L = Y, (A;x — b;)?, where

A;=(fc(a)-p)' b; =C(q)— C(p) (5

Now we can calculate the color gradient g and thus get the
continuous color function Cp(q). We investigate the L2 norm
of the color gradient gz to find the color variation area, which
is called RGB color feature extraction. The example result is
shown in the experiment section. And we maintain a submap
that contains color feature points specifically for the RGB color

objective optimization.

X = 8¢

C. The Point-to-Plane Objective in Odometry Estimation

Now we have the plane equation and normal vector n =
(a, b, c). Our objective is to determine the transformation 7T,
which transform the input pointp = (z,y, z) top’ = («/, ¢/, ).
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And p’ should be on the target plane. Then we formulate the
point-to-plane objective Eq = Y || rq ||3:

rg = fg (1T) = (Tp)'n +1
=) n+1=ar' +by +cz' +1 (6)

Calculating the derivative of the transformation T directly is
difficult. Here we use the left perturbation scheme and apply
increment on the Lie Group [13]. Note that using other methods,
such as quaternion, is equally effective.

Thus, let £ = [p,¢] = (a By xy2)T € s¢(3), and the trans-
formation matrix T' = exp(&").

Let
fo (p;T) =g(h) = (h)'n+1 @)
h(p) = Tp fc =goh ®)
According to the derivative rule for a composite function,
_Orc _Ofc _090h 09 _ v
Yo ="5¢ ~oc —ohoe  on " ®
oh _; _0Tp _ . (exp(¢") Tp—Tp)
o8 TP 9E s £
— | [Tp} X IS><3
B { 01x3  O1x3 (10)

Thus, we can get the final Jacobian matrix:

Jg=n'J,

an

Now it is sufficient to use Gaussian-Newton method to optimize
the T transformation using geometric features.

D. RGB Color Objective Construction and Jacobian
Computation in Odometry Estimation

Then we formulate the color objective function and compute
the Jacobian matrix. Recall the (12) that we have the continuous
color function. Suppose s is a point from the source point cloud.
s becomes q after 7" transformation. And p is in the target point
cloud and is the closest point of q. We define the transformation
function as follows:

q=1t(s)=Ts (12)
Then the color function for s is defined as:
H(s) = Cp(t(s)) ~ C(p) + 8¢ (fc(t(s)) —p)  (13)

Then we can define our color objective Ec = > || rc ||3,
rc = H(s) — C(s)
~ C(p) + g (fc(t(s)) — p) — C(s)
As H(s) = C,, o f¢ o t, compute the Jacobian matrix:

Orc O(H(s)—C(s)) O0H(s) 0Cy0fc ot
Je= = = = —

(14)

98 o€ T 0¢ T 9fc ot o€
(15)
8CJP_ T aﬁ_ _ T
Ofc =g, 5 =I-npn, (16)
/\ . pR—
3, ot _oTp _ . (exp(¢") Tp—Tp)

2875: ({95 £—0 f
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- [Tp] X I3><3
= 17
[ 01x3  O1x3 an
Then we have the final Jacobian matrix formula:
Joc=gi(I-npn})J, (18)

E. Final Optimization Formulation in Odometry Estimation

As we optimize the geometric objective and color objective
jointly, we have the overall objective formulation. The Jacobian
matrix of the joint objective also can be computed. Then, we
can use the Gaussian-Newton method to implement the opti-
mization. Note that the RGB channels are processed separately.
We have three color objectives and Jacobians of each channel,
and we use E¢ and J¢ to represent them all.

E =LcEqg + AcEc J=rgJa +2rcJc (19)

The odometry estimation uses the historical laser scan pi,
D2,..-sPk—1 to calculate the pose of sensor T' € SE(3) in global
coordinate. The scan-to-scan matching suffers from drift in the
long run as a single laser frame contains less environmental
information. Thus, we retain a color map and planar map sep-
arately for scan-to-map matching to improve the estimation
accuracy. And the sliding window technique is used to ease the
computational burden.

FE Mapping

We adopt the mapping module from SSL-SLAM [13]. To
avoid a too-large global map, we select keyframes based on the
displacement of rotation or translation. And we only add the
keyframes to the global map. Note that in the optimization pro-
cess, we use extracted feature point to reduce the computational
cost. However, in the mapping process, we use the origin dense
RGB-colored point clouds to build the dense global map.

