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Abstract
Despite promising SLAM research in both vision and robotics communities, which fundamentally sustains the autonomy of
intelligent unmanned systems, visual challenges still threaten its robust operation severely. Existing SLAM methods usually
focus on specific challenges and solve the problem with sophisticated enhancement or multi-modal fusion. However, they
are basically limited to particular scenes with a non-quantitative understanding and awareness of challenges, resulting in a
significant performance decline with poor generalization and(or) redundant computation with inflexible mechanisms. To push
the frontier of visual SLAM,we propose a fully computational reliable evaluationmodule called CEMS (Challenge Evaluation
Module for SLAM) for general visual perception based on a clear definition and systematic analysis. It decomposes various
challenges into several common aspects and evaluates degradation with corresponding indicators. Extensive experiments
demonstrate our feasibility and outperformance. The proposed module has a high consistency of 88.298% compared with
annotation ground truth, and a strong correlation of 0.879 compared with SLAM tracking performance. Moreover, we show
the prototype SLAM based on CEMSwith better performance and the first comprehensive CET (Challenge Evaluation Table)
for common SLAM datasets (EuRoC, KITTI, etc.) with objective and fair evaluations of various challenges. We make it
available online to benefit the community on our website.
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1 Introduction

With the booming development of robotics in our AI era,
more intelligent unmanned systems are deployed to numer-
ous scenes and play non-substitutable roles in various
applications, including space exploration with Mars rovers,
air reconnaissance with drone swarms, ground service with
smart vehicles, subterranean rescuewith quadrupedal robots,
and underwater archaeology with submersibles. Generally,
SLAM is the core component in an intelligent unmanned
system and sustains autonomy fundamentally, where its
robustness to visual challenges determines the performance
of the whole system [1]. From the first to the state-of-the-
art SLAM, most achieve inspiring performance, essentially
relying on the high-quality perception of the ambient envi-
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ronment. Unfortunately, the perception usually degrades
dramatically in hard or inaccessible scenes where we deploy
intelligent unmanned systems [2–4]. Meanwhile, we typi-
cally cannot predict what visual challenge will come next
during exploration in unknown environments.

Many efforts are devoted to this topic, which mainly
involves the SLAMfield and IQA/VQA (Image/Video Qual-
ity Assessment) field. In the visual SLAM field, researchers
have focused on robust performance in challenging environ-
ments and generally propose condition-blind and condition-
awaremethods. The condition-blindmethods typically enha-
nce certain visual qualities (such as illumination) merely
and constantly for stable tracking regardless of the ambi-
ent environment change, resulting in limited robustness in a
changing world and redundant computation burden for load
platforms. While the condition-aware methods are usually
capable of specific visual degradation with qualitative and
straightforward metrics, leading to a satisfying SLAM per-
formance in simple and toy applications. However, despite
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the good idea, current simple metrics are in an early stage
without clear definitions and typically only for one visual
challenge, making it infeasible for various challenges in a
complex world. Therefore, there are few robust SLAMmeth-
ods for practical challenging environments due to the lack
of general and systematic evaluation of visual degradation.
Besides the SLAM field, IQA/VQA methods typically eval-
uate images from aspects of human visual perception rather
than machine vision, where visually pleasing images are not
necessarily beneficial to visual SLAM algorithms. More-
over, these methods usually focus more on accuracy and take
few considerations for real-time performance that is of great
importance for practical online tasks, resulting in less fea-
sibility for SLAM. Therefore, in spite of various works, the
full autonomy of unmanned systems in challenging scenes
remains an open problem without general and elegant solu-
tions. That is why CVPR 2020 held the SLAMChallenge [5]
to break the limits of visual SLAM in various challenging
scenarios.

Generally, the word “challenging” is subjective and
ambiguous, and the research on resilient visual SLAM is
also a complex task. Nevertheless, it is a topic that must
be further studied since we are convinced that the key to
the aforementioned problem is the quantitative awareness
of various challenges. In practical applications, the ambi-
ent environment is usually unknown, especially in the search
and rescue tasks. The SLAM system has to face any sudden
visual challenges robustly with effective algorithms to keep
continuous tracking. Otherwise, the system either crashes
or has to conduct much redundant computation constantly
to stay alive. For example, the SLAM cannot run in a low-
texture scenewith illumination enhancementmethods,where
many current SLAM methods are in this dilemma due to

the lack of effective challenge evaluation. We think an ideal
robust SLAM towards adverse environments should be capa-
ble of “targeted and on-demand enhancement” and answer
these two questions: (1) Dowe need visual enhancement? (2)
Which enhancement should we conduct? For example, we
conduct illumination enhancement in low-light frames and
switch to feature enhancement if low-texture frames occur,
otherwise, no enhancement is conducted. In this way, we
can save unnecessary computation in normal scenes while
improving robustness in challenging scenes, balancing accu-
racy, efficiency, and robustness. To achieve this goal, the
quantitative and accurate perception of various visual degra-
dation plays a crucial role in SLAM. However, existing work
in both SLAM and IQA/VQA fields generally still has much
room to improve. Therefore, we propose the CEMS (Chal-
lenge Evaluation Module for SLAM) to push the boundary.
We first define “visual challenges” from the robustness and
accuracy of SLAM. Then we derive a framework from the
classic imaging process to decompose challenges into several
common aspects for a general analysis inspired by chromatic
dispersion (Fig. 1). Consequently, we develop the CEMS and
evaluate various challenges in SLAMdatasets. Finally, based
on the proposed CEMS, we demonstrate a prototype SLAM
robust to adverse illumination with better efficiency. More-
over, we conduct qualitative challenge evaluation on over
1.45 million frames from public SLAM datasets and obtain
insightful tips with CET (Challenge Evaluation Table). To
our best knowledge, few similar works exist, and our contri-
butions are below:

• Aclear definition and systematic analysis of various chal-
lenges are proposed for visual SLAM from the classic
imaging process in computer vision.

Fig. 1 The intuition of our proposed (b) Challenge Evaluation Module
for SLAM (CEMS). Despite (a) various challenges in input frames, we
decompose them into several common aspects in the classic imaging
process with the inspiration from chromatic dispersion and calculate
(c) perception scores correspondingly, providing (d) evaluation results

with insights for SLAM. The CEMS enables SLAM to intelligently
react to different changes with better robustness and efficiency in practi-
cal applications, following the “targeted and on-demand enhancement”
idea
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• A general evaluation module for visual SLAM (CEMS)
is developed to objectively and quantitatively recognize
visual challenges in practical applications.

