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Abstract In this paper, the authors study the cooperative target-fencing problem for n-dimensional

systems and a target with a general trajectory. Without using the velocity of the vehicles, a position

feedback control law is proposed to fence the general target into the convex hull formed by the vehicles.

Specifically, the dynamics of each vehicle is described by a double-integrator system. Two potential

functions are designed to guarantee connectivity preservation of the communication network and col-

lision avoidance among the vehicles. The proposed approach can deal with a target whose trajectory

is any twice continuously differentiable function of time. The effectiveness of the result is verified by a

numerical example.

Keywords Multi-agent systems, networked systems, target fencing.

1 Introduction

In recent years, a variety of cooperative control problems for multiple vehicles have been in-
vestigated due to their potential in practical applications, such as rescue[1, 2], transportation[3],
surveillance, and reconnaissance[4, 5]. To make a group of vehicles move with a circular mo-
tion specified by a given radius, the circular formation problem was investigated in [6]. The
circumnavigation problem[7, 8], which is also referred to as the target-capturing problem[9] and
the target circular problem[10], was studied to drive multiple vehicles to form a circular motion
centering at a target. Recently, the cooperative target-fencing problem[11] was studied to make
a group of vehicles asymptotically fence a target into the convex hull formed by their positions.
Unlike the circular formation and the circumnavigation problems, which require predefined radii
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in their control designs, the cooperative target-fencing problem does not require such a prede-
fined parameter. Given the variety and complexity of both the dynamics of the robots and their
operating environments, designing appropriate radii can itself be challenging. In this sense, the
cooperative target-fencing problem is more practical than the circular formation problem and
the circumnavigation problem. Furthermore, in the circumnavigation problem, the target may
not be in the convex hull formed by the vehicles, even in the desired configuration. These
limitations give rise to the investigation of the cooperative target-fencing problem.

In the past few years, there have been some studies on the cooperative target-fencing prob-
lem. In [11], the problem was investigated for a static target and a group of single integrators.
Later, the cooperative target-fencing problem for a target moving with an unknown velocity
and multiple single integrators was studied in [12]. In [13], a control law was proposed to fence
a target with a constant velocity by multiple double integrators without using the velocity
measurements of the vehicles. A label-free control law was proposed in [14] for a group of
double-integrator systems to fence a target with a constant acceleration. To handle a more
general target, [15] further studied the cooperative target-fencing problem for a target whose
acceleration can be any uniformly continuous bounded function with respect to time. However,
it was assumed in [15] that all the vehicles can access the position of the target, and the ve-
hicles have exponentially convergent estimates of both the velocity and the acceleration of the
target. It is noted that the existing results on the cooperative target-fencing problem in the
aforementioned literature only considered two-dimensional systems and cannot handle external
disturbances. Since most practical robotic systems are high-dimensional and are subject to
external disturbances, it is desirable to extend the solvability of the cooperative target-fencing
problem to accommodate n-dimensional systems subject to external disturbances.

In this paper, we will further investigate the cooperative target-fencing problem for n-
dimensional systems subject to a class of external disturbances. Our approach can handle a
general target whose trajectory can be any twice continuously differentiable function of time.
Furthermore, it guarantees connectivity preservation and collision avoidance simultaneously.
The main contributions of this paper are summarized as follows:

1) We establish a control law for a group of double integrators to asymptotically fence a
general target whose trajectory can be any twice continuously differentiable function.

2) Our result does not rely on the velocity measurements of the vehicles.
3) Our approach guarantees the connectivity preservation of the state-dependent communi-

cation network and the inter-vehicle collision avoidance, simultaneously.
4) Our control law applies to n-dimensional systems and can fully reject a large class of

external disturbances.
The rest of the paper is organized as follows: In Section 2, we give some preliminaries and

describe the cooperative target-fencing problem. In Section 3, we present our main result. An
example is provided in Section 4 to illustrate our approach. The paper is wrapped up with
some remarks in Section 5. A preliminary version of this paper was reported in [16].
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2 Problem Formulation