In addition, we construct an octree to increase the search
efficiency. For each cell in octree, we use P(n | z1.¢) to present
the probability of the existence of an object [13]:

1-P(n|z) 1= P(n|z141) P(n) 17"

P(n|z) Pn|zie-1) 1-P(n)
where z; is the new measurement, z1.;_1 is the old measurements

from keyframes, and P(n) is the prior probability, which is set
to 0.5 if it is not known.

P(nlz) = [1+ (20)

IV. EXPERIMENTS

A. Experiment Setup

In this section, we perform extensive experiments to evalu-
ate the proposed method. Our method is evaluated in a room
equipped with a motion capture system called NOKOV. It is
implemented on a professional and powerful Unmanned Ground
Vehicle (UGV) designed by AGILEX company with a size of
930%699%x349 (mm), which is widely used in industrial and
civil applications. As shown in Fig. 3(b), an Intel RealSense
L515 sensor is mounted on a UGV via an aluminum frame. The
Intel Realsense L515 is a small FoV solid-state LiDAR with a
70 x 55 viewing angle and 30 Hz update frequency. To further
illustrate the robustness, we evaluate the proposed method in
handheld mode as shown in Fig. 3(a). The algorithm is coded in
C++ and implemented on Ubuntu 20.04 and ROS Noetic [25].
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1 Intel RealSense
fL515

Fig. 3.  Our handheld device and UGV platform. (a) The Intel RealSense
L515 sensor in handheld settings. (b) The UGV platform mounted with an Intel
RealSense L515 sensor.

color feature
points
extraction

3

Fig. 4. Extraction of RGB color feature points whose color information
changes dramatically.

For the experiment on the UGV and handheld device, a desktop
PC computation platform is used, which has an AMD Ryzen 9
7900X 12-Core Processor CPU.

B. Result of RGB Color Feature Extraction

Computing all the color constraints is computationally inef-
ficient as the point cloud is dense. Furthermore, the effective
color constraint only takes place where the color variation is
obvious. As is described in III. C, the way to measure the color
variation is to compute the color gradient g . We investigate the
L2 norm of the color gradient to extract the color feature. The
feature extraction result can be described in Fig. 4. It is evident
that points with slight color variation are removed, and points
with significant color variation are retained. In this way, a lot
of computational resources can be reserved in the optimization
process.

C. Results on Public Benchmark Dataset

In this subsection, we perform experiments on the data from
SSL-SLAM [13], where a robot is manually controlled to move
around a room of size 4 m x 4 m and finally return to its origin
as shown in SSL-SLAM [13]. The length of the path is 12.18 m.
And the sensor used to generate the data is Intel RealSense L515.
Since our method is odometry with no loop closure, we remove
the loop closure module from SSL-SLAM and ORB-SLAM to
make a fair comparison. Note that ORB-SLAM supports the
RGBD input. So, we generate depth maps from the point cloud
to enable ORB-SLAM in our experiments.

2499

Fig. 5. Comparison on public benchmark dataset. The upleft is the result of
SSL-SLAM. The upright is the result of ORB-SLAM3. The bottom is the result
of our method.

TABLE I
END-TO-END POSE ERROR ON THE BENCHMARK DATASET

Method te ty ty Tz Ty Tz
SSL-SLAM -0.073  0.053 -0.18  -0.027  -0.020  0.11
ORB-SLAM3  0.143 0273  0.108 1.589  -0.151  0.160

ours 0.016  -0.014 -0.051  0.008 -0.007 0.021

The localization and mapping results are shown in Fig. 5.
Note that in this dataset, no localization ground truth is provided.
We present the end-to-end translation error as the performance
criteria shown in Table 1. It is obvious that our method achieves
the best localization and mapping results. Compared with SSL-
SLAM, we have color information aided. For ORB-SLAM3,
providing depth for visual features means the other useful ge-
ometry information is wasted. So, the result of ORB-SLAM3 is
even worse.