• Initial SLAM with better performance and challenge
evaluation table (CET)with insights suggest the potential
of CEMS for online and offline tasks, respectively.

2 RelatedWork

Following the same taxonomy in Section 1, we catego-
rize related methods into the SLAM field (Section 2.1) and
IQA/VQA field (Section 2.2) and elaborate on them respec-
tively.

2.1 Resilient SLAMTowards Visual Challenges

We divide existing SLAM proposed for visual challenges
into condition-blind and condition-aware methods according
to the evaluation of visual degradation.

2.1.1 Condition-blind Methods

These methods believe that better visual perception brings
benefits to SLAM [6] and enhances the quality of frames,
making the sequences less “challenging”, thus improving
the performance of visual SLAM. However, many do not
evaluate the challenges explicitly. For example, the SINV2
augments the SLAM pipeline for underwater environments
with histogram equalization [7]. For low-texture scenes,
EDPLVO combines the point and line features with photo-
metric error [8], while theMEGVII team uses SuperPoint [9]
and SuperGlue [10] for robust feature matching, winning the
first prize in CVPR 2020 SLAM Challenge. Even latent 3D
information and structures in man-made environments are
explored with Manhattan and Atlanta world assumptions for
robust pose estimation [11, 12]. Besides, to enhance the data
association, AirDOS improves the performance in dynamic
scenes with articulated objects [13], and a neural network is
trained to control imaging parameters to eliminate lighting
changes [14]. Despite promising results of these methods in
targeted scenes, they usually lead to unintelligent solutions
and non-optimal performance in practical and complex appli-
cations with the following two significant drawbacks. First,
constant enhancement regardless of external conditions usu-
ally results in unnecessary and redundant computation which
is typically not affordable, especially for resource-limited
platforms. For example, we obviously do not have to enhance
perception in good conditions in most cases. Second, these
methods usually have excessive focus on specific challenges
and are not capable of tackling different challenges, making
the SLAM fragile in scenes out of design scope. For exam-
ple, the SLAM with illumination enhancement may crash

in low-texture environments. Therefore, there is still a gap
between these methods and robust applications in challeng-
ing environments due to the lack of automatic degradation
evaluation.

2.1.2 Condition-aware Methods

Comparedwith condition-blindmethods, thesemethods usu-
ally perceive challenges with indirect or qualitative evalua-
tion.We further divide them into frame-based and pose-based
methods, where the evaluation is conducted on input frames
before tracking and estimated poses after tracking, respec-
tively.

Frame-based Methods These methods usually focus on
specific scenes and evaluate the quality of input frames
directly with straightforward metrics. For example, to dis-
criminate the airborne dust and smoke for the outdoor
perception ofUGVs (UnmannedGroundVehicles), amethod
leveraging on Shannon information measurement is pro-
posed in [15, 16], then a prototype visual SLAM is developed
for these adverse conditions [17–19]. Similarly in [20], an
illumination change recognition method is proposed for the
robust visual localization of Astrobee in ISS (International
Space Station) day and night. Generally, these methods
are more beneficial to SLAM compared with pose-based
ones since we can get detailed degradation information and
adequate time for corresponding enhancement before pose
estimation. While we usually cannot derive the specific rea-
son only from estimated poses in pose-based methods since
multiple factors can result in the same degradation in pose.
Despite the good idea, the main problem of these methods is
the simple challenge evaluationwith limited focus on the var-
ious and changing degradation. Adopted metrics are usually
not systematic and general for a complex world, resulting
in limited performance improvement in practical scenes. For
example, the SLAM with only illumination evaluation can-
not perceive texture degradation thus the system has a high
risk of crash in this condition.

Pose-based Methods Pose-based methods usually achieve
degradation awareness by checking the health state of odom-
etry with concessive pose estimations. For example, in the
DARPA Subterranean (SubT) Challenge [21], the CER-
BERUS framework (proposed by ETH [22]) considers the
D-optimality criterion as the metric to quantify the uncer-
tainty of the robot and the covariance matrix of visual
odometry estimates [23]. Similarly, the NeBula framework
(proposed by NASA [24]) offers the HeRO [25] to expect
and detect failures in perceptually degraded operating con-
ditions, where the health check is mainly accomplished
with odometry estimations [26]. Then the sensor fusion is
achieved by LiDAR frontend LOCUS [27] and LION [28].
Finally, the factor-graph-based SLAM LAMP [29] performs
global localization and mapping with a robust loop clo-
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sure module called DARE-SLAM [30]. Moreover, team
CTU-CRAS-NORLAB coordinates wheeled robots, tracked
robots, crawling robots, and aerial robots for resilient explo-
ration [31]. Generally, these methods are suitable for the
health state estimation in odometry. The focus is mainly next
moment-focused, where the health states are used for differ-
ent sensor switching and fusion when the next input comes in
the following tracking. However, we cannot obtain explicit
reflection of current visual challenges since different degra-
dations usually lead to the same decline in odometry, which
is a many-to-one mapping. Therefore, many SLAMmethods
tackle challenging environments subjectively with inexplicit
awareness of degradation, which is a deficiency for resilient
visual localization towards various hard scenes.

2.2 IQA/VQA for Visual Quality

IQA/VQA methods also focus on the visual quality of
images/videos, which is related to our topic to some extent.
IQA can be categorized into full-reference (FR), reduced-
reference (RR), and no-reference (NR) methods according
to the dependence on information, where the full, partial,
and no original image is accessible, respectively. Gener-
ally, NR methods try to evaluate images with the imitation
of HVS (Human Vision System) and cover a wide range
from classic FSIM [32] and natural scene statistics [33] to
popular deep neural network [34], meta learning [35] and
transformer [36]. Many methods are proposed for differ-
ent purposes. For example, an IQA method for underwater
scenes is proposedwith frequency transformation in [37], and
an evaluationmethod for night-time images is proposed from
both subjective and objective aspects in [38]. Other works
include fogging assessment [39], image noise [40], image
compression [41] and multi-exposure fusion [42]. Despite
devoted efforts and satisfying performance, they may not
be suitable for challenge evaluation in SLAM due to few
considerations on real-time performance and different def-
initions of “image quality”, where visually pleasing scenes
may be adverse to SLAM (such as the beautiful sunset over
the sea as shown inFig. 1(a)).Besides,weneed to evaluate the
temporal change between successive frames with real-time
requirements for SLAM, while they usually focus on a single
image. Although VQA methods consider temporal informa-
tion, they usually quantify the compression quality [43] with
high computational complexity. Therefore, IQA/VQAmeth-
ods are not directly applicable to the challenge evaluation in
visual SLAM, while some classic techniques and ideas may
also be adopted.