Let us consider that a general target whose position trajectory q0(t) : [0,∞) → R
n is any

twice continuously differentiable function of time t.
The dynamics of the N vehicles is given by

q̈i = ui + di, i = 1, · · · , N, (1)

where qi, ui, di ∈ R
n denote the position, input, and external disturbance for the i-th vehicle,

respectively.
It is assumed that the external disturbance di, i = 1, · · · , N , is generated by the linear

exosystem as follows:

ω̇i = Siωi, di = Diωi, i = 1, · · · , N, (2)

where ωi ∈ R
si , Si ∈ R

si×si , and Di ∈ R
n×si are constant matrices. Without loss of generality,

we assume that (Di, Si) is detectable[17].
The system composed of (1) and the target can be viewed as a multi-agent system of

N + 1 agents with the target as the virtual leader and the N subsystems of (1) as the N

followers. Given the multi-agent system composed of the target and (1), we define a digraph
G(t) = (V , E(t)), where V = {0, 1, · · · , N} is the node set with node 0 associated with the target
and node i, i = 1, · · · , N , associated with the i-th vehicle of (1), and E(t) ⊆ V × V is the edge
set. Let G(t) = (V , E(t)) be a subgraph of G(t), where V = {1, · · · , N} and E(t) ⊆ V × V . For
i = 1, · · · , N , let N i(t) denote the neighbor set of the i-th vehicle at time t. The neighbor set
of node i with respect to V is defined as Ni(t) = N i(t)

⋂V .
Taking into account the limited communication range of the onboard sensors, the com-

munication link between a pair of agents exists if the distance between them is less than the
maximum sensing range r ∈ (0,+∞). To incorporate the effect of hysteresis, we further intro-
duce a parameter ε ∈ (0, r). On the other hand, to ensure safety and prevent collisions among
the vehicles, we define another parameter r ∈ (0, r−ε), which is the minimum distance between
two vehicles. These parameters are illustrated in Figure 1.

Figure 1 Illustration of design parameters of the i-th vehicle
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Then, given any r > 0 and ε ∈ (0, r), for any t ≥ 0, the edge set E(t) of the state-dependent
communication graph G(t) is defined as follows:

1) E(0) = {(i, j) | ‖qi(0) − qj(0)‖ < (r − ε), i, j = 1, · · · , N};
2) If ‖qi(t) − qj(t)‖ ≥ r, then (i, j) /∈ E(t);
3) For i, j = 1, · · · , N , if (i, j) /∈ E(t−) and ‖qi(t) − qj(t)‖ < (r − ε), then (i, j) ∈ E(t);
4) For i, j = 1, · · · , N , if (i, j) ∈ E(t−) and ‖qi(t) − qj(t)‖ < r, then (i, j) ∈ E(t).
For any t ≥ 0, the edge set E(t) of G(t) is such that
1) E(t) ⊆ E(t);
2) For i = 1, · · · , N , (0, i) ∈ E(t) if and only if the i-th vehicle can access the velocity of the

target;
3) For i = 1, · · · , N , (i, 0) /∈ E(t).
For any t ≥ 0, the convex hull formed by the N vehicles can be defined as in [11] as follows:

co(q(t)) =

{
N∑

i=1

λiqi(t) | λi ≥ 0, i ∈ V , and
N∑

i−1

λi = 1

}

, (3)

where q(t) = col (q1(t), · · · , qN (t)).
For any t ≥ 0, the distance from the target q0(t) to the convex hull co(q(t)) is defined as

Pq0(t)(q(t)) = min
s∈co(q(t))

‖q0(t) − s‖ . (4)

Remark 1 It is noted that q0(t) ∈ co(q(t)) if and only if Pq0(t)(q(t)) = 0

We consider a control law of the following abstract form:

ui = li
(
q̈0, qi − q0, qi − qj , ζi, ζj , j ∈ N i(t)

)
,

ζ̇i = gi

(
qi, ζi, ζj , j ∈ N i(t)

)
, i = 1, · · · , N,

(5)

where ζ0 = q̇0, and, for i = 1, · · · , N , li(·) and gi(·) are some sufficiently smooth functions,
ζi ∈ R

(2n+si+2n) is the estimate of col(qi, q̇i, ωi).

