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A B S T R A C T   

Public engagement in protecting architectural heritage is a critical component of sustainable 
development. This study has developed an innovative single drone-based 3D reconstruction (SD- 
3DR) approach for public-involved architectural heritage conservation. A new software tool 
named after CU-Recon is also developed to enable easy access and efficient 3D reconstruction 
using drone photography. Unlike traditional photogrammetry-based reconstruction, CU-Recon 
adopts our unique deep learning-based multi-view stereo network named LCM-MVSNet, 
enabling the public to employ only one drone for image capture and 3D reconstruction. LCM- 
MVSNet applies a learnable cost metric (LCM) to adaptively aggregate multi-view matching 
similarity into the 3D cost volume by leveraging sparse point hints. Its outstanding reconstruction 
performance for building scale applications is proved by the extensive experiments on the DTU 
training dataset and BlendedMVS dataset. A remarkable architectural heritage Hakka Tulou is 
selected to verify the effectiveness of the SD-3DR on large-scale heritage buildings. The results 
show our approach outperformed the other four 3D reconstruction tools. Moreover, the recon
struction quality in CU-Recon is evaluated from a perspective of heritage conservation using the 
concept of satisfaction. Practitioners expressed an overall satisfaction score of 4.175 (out of 5) for 
the reconstruction quality of the method. Survey results reveal a higher level of satisfaction with 
single drone photography for architectural heritage conservation compared to LiDAR-based 
scanning in terms of portability, operability, and cost. The research outcome changes the cur
rent situation of government-led top-down architectural heritage conservation by providing 
valuable insights for individual practitioners in creating bottom-up heritage conservation routes.   

1. Introduction 

Architectural heritage serves as a symbol of a region’s identity, connecting the past with the present by encapsulating local culture 
in a comprehensive manner [1]. It holds a significant role in preserving the connection between people and the historical context of a 
region [2]. Architectural heritage is an invaluable, non-renewable resource in the progression of civilization and stands as a vital 
repository of each nation’s historical legacy. As important components of sustainable development, architectural heritage possesses 
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profound cultural, economic, and scientific significance [3]. Documenting and protecting architectural heritage are instrumental in 
upholding national culture’s survival and continuity within the framework of sustainable development [4]. However, numerous 
threats, such as structural deterioration, environmental changes, pollution, destructive construction practices, and conflicts, imperil 
the sustainability of architectural heritage, leading to its degradation, and even destruction [5]. It is therefore essential to take 
measures that promote the sustainable preservation and utilization of architectural heritage. 

Traditionally, heritage conservation has been chiefly led by government, with an emphasis on protecting well-known architectural 
treasures [6–9]. However, a substantial portion of architectural heritage consists of lesser-known and remote architectures, often 
neglected, inadequately preserved and documented [10]. As depicted in the memorable quote from the movie CoCo, "Death is not the 
end of life, forgetting is the end of life" [11]. This sentiment is also highly suitable to be used in lesser-known architectural heritage [7, 
12]. They still exist worldwide, harboring history, culture, art, and narratives amidst the dust of time. But they have been largely 
forgotten by the world and left in obscurity [13]. Consequently, there is an urgent need to establish a bottom-up approach that actively 
involves the public in the preservation of lesser-known heritage sites. 

The process of capturing the 3D geometries and surface textures of architectural heritage represents an easily comprehensible 
undertaking for the general public [14]. This type of data recording enables the presentation of heritage in a digital format, opening up 
possibilities for greater exposure, wider awareness, and enhanced conservation efforts. The data recording techniques described above 
primarily pertain to the fundamental digital three-dimensional (3D) representation of heritage buildings [15,16]. This digital 3D 
information model serves as a tool for recognizing potential threats, providing decision support for sound conservation strategies [17]. 
Consequently, it becomes essential to introduce an outstanding 3D reconstruction method for heritage buildings. 

The data collection for reconstructing 3D architectural heritage models is typically accomplished through two primary tools: 
optical cameras and laser sensors, both of which are employed to acquire essential spatial data and texture information [16]. Among 
the existing 3D reconstruction technologies, two prominent approaches stand out: Air Oblique Photography Technology (OP) and 
Laser Scanning Technology (LT). LT is a scanning approach known for its high accuracy [18] and primarily applied with ground laser 
scanners [19]. Consequently, it has found extensive application in the detailed 3D reconstruction of individual structures [20]. 
However, because of its restricted scanning range, LT is not suitable for large-scale historical structures [21–24]. Furthermore, it 
presents challenges to the public in daily use due to its high cost (the Lidar approx. $30,000) [24,25], heaviness [26,27], and the need 
for specialized skills [25,28]. 

The OP technology is primarily integrated into unmanned aerial vehicle (UAV) platforms [29]. Because UAV platforms are 
cost-effective and portable, OP is widely applied in various building domains [21,30]. The fundamental process of OP technology 
involves employing sensors to capture a sequence of photographs with a predetermined degree of overlap. Subsequently, 3D data is 
indirectly generated through the application of corresponding 3D reconstruction algorithms. Multi-view stereo (MVS) plays a vital role 
as a fundamental element in the process of 3D reconstruction [31]. It is a technique that derives the 3D geometry of an object or scene 
from a collection of images taken from various known positions and angles. However, when it comes to the reconstruction of archi
tectural heritage, the demand for clarity, precision, and completeness is notably high. Regrettably, the models produced by existing 
MVS algorithms using images acquired through OP do not meet the requirements for heritage documentation. 