As a brief summary of related work, the quantitative,
systematic, and general evaluation of visual challenges for
SLAM is still in a very early stage. Methods in the SLAM
field are usually too simple in practical applications with
limited robustness and methods in the IQA/VQA field are

typically not suitable for SLAM with different focuses.
Despite the difficulties and the lack of systematic works [28]
in visual SLAM, it is still worth evaluating challenges
quantitatively, which will bring significant improvements to
SLAM performance in degraded environments, as demon-
strated in LiDAR SLAM [44, 45]. Therefore, we propose the
general evaluation module of visual challenges with qual-
itative analysis for resilient and robust SLAM in adverse
scenes.

3 The ProposedMethod

We first define the visual challenges for SLAM, propose
the general analysis framework (Section 3.1), then present
the quantitative evaluation module with ten selected scores
(Section 3.2). Finally, we give implementation details for the
module (Section 3.3).

3.1 General Definition and Analysis Framework for
Challenges

What are the challenges for visual SLAM? Itmay be simple if
your answer is the scene where SLAM fails from a posteriori
view. However, the conclusions obtained by deducing the
causes from the results usually provide little comprehensive
and insightful information for practical applications. In fact,
the general definition of challenging scenarios is a challenge
indeed due to innumerable degradations and varying goals in
various tasks. Here, we categorize challenges for intelligent
unmanned systems into two types: challenges for exploration
and challenges for perception, where the former has been
studied with satisfying results [23, 46] in the control field
but the latter is the opposite, leaving many open but valuable
problems. To propose a clear definition, we start with two
necessary hypotheses for the most available SLAM:

• H1: “Reliable association” - frame-wisematching should
be performed with adequate, distinguishable, and consis-
tent features for reliable correspondence.

• H2: “Static scene” - objects in scenes should be relatively
static to each other with consistent relationships except
the camera to ensure physical correctness of tracking.

Generally, vision is the only input for visual SLAM, thus
robust visual matching guarantees accurate pose estimation
and plays a crucial role in reliable tracking (H1 hypoth-
esis). Many external factors may influence the H1, such
as adverse illumination, low textures, and scene changes
over a large timeframe. Despite many enhancement meth-
ods being proposed, it is still expected to have better visual
perception inputs for tracking. Moreover, the classic visual
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SLAM framework typically cannot handle dynamic objects
and may output trajectories that do not conform to the facts.
Since moving objects may break the latent assumption for
static scenes due to relative motion (H2 hypothesis). Despite
we can filter moving objects with various algorithms, the
ultimate goal is to leverage the remaining static parts for
robust tracking. This further implies the importance of theH2
hypothesis to SLAM. In practical applications with robots,
various challenges usually break either or both of these two
assumptions with the degradation of frame-wise associa-
tion or movement ambiguity, resulting in the corresponding
impacts on SLAM:

• Declined robustness for vision-based pose estimation
with different anomalies (gap, divergence, and jump as
defined in [25]) in challenging scenes.

• Poor accuracy and smoothness of estimated trajectories
or trajectories that looks good but do not conform to the
fact motion and ground truth.

Therefore, we propose the definition based on these
hypotheses: A visual perception is regarded as challeng-
ing if it breaks hypothesis H1 or H2 or both, decreasing
the robustness and accuracy of the SLAM. It is worth not-
ing that we focus on natural and non-collaborative scenes
rather than the ones with manually enhanced objects, such
as ArUco and AprilTags artificial markers. Moreover, we
focus on visual challenges in perception rather than chal-
lenges brought by the deficiency of algorithms. For example,
some rare scenes are in good condition but still challeng-
ing to end-to-end SLAM with limited generalization. We
further analyze various challenges based on this definition,
and derive corresponding scores. It is generally tricky and
infeasible to enumerate every challenging phenomenon in
our complex world to formulate a general analysis frame-

work. Inspired by chromatic dispersion, which indicates that
light is composed of a finite spectrum with different wave-
lengths, we propose a framework to act as the special prism,
decomposing various physical challenges to hierarchically
common aspects and their combinations (Fig. 1). From the
view of classic computer vision, the ambient perception in
SLAM is essentially the well-studied imaging process [47].
Therefore, we first decompose various challenges that break
the aforementioned hypotheses into illumination, scene, and
sensor aspects, which comprise the classic imaging system.
Then, we break down each aspect with several indicators
and propose an analysis framework for visual challenges, as
shown in Fig. 2.

3.2 Quantitative Challenge EvaluationModule

Following the general analysis framework, we derive ten
scores in three aspects for challenges and design a quanti-
tative evaluation module, where the inputs are only images,
and the outputs are ten evaluation scores Si (i ∈ [1, 10]∩N+),
overall perception score Sp, and final judgments with tips.
Generally, the higher Sp indicates better perception quality
for SLAM with fewer challenges. To accurately fit the trend
of various scores while keeping the computation burden at a
low level, we adopt the three-segmented linear function as a
paradigm for the general scoring, as defined in Eq. 1.

Score(x; C) =
⎧
⎨

⎩

a1x + b1 t1 ≤ x < t2
a2x + b2 t2 ≤ x < t3
a3x + b3 t3 ≤ x ≤ t4

, (1)

where C = {a1, a2, a3, b1, b2, b3, t1, t2, t3, t4} is the set of
coefficients in the scoring function Score(·), a and b refer
to coefficients for line segments, t indicates end points of
each segment. Ci(i ∈ [1, 10] ∩ N+) refers to corresponding
coefficients for ten scores.

Fig. 2 The analysis framework
and corresponding scores for
visual challenge evaluation
(Images are from ICL-NUIM
dataset [48]). We break down
various physical challenges into
three factors in the classic
imaging process, each with
several scores for detailed
quantitative evaluation
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3.2.1 Illumination-related Scores

Good illumination is one of the prerequisites for a robust
SLAM. From spatial and temporal perspectives, the low or
intense illumination (S1), the low dynamic range (S2), the
uneven illumination distribution (S3), and the sudden frame-
wise illumination change (S4) typically bring challenges to
feature extraction and data association in SLAM.

Low/Intense Illumination (S1). Based on the gray world
assumption [49], it is usually harmful to visual tracking with
low or intense illumination. Therefore, we follow the pro-
posed (1) and design the S1 score curve as Eq. 2. For 8-bit
images, the grayscale of 128 is considered the best illumina-
tion, while 0 and 255 are the opposite (too dark or too bright
for an effective visual perception).