Remark 2 The control law of the i-th vehicle only makes use of the position information
of its neighboring vehicles and itself for feedback. As a result, the control law (5) does not rely
on the velocity measurements of the vehicles.

The cooperative general target-fencing problem with connectivity preservation and collision
avoidance can be described as follows:

Problem 1 Consider the multi-agent system composed of (1), (2), and a given target
q0(t). Given any r > 0, ε ∈ (0, r), and r ∈ (0, r − ε), design a control law of the form (5) such
that, for any initial conditions ωi(0), qi(0), q̇i(0), ζi(0), i = 1, · · · , N , that make G(0) connected,
the solution of the closed-loop system satisfies the following properties:

1) G(t) is connected for all t ≥ 0;
2) ‖qi − qj‖ > r for all i 	= j, i, j = 1, · · · , N , and t ≥ 0;
3) limt→∞(q̇i(t) − q̇0(t)) = 0, i = 1, · · · , N ;
4) limt→∞ Pq0(t)(q(t)) = 0.
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We use the following assumptions to guarantee the solvability of Problem 1.

Assumption 1 The velocity q̇0(t) of the target can be accessed by at least one of the
vehicles for all t ≥ 0.

Assumption 2 For all t ≥ 0, the i-th vehicle can access the relative position between the
target and itself, which is qi(t) − q0(t). Moreover, all the vehicles can access the acceleration
q̈0(t) of the target.

Remark 3 Problem 1 considers both connectivity preservation and collision avoidance
in cooperative target fencing. These two requirements have been considered in some other
cooperative control problems, such as the formation control problem[18, 19] and the flocking
control problem[20]. However, they have not been addressed simultaneously in the cooperative
target-fencing problem[11–15].

Remark 4 Problem 1 can be viewed as a generalization of the cooperative target-fencing
problem investigated previously in [11–15] from two-dimensional vehicles to n-dimensional ve-
hicles.

3 Solvability of the Problem

As in [21], we utilize the output regulation theory to deal with external disturbances. To
this end, we rewrite the system (1) into the following form:

ẋi = Axi +Bui + Eiωi, (6a)

yi = Cxi, i = 1, · · · , N, (6b)

where for the i-th vehicle, i = 1, · · · , N , the state is denoted as xi = col (qi, pi) with pi = q̇i,
and yi ∈ R

n is the measurement output, and

A =

⎡

⎣
0 1

0 0

⎤

⎦⊗ In, B =

⎡

⎣
0

1

⎤

⎦⊗ In, Ei =

⎡

⎣
0n×si

Di

⎤

⎦ , C =
[
1 0

]
⊗ In.

Remark 5 Define Âi =
[

A Ei

0si×2n Si

]
and Ĉi = [ C 0n×si ]. It can be assumed, without

loss of generality, that the pair (Ĉi, Âi) is detectable since the pair (C,A) is observable[17].
Therefore, a gain matrix Li = col(Li1, Li2) exists, where Li1 ∈ R

2n×n and Li2 ∈ R
si×n, such

that Âi + LiĈi is Hurwitz. Additionally, there exists a symmetric and positive definite matrix
P i that satisfies (Âi + LiĈi)TP i + P i(Âi + LiĈi) = −I2n+si .

We consider the following coordinate transformations:

xi =

⎡

⎣
qi

pi

⎤

⎦ = xi − x0, (7a)

ui = ui − q̈0 +Diωi, i = 1, · · · , N, (7b)
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where x0 = col (q0, p0) with p0 = q̇0. Then, the system (6) is transformed into the following
form:

q̇i = pi, ṗi = ui, i = 1, · · · , N. (8)

Remark 6 With the coordinate transformations (7), the original system (6) is trans-
formed into a double-integrator system without disturbance, as given in (8).