Recently, learning-based MVS approaches have demonstrated notable superiority over traditional methods in MVS benchmark 
assessments [32]. However, when it comes to implementing learning-based MVS approaches for the reconstruction of architectural 
heritage, there are still several challenges to be addressed. Firstly, most learning-based approaches make use of a feature pyramid 
network (FPN) to obtain features at multiple scales [33]. However, a common issue observed in these methods is the tendency to 
produce overly smoothed depth estimations near object boundaries. This smoothing effect is attributed to the deficiency of shallow 
feature information that includes low-level details. Moreover, effective cost volume aggregation is essential for maintaining consis
tency among multi-view photos. Learning-based cost volume aggregation (CVA) commonly involves the integration of an extra 
re-weighting network. This network is designed to learn and assign weights at various levels to facilitate the process of CVA. 
Nevertheless, the inclusion of this extra re-weighting network can introduce computational complexity and overlook the inherent 
correspondences that exist between multi-view images [34]. 

To solve the problems above, this paper develops a photogrammetry software tool CU-Recon based on an innovative MVS network 
incorporating Learnable Cost Metric (LCM) in order to meet the requirements of large-scale heritage building conservation [35]. 
Simultaneously, it optimizes memory usage and expedites inference speed. The network takes a set of multi-view images as input and 
generates a pyramid of per-view depth maps. Then, we perform filtering and fusion of multi-view depth maps to obtain a densely 
reconstructed point cloud. To assess the reconstruction quality, extensive experiments on benchmark datasets are conducted. How
ever, codes may not be readily accessible to the general public and may pose challenges for individuals seeking to carry out 3D re
constructions of architectural heritage [36]. Hence, there is a pressing need to develop user-friendly software solutions to streamline 
the 3D reconstruction process and make it more accessible. 

The reconstruction quality in CU-Recon is also required to be evaluated from the perspective of heritage conservation. We therefore 
invited practitioners in the field of heritage conservation to conduct a survey on the reconstruction quality. The satisfaction survey is 
used to quantitatively examine the reconstruction quality. 

Herein, the rest of paper is as following structure: The methodology is illustrated in Section 2; Next, the case study and survey are 
shown in Section 3; Section 4 shows the results of the reconstruction of Tulou and the satisfaction survey. 

2. Methodology 

This study proposes a single-drone 3D reconstruction (SD-3DR) approach for public engagement into architectural heritage 
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conservation. Fig. 1 shows the overview of the approach. Firstly, drone scanning of the target building is completed by the public. 
Then, the photos are input into the software tool CU-Recon to generate a 3D model. Finally, the reconstructed building model is upload 
to the WebGIS platform to realize the online visualization and interaction. In this paper, the software tool CU-Recon and its recon
struction algorithm (LCM based MVS Network) are highlighted. 

2.1. Software tool CU-Recon 

CU-Recon is a 3D reconstruction software tool based on an LCM-based MVS network, which has photogrammetry as its key 
technology. It can generate accurate 3D models of various subjects and surroundings by utilizing photographs captured from diverse 
angles with a single drone. Its primary application lies in the creation of 3D models for a wide range of subjects, with a particular 
aptitude for modeling building, terrains, and landscapes. Furthermore, this 3D reconstruction software offers a user-friendly interface, 
streamlining the entire photogrammetric pipeline. Users can directly import their images into the software, which then generates 3D 
models, simplifying the process. The key features of the CU-Recon include.  

1. It supports a range of accurate and efficient 3D point cloud reconstruction.  
2. A viewer that can be used directly to visualize 3D point cloud model.  
3. It is suitable for the reconstruction of building-scale scenes with competitive performance.  
4. It requires a limited memory footprint and reduces computational burden.  
5. A set of innovative algorithms integrated well-known algorithms for processing point cloud reconstruction. 

2.2. LCM-based MVS network 

In this section, the new LCM-based MVS approach for 3D reconstruction is proposed to improve the reconstruction quality and 
adapted to a large-scale heritage building. The LCM aims to strike a balance between existing methodologies. In addressing pixel 
differences arising from diverse views, the LCM computes per-view features to accommodate scene variations. To minimize both 
memory consumption and computational burden, the LCM incorporates sparse point hints from Structure from Motion (SfM) into the 
aggregation process, facilitating the direct computation of source-view features. 

LCM-based MVS approach has two stages. The first stage is to use LCM MVS to realize depth inference. The second stage is to 
develop the point cloud by the depth map filtering & fusion. The overview of the proposed network is shown in Fig. 2. 

2.2.1. Stage 1: depth inference 
Here, four procedures to realize the depth inference are introduced. 

2.2.1.1. Feature pyramid extraction. Compared to previous methodology of 3D reconstruction, this study strengthened the shallow 
feature information flow by designing a bottom-up pathway. This augmentation facilitates the transmission of low-level features and 
extends the receptive field, enabling the integration of global context information. Consequently, this approach enhances the accuracy 
and robustness of feature matching in scenarios with limited surface texture. 

In this network, multi-view images {Ii}N
i=0 should be given first. (L + 1)-level features {f l,i ∈ RFl×H/2l×W/2l

}
L
l=0 are extracted for each 

image Ii, where Fl is the channel number at l-th level, H and W are the height and width, respectively. L is set as 3-level in this study. In 
this setup, the spatial resolution of the 3-level feature extraction module is as follows: H × W, H/2 × W/2, and H/4 × W/4, 
respectively. Values of 8, 16, and 32 have been assigned to Fl for l = 0, 1, and 2, respectively. 
2.2.1.2. Adaptive cost volume aggregation. Next, the image features {f l,i ∈ RFl×H/2l×W/2l

}
N
i=0 of (N + 1)-view images {Ii}

N
i=0 and camera 

parameters are required to encode into the network. This process is pivotal in constructing multi-view feature volumes and aggregating 
cost volumes. 