S1 = Score(Gmean; C1), (2)

where Gmean ∈ [0, 255] is the mean grayscale of the current
frame F and calculated by pixel-wise operation. Score(·) is
defined in Eq. 1, C1 is the coefficient set for S1.

Dynamic Range (S2). Generally, an image with a small
dynamic range usually has poor contrast, resulting in the
challenge of extracting stable and distinguishable visual fea-
tures. To avoid unexpected extreme grayscales, we truncate
the central 96% of the whole histogram to calculate the
valid dynamic range according to the Gaussian distribution.
Finally, the S2 score for 8-bit images is as Eq. 3.

S2 = Score(Gmax − Gmin; C2), (3)

whereGmin,Gmax ∈ [0, 255] are the lower and upper bounds
of valid grayscale range in current frame F . Score(·) is
defined in Eq. 1, C2 is the coefficient set for S2.

Illumination Distribution (S3). The evenly distributed
illumination usually leads to a more uniform distribution of
visual features, which is beneficial for SLAM [50]. We first
divide the input image into grids and represent each grid with
a Gaussian-weighted grayscale. Then, we count the number
of grids with the same grayscale and calculate the corre-
sponding variance for illumination distribution. Finally, the
S3 score for 8-bit images with 32 × 32 grids are calculated
with segmented function as Eq. 4.

S3 = Score(

∑255
j=0(N j − Nmean)

2

256
; C3), (4)

where N j ∈ [0, 1024], j ∈ [0, 255] indicates the grid num-
ber at grayscale j and Nmean refers to the mean of all N j .
Score(·) is defined in Eq. 1, C3 is the coefficient set for S3.

Illumination Change (S4). Significant illumination change
may also lead to the failure of frame-wise data association.
We evaluate this sudden change by comparing the absolute

value of the mean grayscale difference in two consecutive
frames, where the scoring function S4 is as Eq. 5 for 8-bit
images.

S4 = Score(abs(GP
mean − Gmean); C4), (5)

whereGP
mean,Gmean ∈ [0, 255] is themean grayscale of pre-

vious frame FP and current frame F , respectively. Score(·)
is defined in Eq. 1, C4 is the coefficient set for S4.

3.2.2 Scene-related Scores

The scene or photographed objects also play an essential
role in the imaging process and significantly affect the per-
formance of SLAM. From the view of frame-wise data
association, the number of features (S5), the distribution of
features (S6), the repetitive features (S7), and the sudden
scene change between frames (S8) make the environment
challenging for visual SLAM.

Low/Rich Textures (S5). The proper sparsity of features
benefits the SLAM rather than extreme states - low texture
brings challenges to feature extraction, while rich texture
leads to the decline of matching and efficiency. We take
grayscale gradient as the essential metric. Specifically, we
obtain a pixel-wise gradient map of current frameF with the
classic Sobel operator. Then, we calculate the S5 as Eq. 6
for texture evaluation according to the mean gradient in this
map.

S5 = Score(mean(�2F); C5), (6)

wheremean(·) indicates the averaging operation for the gra-
dient map, �2 represents the Sobel operation. Score(·) is
defined in Eq. 1, C5 is the coefficient set for S5.

Texture Distribution (S6). Basically, it is easier to get
accurate poses with even-distributed frame-wise association
rather than local-distributed textures [45, 51]. We divide the
gradient map obtained from S5 into 16× 16 grids and regard
the grid as valid if its gradient sum exceeds the given thresh-
old (we set 100 here). Finally, we calculate the S6 score for
distribution evaluation based on the proportion of valid grids
Nval to all grids (Nval + Ninv), as written in Eq. 7.

S6 = Score(
Nval

Nval + Ninv

; C6), (7)

where Nval and Ninv are the number of valid and invalid
grids in current frame F , respectively. Score(·) is defined in
Eq. 1, C6 is the coefficient set for S6.

Repetitive Texture (S7). Similar textures influence the
performance of matching and thus have an impact on pose
estimation. We quantitatively evaluate repetitive textures
leveraging on GLCM (Grey Level Co-occurrence Matrix),
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where the bigger homogeneity indicator Ihom in GLCM indi-
cates more repetitive textures in an image. Then the S7 score
is calculated with Eq. 8.

S7 = Score(Ihom; C7), (8)

where Ihom ∈ [0, 1] is the homogeneity defined in [52].
Score(·) is defined in Eq. 1, C7 is the coefficient set for
S7.

Sudden Scene Change (S8). Due to the high frequency
of vision cameras, the change between successive frames is
usually tiny. However, sudden scene change may exist due
to rapid motion, moving objects, and even long-term revis-
iting. Therefore, we quantify this sudden scene change by
the similarity of corresponding histograms. Specifically, for
8-bit images, we calculate the S8 score by iterative compar-
ing the pixel number of each grayscale level j in channel
k ∈ {Red(0),Green(1), Blue(2)}, as Eq. 9.

S8 = Score(
2∑

k=0

255∑

j=0

1 − abs(N P
jk − N jk)

max(N P
jk, N jk)

; C8), (9)

where N P
jk indicates the pixel number of grayscale j in chan-

nel k within the previous frame FP , while the N jk refers to
the counterpart in the current frame F . abs(·) and max(·)
denote the operation of obtaining absolute value and max
value, respectively. Score(·) is defined in Eq. 1, C8 is the
coefficient set for S8.

3.2.3 Sensor-related Scores

Last but not least, camera sensors convert photons into elec-
trical signals in the imaging process and also play an essential
role in SLAM.Generally, the image blur and dynamic objects
(S9) and the image noise (S10) are harmful to stable feature
extraction and matching in SLAM.

Image Blur and Movement (S9). The image blur and
inconsistent movement led by moving objects threaten the
reliable feature matching in SLAM. We think clear images
change a lot after intentionally blurring, while blurry images
are resistant to it. Therefore, we blur the current input frame
F with a Gaussian kernel and get an intentionally blurred
image FB. Then, we conduct the Sobel operation for gradi-
ent maps of both F and FB. The image blurring is evaluated
by the similarity indicator Iblur = SSI M(�2F ,�2FB) ∈
[0, 1] (Structure Similarity Index Measure) of these two gra-
dient maps. Smaller Iblur indicates better perception with
less image blurring. Besides blurring, moving objects also
bring inconsistent movement between frames. We calculate
the consistency for evaluation, in which the general transfor-
mation is calculated by featurematchingwithRANSAC. The
the number of outliers Nout and inliers Nin is used to calculate

the outlier proportion indicator Imove = Nout
Nin+Nout

∈ [0, 1].
Smaller Imove indicates more consistent movement. Finally,
the S9 score for both blurring and moving is calculated with
Iblur and Imove as writtern in Eq. 10.