To guarantee the connectivity of the communication graph, we define the potential function
ψ(s) : [0, r) → [ 1

2r2 ,∞) in the following form:

ψ(s) =
1

2 (r2 − s2)
, 0 ≤ s < r. (9)

We note that function ψ(s) is nonnegative over [0, r), and its derivative is given as

dψ(s)
ds

=
s

(r2 − s2)2
, (10)

which is positive over (0, r).
Additionally, let us define the potential function ρ(s) : (r, r) → ( 1

2(r2−r2)2
,∞) for collision

avoidance as follows:

ρ(s) =
1

2 (s2 − r2)2
, r < s < r. (11)

Here, the function ρ(s) is nonnegative over (r, r) with a derivative given as

dρ(s)
ds

= − 2s

(s2 − r2)3
, (12)

which is negative for all s ∈ (r, r).
The position feedback control law is given as follows:

ui = − (qi − q0) − α
∑

j∈Ni(t)

aij(t)∇qi
ψ
(∥
∥qi − qj

∥
∥
)−

∑

j∈Ni(t)

aij(t)∇qi
ρ
(∥
∥qi − qj

∥
∥
)

−
∑

j∈N i(t)

aij(t) (ξ2i − ξ2j) + q̈0 −Diω̂i, (13a)

ξ̇i = Aξi +Bui + Eiŵi + Li1 (Cξi − yi) , (13b)
˙̂wi = Siŵi + Li2 (Cξi − yi) , i = 1, · · · , N, (13c)

where, for i = 1, · · · , N , ŵi ∈ R
si , ξi = col (ξ1i, ξ2i) with ξ1i ∈ R

n and ξ2i ∈ R
n; ξ20 = p0; Li is

as defined in Remark 5.

Remark 7 It can be verified that (13) is in the form of (5) with ζi = col(ξi, ω̂i), i =
1, · · · , N .

Remark 8 The cooperative target-fencing problem was studied under the assumption
that the acceleration of the target is uniformly continuous and bounded in [15]. In contrast, we
relax this assumption by only requiring the trajectory of the target to be twice continuously
differentiable.
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Let ξi = ξi − xi, ωi = ω̂i − ωi, i = 1, · · · , N . Then, the closed-loop system composed of (8)
and (13) is given as

q̇i = pi, (14a)

ṗi = −qi − α
∑

j∈Ni(t)

aij(t)∇qi
ψ
(∥
∥qi − qj

∥
∥
)−

∑

j∈Ni(t)

aij(t)∇qi
ρ
(∥
∥qi − qj

∥
∥
)−Diwi

−
∑

j∈N i(t)

aij(t)
(
pi − pj

)−
⎛

⎝
∑

j∈Ni(t)

aij(t)
(
ξ2i − ξ2j

)
+ ai0(t)ξ2i

⎞

⎠ , (14b)

⎡

⎣
ξ̇i

ẇi

⎤

⎦ =
(
Âi + LiĈi

)
⎡

⎣
ξi

wi

⎤

⎦ , i = 1, · · · , N. (14c)

Next, we define some matrices associated with G(t). For t ≥ 0, we let the Laplacian matrix
of the graph G(t) be as follows:

L(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1(t) −a12(t) · · · −a1N (t)

−a21(t) a2(t) · · · −a2N (t)
...

...
. . .

...

−aN1(t) −aN2(t) · · · aN (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)

where ai(t) =
∑N

j=1,j �=i aij(t) for i = 1, · · · , N . Let H(t) = L(t) + Δ(t) where Δ(t) =
diag(a10(t), · · · , aN0(t)), and define

P (t) =

⎡

⎣
H(t) ⊗ In

Λ(t)
2

ΛT(t)
2 θIι

⎤

⎦ , (16)

where Λ(t) = [ 0Nn×Nn H(t)⊗In D ] withD = block diag(D1, · · · , DN) and ι = 2Nn+s1+· · ·+sN ,
and θ is a positive real number such that

θ > λmax

(
ΛT(t)

2
(
H−1(t) ⊗ In

) Λ(t)
2

)

, ∀t ≥ 0. (17)

Remark 9 By Lemma 1 of [22], for all t ≥ 0, H(t) is positive definite if G(t) is connected.
Given that H(t) is uniquely determined by G(t), and considering that there are only a finite
number of connected graphs with N + 1 nodes, such a θ that satisfies (17) always exists if G(t)
remains connected for all t ≥ 0.