At level l, a uniform sampling strategy is applied to generate (Ml + 1) depth hypotheses distributed across a 3D space. These 
hypotheses are sampled from the depth range [dmin,l, dmax,l] within the reference camera frustum. The normal vector n0 coincides with 
the principal axis of the reference camera. 

dm,l = dmin,l +m
dmax,l − dmin,l

Ml
m ∈ {0, 1, ...,Ml} (1) 

Fig. 1. The process of the single-drone 3D reconstruction approach for public involved sustainable architectural heritage conservation.  
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By using the sampled depth hypotheses, source-view features are developed in the 3D space by homography transformation, which 
involves warping the 2D image features extracted from the source-view into the reference camera frustum to construct the (N + 1)- 

view features {Vl,i ∈ RFl×Ml×H/2l×W/2l
}

N
i=0. 

To accommodate any amount of input views, the (N + 1)-view cost volumes {Vl,i ∈ RFl×Ml×H/2l×W/2l
}

N
i=0 are consolidated to a unified 

volume C ∈ RFl,c×Ml×H/2l×W/2l for the purpose of measuring the matching degree of multi-view features. This step can be designed as a 
mapping function M : RFl×Ml×H/2l×W/2l

× ⋯× RFl×Ml×H/2l×W/2l →RFl,c×Ml×H/2l×W/2l . 
It is observed that an image taken close to the reference view and free from occlusions can provide more precise photometric and 

geometric data compared to a distant image that is partially obscured. Based on this trend, the LCM is proposed and explained here. 

Fig. 2. Overview of the proposed network.  

Fig. 3. Algorithm 1: Matching score computation.  
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2.2.1.3. Learnable Cost Metric. The LCM at network level l is set as: 

Cl =M
(
Vl,o,⋯,Vl,N

)

= M
(
Bl,o,⋯,Bl,N

)

= AvgPool

⎛

⎜
⎜
⎝αlBl, 0⊙

∑N

i=1

Si

∑N

i=1
Si

Bl, i

⎞

⎟
⎟
⎠

(2)  

Where Bl,i ∈ RK×(Fl/K)×Ml×H/2l×W/2l represents the batched volumes after evenly separating the original volumes Vl,i into K batches along 
the channel dimension. At various network levels, denoted as l ∈ {0,1, ...,L}, we assign distinct learnable values to αl to capture the 
significance of the reference view. Additionally, we utilize the normalized matching score Si∑N

i=1
Si 

as the source-view significance to 

enable the network to adapt to variations within the scene. The Hadamard product (⊙) is used to combine the weighted volumes from 
multiple views. We then employ average pooling along the channel dimension to calculate the multi-view feature matching similarity, 
which is used to derive the cost volume Cl ∈ RK×Ml×H/2l×W/2l . 

The computational procedure (see Fig. 3) of the matching score {Si}
N
i=1 between the ith source image {Ii}

N
i=1 and the reference image 

I0 is detailed in the following algorithm, {pij ∈ R3×1, j ∈ {0,1, ..., ni− 1}}N
i=1 is the inhomogeneous coordinates of the common 3D points 

visible in both reference image and ith source image, where ni is the total number of points triangulated by reference view and ith source 
view. {c0, ci} ∈ R3×1 is the inhomogeneous coordinates of the reference-view and ith source-view camera center, respectively, and θj is 
the baseline angle of pij. The matching score Si is accumulated based on a piecewise gaussian function favoring the particular baseline 
angle θ0. The normalized matching score Si∑N

i=1
Si 

as the ith source-view significance is defined to ensure adaptability of the network to 

variations in the input scene. 
2.2.1.4. Cost volume regularization and depth estimation. A four-scale 3D convolutional neural network (CNN) is applied to regularize 
the aggregated cost volume pyramid {Cl}

L
l=0 and generate the probability volume pyramid {Pl,est}

L
l=0 using the sigmoid activation 

function. To achieve continuous depth estimation, we refine the discrete depth estimation by considering the estimated bias between 
the target depth and the discretized depth: 

Dl,est = argmax
dm,l∈[d min,l,d max,l]

Pl, est(dm, l) +
(d max, l − d min, l)

Ml
max Pl, est(dm, l) (3)  

where Pl, est(dl) is the probability map at depth hypothesis dl. Dl,est is the depth estimation at level l. argmax
dm,l∈[d min,l,d max,l]

Pl, est(dm, l) is the 

discrete depth. (d max,l− d min,l)
Ml is the depth interval. max Pl, est(dm, l) is the normalized bias. So, it can be known that (d max,l− d min,l)

Ml max Pl,
est(dm, l) is the estimated bias. 
2.2.1.5. Loss function. For network training, this study uses the focal loss to provide direct supervision for the probability volume [37, 
38]. 

Fig. 4. Qualitative comparison of the depth map estimations on the DTU evaluation set.  

Q. Li et al.                                                                                                                                                                                                               



Journal of Building Engineering 87 (2024) 108954

6

2.2.2. Stage 2: depth map fusion 
Depth map fusion are carried out to merge the inferred multi-view depth maps {Di}

N
i=0. When we filter depth maps, a probability 

threshold τ is set to eliminate depth outliers and specifying the amount of consistent views Nc to mitigate depth inconsistencies. The 
photometric constraint evaluates the matching quality of multi-view depth maps, while the geometric constraint assesses the con
sistency of multi-view depth maps. Then, the inferred depth maps are combined to generate the ultimate point cloud. 