S9 = 1

2
(Score(Iblur ; Cblur) + Score(Imove; Cmove))

= 1

2
(Score(SSI M(�2F ,�2FB); Cblur)

+Score(
Nout

Nin + Nout
; Cmove)), (10)

where SSI M(·) is the similarity calculation, �2 denotes
the Sobel operation. Score(·) is defined in Eq. 1, C9 =
{Cblur,Cmove} is the coefficient set for S9.

Image Noise (S10). The image noise usually hinders the
robust description and matching of features in SLAM. Sim-
ilar to S9 score, we compare the difference of current frame
F and its median filtered result FN. Finally, the S10 score is
calculated with the mean difference of F and FN as Eq. 11.

S10 = Score(mean(abs(F − FN)); C10), (11)

where abs(·) and mean(·) denote the operation of obtain-
ing absolute value and mean value, respectively. Score(·) is
defined in Eq. 1, C10 is the coefficient set for S10.

3.2.4 The Overall Perception Score

The overall perception score Sp is calculated with all afore-
mentioned ten scores as Eq. 12, which the lower indicates
more challenging states.

Sp = α

4∑

i=1

Si + β

8∑

i=5

Si + γ

10∑

i=9

Si , (12)

where α, β, and γ are weights for illumination, scene, and
sensor aspect, respectively. Finally, we regard the scene a
challenge if ∀Si < Tl ∨ Sp < Th , where Tl and Th are given
thresholds for separate scores Si and overall perception score
Sp. Some visualization of different challenging level sam-
ples evaluated by CEMS is shown in Fig. 3. It can be seen
that the automatically generated evaluation results are gener-
ally consistent with our experience. For example, for sudden
illumination change (S4), the evaluated bad result is with sig-
nificant lighting difference as the yellow eclipse shows while
the fair result has moderate change. The evaluated excellent
result almost has no illumination changes which is beneficial
for visual SLAM. More evaluation results can be found on
our website https://gaozhinuswhu.com.
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Fig. 3 Visualization of different
score evaluation results
automatically generated from
CEMS. The results are briefly
divided into bad (red), fair
(yellow), and excellent (green)
levels

3.3 Implementation Details

For accurate estimation of scoring functions andperformance
evaluation, we need to annotate diverse challenging samples
based on the proposed framework manually and fit corre-
sponding coefficients. The recommended process mainly
involves three steps, as shown in Fig. 4. First, we define
five perception levels (bad, poor, fair, good, and excellent)
according to score ranges. Also, we select several SLAM
experts for initial scoring.We adhere to theRecommendation
ITU-R BT.500-14 [53] proposed by the ITU (International
Telecommunication Union) and adopt SSCQE (Single Stim-
ulus Continuous Quality Evaluation) for scoring, where the
experts score the consecutive input frames within a duration

according to their experience in visual SLAMand perception
without any references. It should be noted that the scor-
ing is achieved on the visual challenges for SLAM rather
than aesthetic for human eyes as IQA/VQA does. Then, the
raw annotations will be cleaned to filter significant errors
and we calculate the MOS (Mean Opinion Score) with fur-
ther rejection of outliers. Thus, the coefficients of different
scoring functions can be fitted via iterative optimization
according to given paradigms as defined in Eqs. 1, 2, 3,
4, 5, 6, 8, 9, 10 and 11. Finally, we output and save coef-
ficients for each score (take S1 as an example, as shown in
Fig. 4), achieving the complete evaluationmodule for SLAM.
More specifically, for general scoring function estimation
Si (i = 1, 2, · · · , 10), we hire three experts and select one

Fig. 4 Illustration of estimation
for scoring function (take S1 for
example). We divide all states
into five levels and obtain scores
by manually scoring and pose
estimation. The coefficient C1 is
then fitted with minimal error
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Fig. 5 Visualization of each scoring function in CEMS for quantitative challenge evaluation. Yellow rectangles indicate S1 - S4 in illumination
aspect, green rectangles indicate S5 - S8 in scene aspect, and blue rectangles indicate S9 - S10 in sensor aspect

thousand representative images in total from the public, sim-
ulated, synthesized, and field-collected sequences, covering
various weather, illumination, and scenes. All these images
are separated from test sequences. To keep the cleanness, we
only show recommended coefficients for S1 in Fig. 4 and
briefly visualize all scoring function curves for an intuitive
understanding, as Fig. 5. It should be noticed that we provide
recommended coefficient values for general purposes. It is
often possible to obtain more suitable scoring coefficients
with tailored sequences for specific tasks by repeating the
aforementioned process. We publish all exact coefficients,
source codes, and more information on our website (https://
gaozhinuswhu.com).

For final challenge judgment, we calculate the overall per-
ception score Sp by setting α = 0.4, β = 0.4, and γ = 0.2 to
reflect different influences on SLAM according to our com-
mon experience. It should be noted that these coefficients can
be further adjustedwith your customized needs for better per-
formance. Finally, all scores are normalized to [0, 100], and
we set the Th = 70 (the center of Good level) and Tl = 50
(the center of Fair level) for Sp and other scores, respectively.
The CEMS is implemented by Python currently. Each score
is defined as an independent function for modular calls. The
module only depends on the OpenCV and NumPy library,
where we use OpenCV for common computer vision needs
and NumPy for efficient matrix operations.

4 Experiments

We conduct extent experiments to demonstrate the feasi-
bility and effectiveness of the proposed method on col-
lected datasets. We first introduce the evaluation datasets
(Section 4.1), adopted metrics, and compared methods
(Section 4.2). Then, we show quantitative results with a com-
prehensive analysis (Section 4.3). Finally, we give two initial
application demos of the proposed method to exhibit great
potentials (Section 4.4).