We can now summarize our main result in the following theorem.

Theorem 1 Under Assumptions 1 and 2, Problem 1 is solvable by the position feedback
control law (13).

Proof The proof consists of the following five parts.
Part I In this part, let us determine the parameters for the control law (13).
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For i = 1, · · · , N , let η = col (η1, · · · , ηN ), q = col (q1, · · · , qN ), p = col (p1, · · · , pN ),
ξ = col

(
ξ1, · · · , ξN

)
, and μi = col

(
ξi, ωi

)
. We also define μ = col (μ1, · · · , μN ) and μ =

col
(
ξ11, · · · , ξ1N , ξ21, · · · , ξ2N , w1, · · · , wN

)
= Tμ with

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

In 0n×n 0n×s1 · · · 0n×n 0n×n 0n×sN

...
...

...
. . .

...
...

...

0n×n 0n×n 0n×s1 · · · In 0n×n 0n×sN

0n×n In 0n×s1 · · · 0n×n 0n×n 0n×sN

...
...

...
. . .

...
...

...

0n×n 0n×n 0n×s1 · · · 0n×n In 0n×sN

0s1×n 0s1×n Is1 · · · 0s1×n 0s1×n 0s1×sN

...
...

...
. . .

...
...

...

0sN×n 0sN×n 0sN×s1 · · · 0sN×n 0sN×n IsN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, T−1 is orthogonal with (T−1)TT−1 = Iι.
Given r > 0, ε ∈ (0, r), by the proof of Lemma 3.1 in [21], it can be shown that, if θ

satisfies (17) for all t ≥ 0, then P (t) is positive definite for all possible connected G(t) with
N + 1 nodes and all t ≥ 0. We fix such a θ.

Part II Next, we show that under Assumption 1, the graph G(t) is connected for all t ≥ 0.
Considering the energy function as follows:

V (q, p, μ, η, t) =
1
2

N∑

i=1

⎛

⎝α
∑

j∈Ni(t)

aij(t)ψ
(∥
∥qi − qj

∥
∥
)

+
∑

j∈Ni(t)

aij(t)ρ
(∥
∥qi − qj

∥
∥
)

+ qTi qi + pT
i piη

T
i ηi + 2θμT

i P iμi

⎞

⎠ , (18)

where P i, i = 1, · · · , N , are as defined in Remark 5.
The time derivative of (18) along the trajectories of the closed-loop system (14) is as follows:

V̇ =
1
2

N∑

i=1

⎛

⎝α
∑

j∈Ni(t)

ψ̇
(∥
∥qi − qj

∥
∥
)

+
∑

j∈Ni(t)

ρ̇
(∥
∥qi − qj

∥
∥
)

+2q̇
T
i qi + 2ṗ

T
i pi + 2θ

(
μ̇T

i P iμi + μT
i P iμ̇i

)
⎞

⎠

= −
N∑

i=1

pTi

⎛

⎝
∑

j∈Ni(t)

aij(t)
(
ξ2i − ξ2j

)
+ ai0(t)ξ2i

⎞

⎠

−
N∑

i=1

pTi

⎛

⎝
∑

j∈N i(t)

aij(t)
(
pi − pj

)
+Diwi

⎞

⎠− θ
N∑

i=1

μT
i μi. (19)
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We rewrite (19) into the compact form with the notation of Kronecker product as follows:

V̇ = −pT (H(t) ⊗ In) p− pTΛ(t)μ− θμT(T−1)TT−1μ

= −
⎡

⎣
p

μ

⎤

⎦

T ⎡

⎣
H(t) ⊗ In

Λ(t)
2

ΛT(t)
2 θIι

⎤

⎦

⎡

⎣
p

μ

⎤

⎦

= −
⎡

⎣
p

μ

⎤

⎦

T

P (t)

⎡

⎣
p

μ

⎤

⎦ . (20)

In the following discussion, we show that under the control law (13), the graph G(t) is
connected for all t ≥ 0.