2.2.3. Experiment on benchmarking dataset 
This study conducts experiments on DTU training dataset to evaluate the reconstruction performance and on the BlendedMVS 

database to assess the depth estimation performance. Moreover, the reconstruction in large-scale scenarios is also assessed on the 
Tanks and Temples advanced database. 
2.2.3.1. Reconstruction performance. Our MVS network is trained using the DTU evaluation set and subsequently evaluated on the DTU 
evaluation set to quantitatively benchmark its reconstruction performance. Qualitative comparison of the depth map estimations is 
shown in Fig. 4. In the DTU dataset, the assessment of MVS reconstruction quality relies on accuracy and completeness, both measured 
in mean error distance metrics (in millimeters, with lower values indicating better results). To obtain a concise evaluation, the DTU 
dataset calculates the arithmetic mean of accuracy and completeness, which is referred to as the overall score. 

Then the method is rigorously benchmarked against the DTU evaluation dataset, where it undergoes comprehensive comparisons 
with traditional geometric approaches and recent learning-based MVS methods. The standard evaluation procedure [39] is followed, 
yielding quantitative benchmark results presented in Table 1. These results are measured in millimeters, with lower values indicating 
enhanced reconstruction accuracy, completeness, and overall score. 

The approach consistently shows a commendable balance between accuracy and completeness in reconstruction, spanning various 
scenarios. It consistently exhibits superior performance compared to both traditional and learning-based methods currently available, 
excelling in accuracy, completeness, and overall scores, thus establishing its state-of-the-art performance. 

Furthermore, a qualitative analysis has been conducted to evaluate depth estimation and reconstruction outcomes for scenes with 
varying reflectivity, low-textured surfaces, and lighting variations. These assessments have been carried out on the DTU evaluation set. 
Fig. 4 shows the method’s ability to achieve comprehensive depth estimation and generate dense point cloud reconstructions while 
preserving fine-grained details. The achievement can be attributed to the proposed LCM scheme and provides qualitative confirmation 
of the quantitative comparative results. 
2.2.3.2. Depth estimation performance. The proposed network is specifically designed for depth map estimation. So, the quality of 
depth map estimation is assessed using the BlendedMVS set. In the BlendedMVS dataset, the quality of depth estimation is evaluated 
using several metrics, including end-point error (EPE), 1-threshold error e1, and 3-threshold error e3. These metrics help assess the 
accuracy and precision of depth estimation. Comparison on depth estimation performance based on BlendedMVS are shown in Table 2. 

To highlight the superior accuracy of the proposed network in depth map estimation, a quantitative comparison was conducted 
using the BlendedMVS validation set. All methods, including ours, have been evaluated using the original input image resolution of 
768 × 576, and the number of input views has been uniformly set to 5 to maintain a fair basis for comparison. In Table 2, the results 
highlight the impressive performance of our method, evident in the lowest EPE, e1, and e3 values. This underscores our method’s 
capability to infer high-quality depth maps effectively. 
2.2.3.3. Reconstruction error. We carried on experiments on the Tanks and Temples benchmark (advanced set) and obtained the F- 
score (in %, higher the better). The visualization of the errors is provided in Fig. 5. The proposed MVS network shows a competitive 
performance. Compared to CasMVSNet, TransMVSNet, and NR-MVSNet, our MVS network achieves the highest F-score. 
2.2.3.4. Scalability. To assess the method’s adaptability on the building scale, three building scenes, including a 5-floor historical 
tower, a 4345 m2 temple, and 18-floor modern building, are selected for the reconstruction using the proposed network strategy. In 
Fig. 6, results show large-scale buildings are reconstructed by our network in high completeness with fine details. In summary, our 
proposed method is well-suited for scenes at the building scale, demonstrating a competitive performance in 3D reconstruction. 

Table 1 
Comparison on reconstruction performance based on DTU dataset.  

Methods Mean Error Distance (mm) Reference 

ACC. ↓ Comp. ↓ Overall ↓ 

Gipuma 0.283 0.873 0.578 [40] 
COLMAP 0.400 0.664 0.532 [41] 
CasMVSNet 0.325 0.385 0.355 [35] 
TransMVSNet 0.360 0.271 0.316 [42] 
IGEV-MVSNet 0.331 0.316 0.324 [43] 
N2MVSNet 0.336 0.295 0.316 [44] 
DispMVS 0.354 0.324 0.339 [45] 
Ours (N = 5, Nc = 6) 0.263 0.539 0.401  
Ours (N = 5, Nc = 3) 0.368 0.263 0.315  

↓ means lower the better reconstruction performance. 
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3. Case study and satisfaction survey 

3.1. Hakka Tulou - Zhenchenglou 

The Hakka Tulou structures, located in the southwestern region of Fujian province and Guangdong province, China, stand out as a 
remarkable part of international built heritage (Fig. 7) [47]. In 2008, 46 buildings of Hakka Tulou were formally listed on the World 
Heritage Sites [48]. The Hakka Tulou structures are the foremost, most representative, and exceptionally well-preserved illustrations 
found in the mountainous areas of southeastern China. These large, technically advanced, and striking earthen buildings were con
structed over the course of several centuries, spanning from the 13th to the 20th century. Specially, these vernacular buildings used 
earthen materials and were primarily constructed for defensive purposes, featuring a distinctive layout with a central open courtyard, a 

Table 2 
Comparison on depth estimation performance based on BlendedMVS.  