D. Results on Private Dataset of UGV Platform

We compare our method with the localization ground truth
to evaluate performance. Since the Intel RealSense L515 will
interfere with capture systems such as VICON or NOKOV, we
cannot use them to provide ground truth. We use an AprilTag [26]
localization system with TagSLAM [27] to produce the ground
truth. The accuracy of the AprilTag localization system is vali-
dated in the APPENDIX section. We roughly plan the trajectory
around the room and manually control the UGV to move along
the trajectory, as shown in Fig. 6. The result comparison is shown
in Fig. 7. The length of the path is 13.49 m. SSL-SLAM cannot
work properly when the sensor is closely facing the wall; thus,
the localization result is not fitted with the ground truth, and the
mapping result is obviously not correct, as shown in Fig. 6. The
absolute pose error (APE) of translation in Table IT further proves
that our method outperforms other methods, which is only
0.03 m. Specifically, we introduce the result of ORB-SLAM3
with IMU and our works with only one combined color channel,
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Fig.6. Localization and mapping results on UGV. The AprilTags are only used
to generate ground truth. (a) The localization and mapping result of SSL-SLAM.
(b) The result of ORB-SLAM3. (¢) The result of our method.
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Fig. 7.  Localization result comparison on our UGV dataset.
TABLE II
APE OF TRANSLATION ON OUR PRIVATE DATASET

Method max mean min rmse std
SSL-SLAM 0.790 0419 0.245 0435 0.117
ORB-SLAM3 0.103  0.038  0.009 0.043  0.020
ORB-SLAM3 with IMU  0.102 0.036 0.009 0.041 0.018
Ours 1-channel 0.103  0.032 0.002 0.037 0.020
Ours 3-channel 0.095 0.030 0.003 0.045 0.018

showing that our method can outperform the IMU-based method
and our RGB color fused strategy is better than only one channel.

What is counter-intuitive is that ORB-SLAM3 achieves the
best visual effect while our proposed method achieves the best
localization performance. One reason is that the ORB-SLAM3
falls into the local minimum, where the visual effect is better,
but the z-axis (depth-axis) pose estimation is worse. As shown
in Fig. 8, the planes of ORB-SLAM3 mapping are thicker and
have more noise. Also, the noise in the visual feature points
and depth map association process can cause deviation in the
recovered scale of motion. All of those above can lead to the
loss of accuracy in global localization.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 3, MARCH 2024

@ &l

Fig. 8. Mapping details of (a) ORB-SLAM3 method. (b) our method.

TABLE III
APE OF TRANSLATION ON THE DATA FROM HANDHELD DEVICE

Method te ty ts t
SSL-SLAM -0.33  -0.036 0.10 0.35
ORB-SLAM3 (failed) -0.68 -1.52 -0.75 1.82
ours -0.19  0.082 0.051 0.21

E. Performance on Handheld Device

The proposed method is also implemented on a handheld
device to demonstrate robustness further. Compared to the im-
plementation on the UGV robot, the handheld device suffers
from vibration and large viewing angle change, which can cause
tracking loss and localization failure [13]. In the experiment,
we roughly planned the trajectory around the room in a library.
Then, we hold the Intel RealSense L515 along the path at normal
walking speed. The localization and mapping result is shown
in Fig. 10, with the trajectory plotted in green. As shown in
Fig. 10 and Table III, the end-to-end translation error of our
method is significantly smaller than other methods. Note that
the length of the path is 21.289 m. ORB-SLAM3 failed because
the lighting in this scene is very complex. ORB-SLAM3 relies
on the visual feature tracking and can not make full use of the
geometric information.

F. Performance in Large Scale Scenes

To further demonstrate the performance of our method in
large-scale scenes, the proposed method is also evaluated in a
library of a long movement. The data is publicly available from
SSL-SLAM [13]. It is difficult to obtain the ground truth of lo-
calization in large indoor scenes. In this experiment, we can only
qualitatively prove our performance in large-scale localization
and mapping in Fig. 9 as the mapping results maintain the correct
geometrical structures in the scenes.