For simplicity, we first let V (t) = V (q(t), p(t), μ(t), t). It is obvious that there exists a
0 < t1 ≤ ∞ such that G(t) = G(t1) for all t ∈ [0, t1) by the continuity of the solution of (14).

First we consider the case that t1 = ∞, that is, G(t) = G(0) for all t ≥ 0. Since the graph
is initially connected, G(t) remains connected for all t ≥ 0. Additionally, G(t) is also connected
for all t ≥ 0 under Assumption 1. Hence, given the θ we have chosen previously, for all t ≥ 0,
P (t) = P (0) is positive definite. Therefore,

V (t) ≤ V (0), ∀t ≥ 0. (21)

Next, we consider the case that t1 < ∞, that is, G(t) = G(0) does not hold for all t ≥ 0.
Without loss of generality, we assume t1 is such that

G(t) = G(0), t ∈ [0, t1),

G(t1) 	= G(0).
(22)

Under Assumption 1, G(0) is also connected with a connected G(0), which means P (t) = P (0)
is positive definite for all t ∈ [0, t1) with the θ we chose. According to (20), there exists a
W1 ∈ (0,∞) which satisfies

V (t) ≤ V (0) ≤W1, ∀t ∈ [0, t1). (23)

In what follows, we prove that G(t1) ⊃ G(0). Let us assume to the contrary that there exists
some edge (i, j) such that (i, j) ∈ E(0) and (i, j) /∈ E(t1). In this case, limt→t−1

‖qi(t) − qj(t)‖ =
r. Therefore, limt→t−1

V (t) = ∞, which contradicts (23). Thus, G(t1) ⊃ G(0) holds, which
further implies that G(t1) is also connected.

If there exists a t2 > t1 such that

G(t) = G(t1), t ∈ [t1, t2),

G(t2) 	= G(t1),
(24)

then we claim G(t2) ⊃ G(t1).
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We note that for all t1 ≤ t < t2 and the θ we have chosen, P (t) = P (t1) is positive definite.
Note that

ψ(r − ε) =
1

2
(
r2 − (r − ε)2

) <∞. (25)

Given the existence of a t1 satisfies (22) and the fact that G(t1) ⊃ G(0), there exists at least
one edge (i, j) such that (i, j) ∈ E(t1) and (i, j) /∈ E(0). We assume without loss of generality
that there exists τ edges (i1, j1), · · · , (iτ , jτ ) such that for any k ∈ {1, · · · , τ}, it holds that
(ik, jk) ∈ E(t1) and (ik, jk) /∈ E(0). Here, τ is a positive integer. Then, according to (23)
and (25), there exists a W2 ∈ (0,∞) such that

V (t) ≤ V (t1) ≤ V (0) + ατψ (r − ε) ≤W2, ∀t ∈ [t1, t2). (26)

Then, the claim that G(t2) ⊃ G(t1) can be proved similarly by contradiction as the proof of
G(t1) ⊃ G(0).

Since G(t) has a finite number of edges, by repeating the above arguments, there exists a
finite integer k > 0 such that

G(t) = G(0), t ∈ [0, t1),

G(t) = G(ti) ⊃ G(ti−1), t ∈ [ti, ti+1), i = 1, · · · , k − 1,

G(t) = G(tk) ⊃ G(tk−1), t ∈ [tk,∞).

(27)

Therefore, we have shown that under the control law (13), the graph G(t) is connected for all
t ≥ 0. Hence, the graph G(t) is also connected for all t ≥ 0 under Assumption 1.