Methods EPE ↓ e1 ↓ e3 ↓ Reference 

EPP-MVSNet 1.17 12.66 6.20 [46] 
UniMVSNet 1.17 11.27 4.96 [45] 
TransMVSNet 0.05 13.74 5.47 [42] 
Ours 1.02 10.15 4.54  

↓ means lower the better depth estimation performance. 

Fig. 5. Visualization of point cloud reconstruction error. The F-score is given blow the reconstruction model.  

Fig. 6. 3D reconstructed models of three large-scale building by our method.  
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single entrance, and windows on the top floor only. They are recognized as exceptional exemplars of a specific architectural tradition 
and functional design, manifesting a distinctive manifestation of communal habitation and defensive structuring [49]. Furthermore, 
their harmonious integration with the natural environment makes them an outstanding representation of human settlement. 

The case Tulou of this research is Zhenchenglou, which is located at coordinates 24.66◦N and 116.98◦E in Fujian province, as 
shown in Fig. 8. Zhenchenglou is distinguished as a double-circle Tulou, characterized by its outer circle consisting of four stories with 
a total of 184 rooms, and the inner circle, which is two stories high and contains 32 rooms. It is recognized for its imposing fortified 
mud walls crowned with tiled roofs featuring wide overhanging eaves. 

Zhenchenglou stands as one of the paramount historical structures in Fujian province, demanding immediate and substantial 
attention for preservation and documentation [50]. The scale of Zhenchenglou is a big challenge for traditional LiDAR scanning 
method. Zhenchenglou stands at a height of over 10 m and has a diameter of nearly 60 m, covering an area of approximately 5000 
square meters. Moreover, the surrounding environment is complex and not friendly for ground scanning. The building is nestled amidst 
the picturesque backdrop of rice, tea, and tobacco fields. Qingchanglou (another Tulou) is around 30 m far away on the northwest of 
Zhenchenglou. If employing ground scanning, it is necessary to set up a greater number of LiDAR scanning stations strategically around 
the building in confined and obstructed street environments in order to ensure comprehensive data collection for the 3D geometric 
properties of the building and enable the capture of intricate details. This would also cause inference with the daily life of local 
residents. 

3.2. Data collection 

A drone, DJI Mavic 2 enterprise advanced, was applied to scan the Zhenchenglou. The drone was outfitted with a CMOS sensor 
boasting 48 million effective pixels, capturing images with a maximum resolution of 8000 × 6000 pixels. The DJI mavic 2 enterprise 
advanced are shown in Fig. 9 (a). One flight mission was performed around the heritage building with planned route. The planned 
route is shown in Fig. 9 (b). During the flight mission, planned using the DJI Pilot software [51], the drone maintained an altitude of 
approximately 20 m above the historical heritage structure. The parameters for lateral and frontal image overlap were thoughtfully 
configured at 40%. As a result, a total of 248 high-resolution images were captured specifically for the purpose of 3D reconstruction of 
the Zhenchenglou. 

3.3. Satisfaction survey 

In this section, the survey is provided to assess the satisfaction level of heritage conservation practitioners in the reconstruction 
quality by CU-Recon. 

3.3.1. Satisfaction 
At times, the perceived shared language among individuals may not be as shared as presumed, revealing itself through subtle 

nuances or, in some instances, through significant disparities. Users always hold unbeknownst the disciplinary subjectivities to 
themselves. Therefore, the degree of satisfaction is introduced in this study to evaluate the reconstruction quality by CU-Recon. 

The concept of satisfaction has been subjects of frequent discussions in previous academic works, with several definitions being 
advanced. There are three main perspectives for satisfaction [52]. The first perspective, referred to as the purposive approach, defines 
satisfaction as an assessment of the extent to which an entity either facilitates or inhibits users in achieving their objectives. The second 

Fig. 7. Hakka Tulou [50].  

Fig. 8. Hakka tulou. (a) Location. (b)(c) Zhenchenglou.  
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perspective, referred to as the actual-aspiration gap approach, defines satisfaction as an assessment of the disparity between users’ 
existing and desired needs. The third perspective conceptualizes satisfaction as a multi-faceted construct with cognitive, affective, and 
conative dimensions, forming an attitude towards the subject. This paper uses the second perspective, assuming participants recognize 
significant attributes of the reconstructed heritage and assess them through a comparative analysis. The comprehensive level of 
satisfaction is ultimately shaped by two distinct sets of objective factors. One set is “contextual”: characteristics of product-related 
experience. Another is “compositional”: characteristics of the users. These two sets of factors can have a direct impact on satisfac
tion or work indirectly by affecting users’ subjective attitudes and evaluations of particular aspects of the product, subsequently 
affecting overall satisfaction. 

3.3.2. Pilot questionnaire 
Prior to distributing the official questionnaire, we initiated a pilot survey in September 2023 involving five practitioners 

specializing in heritage preservation. The primary objective of this pilot survey was to assess the questionnaire’s suitability in terms of 
length, clarity of terminology and questions, and coverage of essential factors. Following the feedback obtained from the participants 
in the pilot survey, we made necessary adjustments, including reordering questions and refining those that lacked clarity. 

3.3.3. Formal questionnaire 
For the formal questionnaire, based on the pilot survey, an ad-hoc survey was built to collect information on (a) Personal data, (b) 

Drone experience, (c) Satisfaction levels in reconstruction quality of CU-Recon, and (d) Satisfaction levels in scanning technologies. (a) 
(b) stand for the survey of characteristics of the users. (c)(d) stand for the survey of product-related experience. 