4.1 Evaluation Datasets

We download EuRoC [54], TUM-RGBD [55], KITTI [56],
and AQUALOC [57] dataset to cover the scene of air (UAV),
ground (handheld and car), and underwater (UUV), as Fig. 6
shows. For further robustness evaluation, we intentionally
set certain frames to pure black or sudden illumination
change to mimic the extremely challenging conditions in
practical applications, such as the sudden blindness when
drones pass through a puff of smoke in rescue tasks and
the interruption of image stream due to camera or transmis-
sion failure. Specifically, we select the high-quality EuRoC
and KITTI datasets as the bases and synthesize visual chal-
lengeswith automatic Python scripts, generatingEuRoC-Syn
and KITTI-Syn datasets. Besides public datasets, we collect
simulated sequences of a European town with a car in the
AirSimNH environment that is officially provided in the Air-
Sim software [58] (supported by Unreal Engine) and many
views of Liyue harbor in the Genshin Impact game [59] (sup-
ported by Unity Engine). Moreover, we additionally collect
sixty sequences in the Genshin Impact game and estimate
frame-wise ground truth with ColMap software [60, 61]. The
sequences cover a wide range of scenes that are very hard or
dangerous to collect, such as the desert, the jungle, and snow
mountains, as Fig. 7 shows. Readers may refer to [62] for
more detailed information about our Genshin Impact dataset
(GID). Moreover, we also obtain a dark tunnel sequence in
WuhanUniversity byfield collectionwith ourGZ-LVI device
as shown in Fig. 6. The datasets we adopt for test cover a
wide range of data sources (from the real world to video
games), trajectory lengths (from static view to over 3km dis-
placement), and various challenges (from weather change to
adverse illumination).

4.2 Metrics and ComparedMethods

We compare differences between calculated and annotated
results (overall perception scores Sp and levels) for the con-
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Fig. 6 Sequences come from downloading, synthesis, simulation, and
field collection for scoring function estimation and performance tests.
(a)-(d) are public datasets, (e) and (f) are synthesized datasets on EuRoC

and KITTI. (g) and (h) are simulated sequences in AirSim software and
the Genshin Impact game. (i) is the tunnel sequence collected by our (j)
GZ-LVI device

sistency evaluation, where the min (Dmin), max (Dmax),
and mean (Dmean) difference are adopted. We also adopt
absolute PCC (Pearson Correlation Coefficient) value [63]
to measure the correlation between the estimated percep-
tion scores and the pose estimation accuracies, which are
calculated with commonly used ATE metric [64]. For com-
paredmethods, wemainly focus on the tracking performance
and select several visual odometry and SLAM methods
from traditional methods to learning-based ones for com-
prehensive experiments, including DSO (direct odometry
without global optimization) [65], SVO (semi-direct odome-
trywithout global optimization) [66],ORB-SLAM3 (indirect
SLAM with global optimization and loop closing) [67]
and DROID-SLAM (learning-based end-to-end SLAMwith
global optimization) [68].

4.3 Results and Analysis

We evaluate the performance of the proposed method from
two aspects. First, we compare evaluation results with man-
ual annotation ground truth to demonstrate the feasibility
(Section 4.3.1). Second, we calculate the correlation between
evaluation results and SLAM pose errors to further indicate
the effectiveness (Section 4.3.2).

4.3.1 The Consistency of Evaluation and Challenge
Annotation

We obtain the overall perception scores Sp and levels with
the proposed module for each frame in all collected datasets
and compare them with manual annotations, where the lat-
ter is regarded as the ground truth. It is worth noting that
all these annotations are based on challenges for SLAM

rather than for human eyes, as aforementioned. The range
of Dmin, Dmax, Dmean is [0, 100] for perception scores and
[0, 4] for perception levels theoretically, where the smaller
suggests the better consistency. These indicators on differ-
ent datasets are summarized in Table 1. We achieve a mean
difference Dmean of 11.702 for overall perception score
Sp ∈ [0, 100] and 0.879 for five perception levels, indicating
the mean consistency of 100 × (1 − 11.702/(100 − 0)) =
88.298% and 100 × (1 − 0.879/(4 − 0)) = 78.025%,
respectively. These results suggest a good generalization
and consistency of our challenge evaluation module on all
test datasets, although they come from various sources and
scenes. For example,we achieve consistent performancewith
small (less than about 10% of the range) and similar (10.608
and 7.149) mean difference Dmean despite the considerable
domain gap between the underwater dataset AQUALOC and
the simulation dataset Genshin Impact (Fig. 6). Challenge
evaluation results of one frame in the Genshin Impact dataset
are shown in Fig. 8. The overall evaluation is challenging for
SLAM despite the visually beautiful sunset scenery. Specifi-
cally, the Sp is 75.28, higher than the threshold Th . However,
the S2 = 34.51 (dynamic range), S5 = 45.89 (low/rich tex-
ture), and S7 = 46.57 (repetitive texture) are lower than
threshold Tl , sharing 67.26%, 17.85% 14.89% contribution
to the challenge state, respectively. The sunset makes the
image orange-toned and significantly reduces the contrast in
this scene, bringing difficulties for effective visual tracking.
Meanwhile, some similar-appearance trees and no-texture
sky also exist, which may exacerbate the challenge. For the
whole sequence, we get the frame-wise evaluation results
iteratively, and the overall judgment of this sequence is the
average of corresponding scores. These evaluation results are
of great value for targeted solutions in various applications.
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Fig. 7 Some sequences in our
Genshin Impact Dataset (GID),
covering a wide range of
challenging scenes that are rare
or dangerous for real-world
collection

Moreover, as a widely adopted dataset in the SLAM field,
we focus on the EuRoC and compare the evaluation results
of all sequences by our module with claimed difficulty lev-
els [54], as summarized in Table 2. The ranking of the mean
perception score is consistent with claimed difficulty levels,
where scores of hard levels are lower than 84.5, medium lev-
els are among [84.5, 87.5], and easy levels are higher than
87.5. This consistency with EuRoC dataset further demon-
strates the feasibility and effectiveness of our method. One
more interesting thing we find is that the EuRoC difficulty
levels have almost no correlation with max score and hard
percent indicators, which stands for the best perception qual-
ity and the percentage of challenging frames in the whole
sequence, respectively. This finding may reveal the quanti-
tative reasons behind the EuRoC difficulty levels, which are
not explicitly explained in their paper [54]. These evaluation
results may providemore insights and views to explain track-
ing performances of existing SLAM methods also evaluated
on EuRoC dataset.

4.3.2 The Correlation of Evaluation and Pose Estimation

Due to the high-quality and evenly distributed challenges
from easy to hard, we further run selected methods (monoc-
ular) on the EuRoC-Syn dataset with pose ground truth
and compare frame-wise estimation accuracy with chal-
lenge evaluation results, summarized in Table 3. Generally,
ORB-SLAM achieves the best ATE of 0.016m, and the cor-
responding absolute PCC is 0.944, which suggests the high
correlation between the overall perception score Sp and pose
estimation errors in SLAM. Moreover, the mean PCC of all
testmethods is 0.879, demonstrating good generalization and
adaptability to various algorithms, including direct and indi-
rect methods, even end-to-end ones.