Part III Next, let us show that ‖qi(t) − qj(t)‖ > r, i 	= j, i, j = 1, · · · , N , for all t ≥ 0.
According to (27), we have V̇ (t) ≤ 0 for all t ≥ tk. Therefore,

V (t) ≤ V (tk), ∀t ≥ tk. (28)

For a finite integer k, it holds that

V (t) ≤ max
i=1,··· ,k

V (ti), ∀t ≥ 0. (29)

We claim that ‖qi(t) − qj(t)‖ > r, i 	= j, i, j = 1, · · · , N , for all t ≥ 0. We prove the claim
by contradiction. Let us assume that for some i and j, i, j = 1, · · · , N , i 	= j, there exists
a tc ∈ (0,∞) such that ‖qi(tc) − qj(tc)‖ = r. We note that such an (i, j) belongs to E(tc).
However, limt→t−c ρ(‖qi(t) − qj(t)‖) = ∞, which implies that limt→t−c V (t) = ∞. It contradicts
the boundness of V (t) in (29). Therefore, ‖qi(t) − qj(t)‖ > r, i 	= j, i, j = 1, · · · , N , for all
t ≥ 0.

Part IV In what follows, we show that limt→∞(q̇i(t) − q̇0(t)) = 0 for i = 1, · · · , N .
We first have limt→∞ V (t) exists due to the fact that V (t) ≥ 0 is nonincreasing for all t ≥ tk.

Additionally, we easily find that V̈ (t) is bounded and V̇ (t) is uniformly continuous. Therefore,
it can be concluded that limt→∞ V̇ (t) = 0 by Barbalat’s lemma. Recall (20), limt→∞ pi(t) =
limt→∞ (q̇i(t) − q̇0(t)) = 0, i = 1, · · · , N .
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Part V Finally, we show that limt→∞ Pq0(t)(q(t)) = 0.
To this end, for t ≥ 0, define the center of the N vehicles as

qc(t) =
1
N

N∑

i=1

qi(t). (30)

Furthermore, let

qc(t) = qc(t) − q0(t)

=
1
N

N∑

i=1

qi(t)

=
1
N

N∑

i=1

(qi(t) − q0(t)) . (31)

Then, we show that limt→∞ qc(t) = 0, i = 1, · · · , N .
For i = 1, · · · , N , by a direct calculation, p̈i(t) is bounded over [tk,∞). Thus, ṗ(t) is

uniformly continuous for all t ≥ tk. Since limt→∞ pi(t) = 0, by Barbalat’s lemma,

lim
t→∞ ṗi(t) = −qi(t) − α

∑

j∈Ni(t)

qi(t) − qj(t)
(
r2 − ∥∥qi(t) − qj(t)

∥
∥2
)2 +

∑

j∈Ni(t)

2
(
qi(t) − qj(t)

)

(∥
∥qi(t) − qj(t)

∥
∥2 − r2

)3

= 0, i = 1, · · · , N. (32)

Thus, noting (31), we have

lim
t→∞ q̈c(t) = lim

t→∞
1
N

N∑

i=1

ṗi(t)

= lim
t→∞

⎛

⎜
⎝−

(
1
N

N∑

i=1

(qi(t) − q0(t))

)

− α
1
N

N∑

i=1

∑

j∈Ni(t)

qi(t) − qj(t)
(
r2 − ∥∥qi(t) − qj(t)

∥
∥2
)2

+
1
N

N∑

i=1

∑

j∈Ni(t)

2
(
qi(t) − qj(t)

)

(∥
∥qi(t) − qj(t)

∥
∥2 − r2

)3

⎞

⎟
⎠

= 0. (33)

By the definition of the state-dependent communication graph, G(t) is undirected. Therefore,
for i, j = 1, · · · , N and i 	= j, j ∈ Ni(t) ⇔ i ∈ Nj(t) for all t ≥ 0. As a result, for all t ≥ 0, we
have

N∑

i=1

∑

j∈Ni(t)

qi(t) − qj(t)
(
r2 − ∥∥qi(t) − qj(t)

∥
∥2
)2 = 0 (34)
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and

N∑

i=1

∑

j∈Ni(t)

2
(
qi(t) − qj(t)

)

(∥
∥qi(t) − qj(t)

∥
∥2 − r2

)3 = 0. (35)

Then we further conclude that

lim
t→∞ ṗc(t) = lim

t→∞−
(

1
N

N∑

i=1

(qi(t) − q0(t))

)

= 0. (36)

Therefore,

lim
t→∞ (qc(t) − q0(t)) = lim

t→∞ qc(t) = lim
t→∞

1
N

N∑

i=1

(qi(t) − q0(t)) = 0. (37)

From (3), qc(t) ∈ co(q(t)) for all t ≥ 0. Hence, limt→∞ Pq0(t)(q(t)) = 0.