Their personal data, including the age, gender, working years in heritage protection, education level (bachelor, master, Ph.D.), and 
countries were collected after obtaining their informed consent, in order to show compositional effects. Assessment of participant 
experience on drone is essential to show contextual effects on the satisfaction levels. 

According to the concept on the conservation of historical sites in Venice Charter, London, Charter, the Principles of Seville, Xi’an 
Declaration and other documents [53–55], four terminologies are selected to evaluate the reconstruction quality in software 
CU-Recon, including clearness, accuracy, integrity, and authenticity. The mean satisfaction value of the four aspects is defined as the 
satisfaction of the reconstruction quality. 

Fig. 9. (a) DJI Mavic 2 enterprise advanced. (b) Drone planned route.  

Table 3 
Questionnaire.   

Questions    

Personal data 
A1 Age (S.D.)    
A2 Gender Male Female  
A3 Working years in heritage protection 0–5 6–10 >10 
A4 Education level Bachelor Master Ph. 

D. 
A5 Working country Developed Developing  
Drone experience 
B1 Do you have one drone? 0 = No 1 = Yes 
B2 Do you have a drone driving license? 0 = No 1 = Yes 
B3 Did you operate the drone before? 0 = No 1 = Yes 
B4 Did you take photos for buildings by drone? 0 = No 1 = Yes 
Satisfaction levels on reconstruction quality of CU-Recon 
C1 How satisfied are you with the three aspects of reconstructed models by SD-3DR? a) Clearness; b) Accuracy; c) 

Integrity; d) Authenticity 
1–5 

Satisfaction levels on scanning technologies. 
D1 How satisfied are you with LiDAR-based scanning? a) Portability; b) Operation; c) Cost 1–5 
D2 How satisfied are you with single drone photography? a) Portability; b) Operation; c) Cost 1–5 

The evaluation uses a five-point Likert scale consisting of five points, ranging from "very dissatisfied" at 1 to “very satisfied” at 5. 1 stands for “very dissatisfied”. 2 stands 
for “dissatisfied”. 3 stands for “neutral”. 4 stands for “satisfied”. 5 stands for “very satisfied”. 
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The LiDAR scanning technology and single drone photography are also compared from three aspects, including the portability, 
operation, and cost. The participants’ responses were evaluated using a five-point Likert scale consisting of five points, ranging from 
"very dissatisfied " at 1 to " very satisfied " at 5. The questionnaire is shown in Table 3. 

3.3.4. Participants 
Participants were chosen employing the virtual snowball sampling method. This approach is notably advantageous due to its ef

ficacy in expanding the geographical scope and reaching individuals facing accessibility challenges [56]. The rationale behind 
employing the virtual snowball sampling method lies in its capacity to augment the number of cases in the sample while enhancing 
representativeness, as it allows for control over the quantity and diversity of responses throughout the process. 

Following the prescribed steps of the snowball sampling technique [57], we initially identified the primary respondents, who 
served as referrers and were drawn from the friends known to the researchers and respondents known through the pilot study 
mentioned above. Subsequently, we conducted an eligibility assessment for these referrers and selected a group of 10 individuals who 
expressed their willingness to participate as research assistants, aiding in the dissemination of the questionnaire. It is noteworthy that 
the 15 assistants were distributed across various countries in the world, ensuring a comprehensive geographic representation. 

The distribution of the questionnaire commenced in September 2023, primarily via email, WhatsApp, WeChat and other virtual 
social applications. To maintain the sample’s representativeness, we also made efforts to regulate the direction of the referral chain in 
terms of educational backgrounds and geographical locations, to the greatest extent possible. By October 20, 2023, we had accu
mulated a total of 64 responses, thereby fulfilling our stipulated sample size requirement. All participants were informed that 
participation in the study was voluntary. These responses exhibited a commendable level of representativeness, particularly con
cerning education levels and geographical origins. In the interest of data quality, 3 responses were excluded due to their low response 
quality, characterized by patterns such as selecting the first option for all questions, and notably brief response times of less than 5 min. 
This meticulous filtering process ultimately resulted in a dataset of 61 valid responses. 

3.3.5. Statistical methods 
The mean value of the four items in questions C1 was calculated to evaluate satisfaction levels on the reconstruction quality. The 

mean value of the three items in questions D1 and D2. 
To test the appropriateness of averaging the items, Cronbach’s alpha, a reliability statistic, was utilized. Typically, an alpha value 

exceeding 0.70 is indicative of a reliable scale [58]. The results revealed a strong correlation (Cronbach’s alpha = 0.774) among these 
items, based on a sample size of 61. This suggests that elements are internally connected and can be consolidated into a single 
composite score for assessing the satisfaction level of the reconstruction quality. 

The survey aims to investigate the satisfaction level on the reconstruction quality of the heritage building in CU-Recon software and 
compare the single drone photography with LiDAR-based scanning technology from the perspective of practitioners. We used IBM 
SPSS Statistics19 software to analyze the data. First, a one-way ANOVA was carried out on to evaluate satisfaction in the single drone- 
based 3D reconstruction approach. Next, a multivariate regression analysis was conducted to figure out the factors influencing 
satisfaction level in practitioners. To simplify the model, we employed the backward elimination-by-hand procedure [59]. It serves as 
entering all variables simultaneously into the regression analysis. Moreover, Ordinary Least Squares (OLS) regression analysis was 
conducted in software SPSS. Subsequently, the predictor which shows the highest p-value was systematically excluded and this 
step-wise elimination was iterated. The meticulous application of this method continued until only statistically significant predictors 

Fig. 10. Comparison of the 3D reconstruction quality in different software.  