Moreover, we conduct a dependence analysis on the eval-
uation results of all collected datasets to demonstrate the
effectiveness of proposed scoring functions. First, from the
theoretical definition (Eqs. 2 - Eq. 11) and visualization
(Fig. 5) of ten scoring functions in CEMS, we can see that all

Table 1 The consistency
comparison between evaluation
results and manual annotations
(Ground truth) on all selected
datasets, where the proposed
CEMS achieves a high
performance

Perception score Perception level
Datasets and sequences Dmin Dmax Dmean Dmin Dmax Dmean

EuRoC 0.026 22.235 14.099 0 2 0.801

TUM-RGBD 0.009 25.432 11.802 0 2 1.189

KITTI 0.001 16.268 11.228 0 1 0.911

AQUALOC 0.003 20.162 10.608 0 1 0.524

EuRoC-Syn 0.023 23.613 15.177 0 2 1.031

KITTI-Syn 0.001 26.574 14.978 0 1 1.103

AirSim 0.042 14.407 8.037 0 1 0.646

Genshin Impact 0.066 12.643 7.149 0 1 0.735

WHU-Tunnel 0.021 19.547 12.243 0 1 0.976

Overall 0.021 20.097 11.702 0 1.33 0.879
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Fig. 8 Evaluation results of one
frame in our Genshin Impact
sequences. Ten scores Si are
visualized in blue bars and red
lines indicate corresponding
threshold Tl , where scores
below Tl are marked in yellow
and others are in dark blue. The
overall score Sp is visualized in
an orange bar and Th is
represented with a black line.
Judgments are visualized in
different colors, where darker
colors indicate challenging
states in the sequence

Table 2 The comparison of challenge evaluation results evaluated by us and claimed difficulty levels (last column) of EuRoC dataset

Seq. Hard percent Max score Min score Score variance Mean score Claimed level [54]

MH01 23.22% 94.911 67.916 15.554 87.808 Easy

MH02 27.64% 94.801 68.228 17.457 87.816 Easy

MH03 11.30% 94.242 69.445 18.903 87.067 Medium

MH04 22.63% 94.279 38.020 178.649 82.229 Hard

MH05 22.71% 93.581 42.850 160.611 82.416 Hard

VR101 2.23% 92.895 70.012 11.097 87.784 Easy

VR102 11.41% 92.009 66.575 10.857 86.277 Medium

VR103 47.76% 92.282 50.065 54.193 81.857 Hard

VR201 5.44% 93.142 69.560 7.241 88.809 Easy

VR202 9.92% 92.786 68.723 12.489 87.322 Medium

VR203 4.26% 92.283 61.853 22.031 84.182 Hard

Table 3 The correlation between challenge evaluation and pose estimation of different odometry/SLAM on our EuRoC-Syn sequence

Odometry/SLAM Perception score Frame-wise Abs. PCC
of EuRoC-Syn Seq. Estimation Error (Unit: m)
Max Min Mean Max Min Mean

ORB-SLAM3 (SLAM) [67] 0.153 0.001 0.016 0.944

DSO (Odometry) [65] 0.067 0.006 0.027 0.925

SVO (Odometry) [66] 90.158 16.512 81.116 0.144 0.003 0.033 0.853

DROID-SLAM (SLAM) [68] 0.117 0.007 0.066 0.795

Mean 0.012 0.004 0.036 0.879
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these scores are generally independent of others since each
function has its unique input with different trends, represent-
ing various evaluationmetric. For example, S1 has a quadratic
function-like curve with the mean grayscale input while S5
has a negative power function-like trend with grayscale gra-
dient as input. Therefore, they are not correlated to each other.
Despite similar trends in some functions (such as S2, S6, S8,
and S9), they have totally different inputs, resulting in weak
correlations between each other. Second, to further demon-
strate the independence of scoring functions, we conduct
quantitative correlation analysis on each score with PCC.
We calculate the absolute PCC among each score pair in
test sequences and obtain many PCC matrices. Then, we
average these PCC matrices to get the overall final PCC
matrix, as Fig. 9(a) shows. It can be seen that for any score,
it generally has a weak correlation with other scores. More-
over, we divide the PCC into four categories according to
the value, including none correlation (PCC ≤ 0.3), weak
correlation (0.3 < PCC ≤ 0.5), moderate correlation (0.5
< PCC ≤ 0.8), and high correlation (PCC > 0.8) [69].
Generally, as Fig. 9(b) shows, any score in CEMS typi-
cally has six or more scores that have no or weak correlation
with it. Both theoretical and quantitative analysis suggest the
effectiveness of the proposed scoring functions and CEMS
module.

4.3.3 Validation of Computational Efficiency

Generally, the proposed challenge evaluation module is
mainly for practical and real-time robot tasks (such as search
and rescue in adverse scenes) rather than the merely offline
dataset evaluation. We want to achieve an efficient and
quantitative evaluation of visual challenges before tracking,
bringing more potential for tailored enhancement solutions.
Therefore, besides the feasibility and effectiveness of the pro-
posed method, the computational efficiency is also of our
consideration since computation resource is usually very lim-

ited inmanymobile platforms. TheCEMS should not occupy
much computation load and leave valuable power and com-
putation resources for other tasks such as motion planning
and controlling.

We reorganize all selected datasets according to frame
resolution and conduct experiments for computational effi-
ciency on various platforms. We evaluate the efficiency
of our module on various platforms, including Raspberry
Pi 4B+, Nvidia Jetson AGX Xavier, Dell XPS-15 Laptop
(Intel i7-10875H CPU), and ASUS Workstation (Intel i9-
9900K CPU). We select several typical frame resolutions
to simulate possible conditions in the real world, such as
the 640 × 480 size. We statistically calculate the cost time
(in seconds) for evaluation by inserting timing codes and
obtain the final cost time with the averaging of five funs,
as summarized in Table 4. It can be seen that the module
runs rapidly on different platforms. For example, despite
the initial implementation with Python, the module runs
stably at 20 FPS (frames per second) on our workstation
with 640 × 480 resolution. Even on the Raspberry Pi with
very limited computational resources, we can also achieve
around 4 FPS with 640 × 480 resolution. Therefore, the
proposed method can generally run in real-time for prac-
tical tasks with adverse conditions. Moreover, since cameras
generally have a high FPS of around 20 to 30 with small
frame-wise difference. It is often not necessary to evaluate
every input frame in practical applications. Similar to the
widely adopted key frame strategy in SLAM, we can also
conduct the quantitative evaluation every several frames to
further decrease computation for cameras with very high fre-
quency. For example, according to experimental results, we
achieved around 4 FPS on the Raspberry platform. Thus,
we can parallelly evaluate challenges every seven or eight
frames, handling a camera input stream with around 28 or
32 FPS (640x480). Finally, it also should be noticed that
the efficiency can be improved by implementation with C++
language.