4 An Example

In this section, we consider an example where four quadrotors need to catch a moving
target by fencing the target into the convex hull formed by their positions. The dynamics of
each quadrotor is described by a double integrator of the form (1) with n = 3. The external
disturbances di ∈ R

3, i = 1, 2, 3, 4, are of (2) with

S1 =

⎡

⎣
0 1

0 0

⎤

⎦ , S2 = 0.05, S3 =

⎡

⎣
0 1

−0.5 0

⎤

⎦ , S4 =

⎡

⎣
0 1

−1 0

⎤

⎦ ,

D1 =

⎡

⎢
⎢
⎣

0.9 0

0 0.5

0.5 0.1

⎤

⎥
⎥
⎦ , D2 =

⎡

⎢
⎢
⎣

0.5

−0.2

0.1

⎤

⎥
⎥
⎦ , D3 =

⎡

⎢
⎢
⎣

1 0

1 −1

0.2 0.5

⎤

⎥
⎥
⎦ , D4 =

⎡

⎢
⎢
⎣

0.3 0

0 0.3

0 −0.2

⎤

⎥
⎥
⎦ .

The trajectory of the target to be fenced is given as follows:

q0(t) =

⎡

⎢
⎢
⎣

0.5e−0.1t+0.2 − 0.3

(0.05t− 0.9)2 − 0.3

log(t+ 25) − 3.5

⎤

⎥
⎥
⎦ .

It is noted that the acceleration of the given target is unbounded and all agents we considered
are three-dimensional. Therefore, this example cannot be handled by the approaches in the
existing literature.

Throughout the entire fencing process, all vehicles are required to maintain the connectivity
of the communication network while avoiding collisions. Therefore, we define r = 13, ε = 4.5,
and r = 1. The initial positions of the agents are given by q0 = [−2.5 −4 0]T, q1 =

[−1 1 3]T, q2 = [−4 −3 2]T, q3 = [2 −7 1]T, q4 = [4 5 0]T. We assume that the 1st
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vehicle has access to the velocity of the target for all t ≥ 0, that is, (0, 1) ∈ E(t) and a10(t) = 1
for all t ≥ 0. Then, we have

E(0) = {(0, 1) , (1, 2) , (2, 1) , (2, 3) , (3, 2) , (1, 4) , (4, 1)} , (38)

which shows that the graph G(0) is connected.
By Theorem 1, we can design a position feedback control law of the form (13) with α =

28,561. The simulation results are shown in Figures 2–6. Figure 2 shows the distance between
the target and the center of the vehicles. Figure 3 shows the velocity tracking errors of the
vehicles. The connectivity preservation of the communication network and the inter-vehicle
collision avoidance are verified in Figure 4. Figure 5 shows the trajectories of the agents. As
shown in Figure 6, which shows the time profiles of the positions of the agents, the target is
fenced into the convex hull form by the vehicles.
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Figure 3 Velocity tracking errors of the vehicles
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Figure 5 Trajectories of the target and the vehicles

Figure 6 Positions of the target and the vehicles
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5 Conclusion

The cooperative target-fencing problem has been addressed in this paper for multiple n-
dimensional double-integrator systems and a target with any twice continuously differentiable
trajectory. Our approach can preserve the connectivity of the state-dependent communication
graph and guarantee collision avoidance among the vehicles, simultaneously. In addition, our
approach can reject a large class of disturbances and does not rely on the velocity measurements
of the vehicles.
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