Q. Li et al.                                                                                                                                                                                                               



Journal of Building Engineering 87 (2024) 108954

11

remained. Dummy variables were created for all categorical variables, and missing values were coded into the "others" category to 
maximize inclusion of respondents in the regression analysis. 

The mean scores of (a)(b)(c) and (d) can directly show the satisfaction level on the reconstructed models by CU-Recon and 
effectiveness of the SD-3DR approach. The multivariate regression analysis shows the correlation between the product-related 
experience (c) (d) and characteristics of the users (a)(b). The correlation can reveal the satisfaction level of different groups on the 
SD-3DR approach. 

4. Results 

In this section, the 3D model of Zhenchenglou is reconstructed with CU-Recon. The results are compared with the model recon
structed in other commercial software. Moreover, the satisfaction of heritage conservation practitioners on the reconstruction quality 
and on the single drone-based 3D reconstruction are shown here. 

4.1. 3D reconstruction 

The reconstruction was conducted on an NVIDIA 3090ti GPU. 248 images were input into software CU-Recon, Metashape, Pix4D, 
DJI Terra, and Colmap in order to reconstruct the 3D point cloud of Zhenchenglou. The results are shown in Fig. 10. Software Colmap 
failed in this reconstruction task, it requires more memory when inputting the same number of photos. In this case, the limitation of 
software Colmap results in “out of memory”. For DJI Terra, the scope for reconstruction is required to be selected firstly. So, the 
reconstruction in DJI Terra only shows the structure of Zhenchenglou without surrounding landscape. Notably, DJI Terra faces lim
itations in realizing the reconstruction process without the presence of the Global Positioning System (GPS), as it relies on GPS for 
image matching purposes. 

Using CU-Recon, we completely reconstructed all of the Zhenchenglou’s elements, even including structures, decorations, land
scapes, and textures. The detailed surface information of the historical building and its surroundings are well represented. Moreover, 
the aerial images and corresponding depth maps from the four views are shown in Fig. 11. The smoothness of edges and sharp 
boundaries are more obvious in the depth maps. Compared to the other reconstructed models, the 3D geometric information in our 
software has a greater integrity. CU-Recon produces the clearest textures, which show the minimal distortions among all the solutions. 
The results in DJI Terra show incomplete reconstruction on the façade, because points are sparse. In the visualization results, it can be 
seen that Metashape and Pix4D cannot create a complete model of the studied historical building. The results of the two software lose 
more details in the main structure of the Zhenchenglou. The result of Pix4D is oversimplified, resulting in more noises. It is also noted 
that the reconstruction time in CU-Recon is far shorter than that of other software. Overall, our software exhibits outstanding per
formance and generalization ability when encountering unseen large-scale architectural heritage without any postprocessing. 

4.2. Basic information about the participants 

A total of 61 valid participants responded to the survey. Basic information about the participants were collected and arranged in 
Table 4. The mean age is 36.2. 59% of participants are male. All participants have experience in heritage protection. 23 participants 
work more than 10 years in the field of heritage protection, accounting for 38%. 74% of participants have more than 5-year work 
experience in this field. 23% of participants have work experience within 5 years. 32 of the participants have a master’s degree, but 
most of them are Ph.D. candidates, and will get their diplomas within 3 years. 39% of participants have obtained Ph.D. degree. For 
working countries, 32 of the participants are working in developed countries and others are working in developing countries. 

For drone experience, the results are shown in Table 5. From the results, it can be known that the mean value of the question “Do 
you have one drone?” is 0.42. It means that 42% of the participants own one drone. But only 21% of participants have a drone 
operating license. The reason of this is because some countries do not introduce regulations for the drone operation. And although 
many countries have introduced relevant restrictive policies, enforcement is relatively lax. Therefore, the percentage of participants 
who own one drone operating license is so low. For the question “Have you operated the drone before?”, the mean value is 0.76, which 
means that 76% of participants have the experience to operate one drone. It is far higher than the average value of normal people, 
which is only 16% [60]. And this survey cares more about the experience of taking photos of buildings with drones, which is related to 
the topic using a single drone to record the architectural heritage. Compared to the 76% of participants who operated the drone, only 
34% of participants have the experience of taking photos of buildings with drones. 

Fig. 11. The aerial images and corresponding depth maps from the four views.  
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4.3. Satisfaction level 

The assessment of participant satisfaction on the 3D reconstructed model generated by CU-Recon involves four aspects, with mean 
satisfaction scores presented in Table 6. Regarding the clearness of the reconstructed model, the survey yielded a mean value of 3.6 
with a standard deviation of 1.4. Notably, participants working in the field of heritage conservation expressed the lowest satisfaction 
level on clarity among the four evaluated aspects, with practitioners indicating a preference for rendered mesh models over 3D point 
cloud. For the accuracy of the 3D point cloud, the mean satisfaction score from the survey is 4.2. In terms of the integrity of the 3D point 
cloud, the mean satisfaction value is the highest among the four items, reaching 4.5, with the lowest standard deviation of 0.6, 
indicating a uniformly high satisfaction level with integrity. Additionally, participants expressed a mean satisfaction score of 4.4 for 
authenticity. 