Fig. 9 PCC and dependent
matrix of 10 scores in CEMS.
(a) PCC matrix between scores,
where the darker color indicates
less correlation. (b) Dependent
levels between scores, where the
dependence is divided into four
levels
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Table 4 Time cost for single frame evaluation of our module on various platforms with different frame resolutions (unit: second)

Frame resolution Raspberry Pi 4B+ Jetson AGX Xavier Dell laptop ASUS workstation

640×480 (30MP) 0.294 0.095 0.065 0.050

968×608 (60MP) 0.572 0.162 0.078 0.059

1600×900 (140MP) 1.359 0.338 0.149 0.109

1920×1080 (200MP) 1.768 0.460 0.223 0.166

Fig. 10 Comparison of
computational efficiency
(evaluated by GPU load)
between SLAM without
switching strategy (blue line)
and SLAM with switching
strategy based on CEMS (green
line). In stage 1,3,5, the neural
network is turned off due to
good illumination, resulting in a
significant decrease of GPU
load. While in stage 2,4,6, the
network is automatically turned
on for enhancement

Table 5 Overall evaluation of various challenges in representative SLAM datasets (in descending order of challenges)

SLAM dataset Overall perception Score Biggest challenge Corresponding percentage

ICL-NUIM [48] 75.567 Texture distribution 59.54%

AQUALOC [57] 76.778 Texture distribution 66.05%

TartanAir [70] 80.369 Low illumination 26.75%

FusionPortable [71] 81.183 Texture distribution 24.67%

Lyft5 [72] 82.257 Repetitive texture 14.29%

nuScenes [73] 82.344 Low illumination 8.87%

KITTI [56] 85.000 Texture distribution 0.67%

EuRoC [54] 86.075 Low illumination 11.04%

Fig. 11 Visualization for
illumination scores (S1) and the
distribution of the percentage at
different perception levels in
EuRoC dataset, where level
excellent accounts most in the
dataset
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4.4 Potential Applications of CEMS

In this section, we show some primary and valuable appli-
cations of CEMS for practical SLAM-related tasks, which
mainly involve the online aid for robust tracking and the
offline evaluation for dataset benchmarking.

4.4.1 Robust SLAMwith Degradation Perception Towards
Adverse Illumination

As aforementioned, bad illumination is one of the biggest
challenges in robust exploration for SLAM.However, current
SLAM either cannot handle adverse conditions or struggles
with constant heavy computations (such as neural networks).
It is usually not affordable on practicalmobile platforms. Fol-
lowing the aforementioned idea of “enhance on-demand”,we
initially developed a visual SLAM that can perceive ambi-
ent illumination changes and react with optimal strategies,
where theCEMSmodule plays an important role in condition
switching. If the evaluation result is poor, we will leverage
a neural network for illumination enhancement; otherwise,
we will mute the network for higher efficiency and power
saving. Benefiting from the proposed CEMS, the prototype
visual SLAM is robust to adverse illumination while keeping
high computational efficiency.

We primarily test the SLAM with a field-collected
sequence taken on the campus of Wuhan University at night.
The computation burden of the device is shown in Fig. 10.
With the proposed switching strategy,we significantly reduce
the workload of GPU when illumination is good (Stage
1,3,5 marked in orange) and automatically turn on the net-
work when the system encounters challenging environments
(Stage 2,4,6 marked in white). It is worth noting that this
improvement could bemore significant if thewhole sequence
is in good condition, which suggests that we turn off net-
works rather than enhance good frames all the time. We will
continue working on it and make improvements with more
comprehensive analysis and experiments.

4.4.2 Quantitative Challenge Evaluation for Representative
SLAM Datasets

Besides the real-time applications in SLAM, we can also use
the CEMS independently to evaluate various datasets for a
fast and brief grasp before using them. As an initial intro-
duction to the following work, we comprehensively evaluate
challenges over 1,450,000 frames in public SLAM datasets
with our module and generate the CET (Challenge Evalu-
ation Table). Every dataset is evaluated automatically with
detailed scores and overall reports. The overall perception
score is the mean of every perception score of sequences in
the dataset. Some overall results are summarized in Table 5.

Generally, ICL-NUIM is the most challenging among
evaluated datasets with the lowest overall perception score.
Thebiggest challenge in ICL-NUIMis theuneven-distributed
textures (59.54%). While EuRoC achieves the highest over-
all perception score of 86.075, suggesting its high quality
and reasons for wide adoption in the SLAM field. Due to
limited space in this paper, we briefly show the distribution
of illumination score S1 and corresponding levels in EuRoC
dataset in Fig. 11. It can be seen that excellent illumina-
tion accounts for most in the dataset (around 59.37%), while
only nearly 5% are in bad illumination. More information
and analysis on SLAM datasets can be found on our web-
site https://gaozhinuswhu.com. We will continue working to
develop and maintain webpages with integrated and conve-
nient functions that are accessible to everyone to benefit the
society, including but not limited to online evaluation, score
comparison, result analysis, report generation, and challenge
benchmarking.

5 Conclusions

We focus on challenging environments for visual SLAM
and propose an innovative evaluation module CEMS for
the automatic degradation awareness of unmanned systems.
Extensive experiments on various datasets demonstrate the
effectiveness of our method. Moreover, we build CET, the
first table for the quantitative evaluation of challenges in var-
ious SLAM datasets. To our best knowledge, there are no
similar works at present. For future works, we will contin-
ually refine the analysis framework (including an adaptive
scheme for coefficients based on fuzzy logic) and improve
the evaluation module with C++ and CUDA for higher effi-
ciency. Moreover, we will extend our analysis framework
and CEMS to other data sources to cover more SLAM frame-
works, including the thermal andmulti/hyperspectral images,
even stereo disparity images. We will also enlarge the CET
with more data and develop scripts and websites to benefit
the community.
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