G. Results Under Varying Lighting Conditions

We can use lighting variation conditions as the visual degra-
dation scene to test our method as it has a fatal effect on visual
odometry. The lighting conditions are simulated by the image
processing method [28] as shown at the top of Fig. 11. The
localization and mapping result of our approach is shown at the
bottom of Fig. 11. Note that the data is a part of Section IV-D.
Our method achieves accurate localization results with the APE
0f 0.029 m. ORB-SLAM3 completely fails in this scenario as the
visual feature points cannot be extracted and tracked normally
in the lighting variation conditions. Our LiDAR-camera fused
odometry can utilize geometric structures from laser points to
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Fig. 9.

Pabe_link

Fig. 10.  Comparison of methods on handheld device. The upleft is the result
of SSL-SLAM. The upright is the result of ORB-SLAM3. The bottom is the
result of our method.

Fig. 11.

Localization and mapping result in varying lighting conditions.

produce accurate results when the vision information is not
reliable.

H. Results in Pure LIDAR Degenerated Scene

The most innovative of our work is that we fuse the color
information from the camera to promote the result of LiDAR
SLAM. Here, we perform an ablation study to show that the
color information helps to promote the performance in our
work, especially in a challenging LiDAR degenerated scene.
The experiment setup and results are shown in Fig. 12. Our
experimental environment is a white wall plane with black
rectangle markers. With only this wall plane, the pure LiDAR
SLAM will fail because the geometric constraint is insufficient.
The results show that our method works well in this degenerate
situation. Correct localization and mapping results can be ob-
tained even under complex motions. This demonstrates that in

Localization and mapping results of our method in large-scale library scenes.

(©) (d

Fig. 12.  Ablation study in pure LiDAR Degenerated scenes. (a) The experi-
ment setup with a white wall and some markers. (b) The localization and mapping
result of SSL-SLAM. (c) The result of our method without color information.
(d) The result of our method with color information.

LiDAR degraded scenes our LIDAR-camera fusion method can
utilize vision information to produce accurate result.

V. CONCLUSION

In this letter, we present a LiDAR-camera fused SLAM
framework for the dense colored point cloud. Our framework
mainly consists of a feature extraction module, an odometry
estimation module, and a probability map construction module.
Extensive experiments have been conducted to validate our
proposed method, including experiments on the UGV platform,
the handheld mobile device, and the public datasets. The exper-
iments demonstrate the robustness and accuracy of our method
in localization and mapping results. The fusion of LiDAR and
camera is effective as our method successfully maintains high
performance in challenging environments.

APPENDIX

As we mentioned before, Intel RealSense L515 LiDAR and
the motion capture system NOKOV have the same laser wave-
length. They cannot work together as they will interfere with
each other. So, we use AprilTag and TagSLAM to generate the
localization ground truth in our experiment. Here, we should
validate the accuracy of the AprilTag localization system. In this
way, we can prove that using the AprilTag localization system
as the ground truth is reasonable [29]. Shown in Fig. 13 is the
experimental site where the AprilTag markers are installed. The
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Fig.

and

=== NOKOV
—— TagSLAM

13.
AprilTag detection result in TagSLAM. The bottom left is the pose of AprilTags

Upper is the our experiment site with AprilTags. The middle is the

the localization result from TagSLAM. The bottom right is the trajectory

comparison of TagSLAM and NOKOV.

TABLE IV
APE OF TRANSLATION PART ON APRILTAG LOCALIZATION SYSTEM

Method max mean  median min rmse std
TagSLAM  0.046  0.018 0.017 0.0017  0.02 0.01
TABLE V
MEAN APE OF DIFFERENT MEASUREMENT
Measurement 1 2 3 4 5 average
Mean APE 0.021 0.018 0.024 0.017 0.026 0.021

Apriltags will be detected using the camera on Intel RealSense
L515 and produce the camera pose.
One typical result is shown in Fig. 13. It can be seen that

the

trajectory of the TagSLAM and NOKOV fit well. The total

length of the path is 10.05 m. Note that the accuracy of the
NOKOV reaches the sub-millimeter level. With the NOKOV as

the

reference, the APE of the TagSLAM is shown in Table IV.

The mean error is 0.018 m. We repeat this experiment and get the
average APE in Table V, whichis 0.021 m. Thus, we validate that

the

AprilTag localization system can provide reasonable ground

truth.
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