The assessment of participant satisfaction with the two scanning technologies is based on three aspects. The results are shown in 
Table 7. From the results, satisfaction levels on the three aspects showed the same pattern. Satisfaction levels were markedly higher for 
single drone photography compared to LiDAR-based scanning. In terms of instrument portability, the mean satisfaction score for single 
drone photography stands at 4.1, far higher than LiDAR-based scanning, which achieved a score of 3.3. In terms of operation, the 
disparity in satisfaction levels becomes more pronounced. Single drone photography received a mean satisfaction score of 4.5, while 
LiDAR-based scanning lagged behind with a score of 2.9. Additionally, when evaluating the cost, a pivotal factor in public engagement, 
participants expressed really high satisfaction, yielding a mean score of 4.6 for single drone photography. It is noted that the proportion 
of participants who were “very satisfied” is up to 63%, obviously higher than the other two aspects. Conversely, LiDAR-based scanning 
received a notably lower mean satisfaction score of 1.8 in this regard. Then, a one-way ANOVA was used in this study. The results 
showed that single drone photography in terms of portability and costs received significantly higher levels of satisfaction compared to 
LiDAR-based scanning (p < 0.001), while this difference is not significant in terms of operation (p = 0.052). 

Table 4 
Personal data of participants.  

Questions N % 

Age 
Mean 36.2  
Median 33  
Std. Deviation 12.6  
Gender 
Male 36 59 
Female 25 41 
Working years in heritage protection 
1–5 16 26 
6–10 22 36 
>10 23 38 
Education level 
Bachelor 5 8 
Master 32 52 
Ph.D. 24 39 
Working Country 
Developed 32 52 
Developing 29 48  

Table 5 
Drone experience of participants.  

Questions Mean 

Do you have one drone? 0.42 
Do you have a drone driving license? 0.21 
Have you operated the drone before? 0.76 
Did you take photos of buildings with drone? 0.34  

Table 6 
Satisfaction levels on reconstruction quality of CU-Recon.  

Questions Mean Std. Deviation 

How satisfied are you with the four aspects of reconstructed models by CU-Recon? 
a) Clearness 3.6 1.4 
b) Accuracy 4.2 0.6 
c) Integrity 4.5 0.6 
d) Authenticity 4.4 0.8  
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4.4. Regression results 

In this section, the determinants of satisfaction on the reconstruction quality of CU-Recon are figured out by multivariate regression. 
The dependent variable is the satisfaction level, which is the mean value of the four items. The independent variables are personal data 
and drone experience, including working years, working countries, “Do you have one drone?”, “Do you have a drone driving license?”, 
“Did you operate the drone before?”, “Did you take photos for buildings by drone?”. The outcomes are provided in Table 8. Notably, 
variables, like the gender, and education, were excluded from the analysis due to their insignificance in each model, indicating no 
significant relationship with satisfaction regarding the reconstruction quality. The model showed a notable variance in satisfaction 
levels, with a predictive power R2 of 0.482. 

Table 8 shows that “owning a drone”, “operated a drone”, and “took photos of building with drone” are related to higher satis
faction level on the reconstruction quality. “Owning a drone” increases satisfaction by 0.19. For “operated a drone”, it is a statistically 
significant predictor, which can enhance satisfaction by 0.28. Moreover, the satisfaction can be increased by “took photos for building 
by drone” at 0.21. Besides these three indicators, judging from the standardized coefficients, 1–5 working year is the most statistically 
significant predictor (− 0.45). With the working year increasing, the satisfaction goes down. This may be because practitioners with 
more working experience are too familiar with the traditional methods to accept new digital methods. Surprisingly, the working 
country development level also influences their satisfaction level. Working in a developed country increases satisfaction by 0.23, which 
show more influence than working in a developing country (0.16). 

5. Discussion 

In this section, the significance, limitations, and future work of this study are shown. 

5.1. Significance of the single drone 3D reconstruction approach 

Engaging the public in heritage conservation endeavors can significantly enhance the sustainability of such initiatives. This notion 
aligns with the principles set forth in the Washington Charter, which emphatically emphasizes the pivotal role of residents’ partici
pation and involvement in the success of conservation programs [61]. Heritage, as perceived and embraced by the public, can often 
better encapsulate the cultural significance of built assets than designations determined solely by expert evaluations. Previous studies 
have primarily explored the potential roles of public participation in the decision-making processes of heritage conservation [62]. In 
the decision-making processes, the effectiveness of public engagement hinges on the ability to influence decision-making [63]. In 
contrast, primarily tokenism entails a superficial involvement of community participants who serve as information providers and, at 
best, participate in consultations without wielding substantial decision-making influence [64]. 

However, achieving genuine empowerment of the public remains a challenging endeavor. Thus, it is imperative to depart from the 
conventional government-led heritage protection framework, which relies on government authority for decision-making and gov
ernment funding for implementation. A new approach, grounded in mass participation and fostering spontaneous engagement, is 
needed to enable bottom-up heritage protection, particularly for the preservation of often overlooked architectural heritage [65]. 

In comparison to maintenance and restoration efforts, documentation represents the most fundamental approach to participating in 
heritage conservation. Nonetheless, traditional recording techniques demand significant financial resources and professional exper
tise. The 3D reconstruction tool CU-Recon proposed in this article, achieved a high satisfaction following expert evaluation, and are 
proved to meet the requirements for the reconstruction quality in architectural heritage protection. Importantly, these advancements 
have substantially reduced the financial costs and technical barriers associated with public participation, which has been proved in the 
survey. Notably, CU-Recon enables 3D reconstruction of architectural heritage through single drone photography, empowering the 
public to spontaneously document architectural heritage rooted in collective memory. This innovative method opens up one route that 
was previously inaccessible, allowing heritage once forgotten by the populace, and even deemed of limited heritage value by the 
government, to regain vitality through digitization. 

5.2. Limitations and future work 

During the survey, we also had a lot of communications with the practitioners in the field of architectural heritage conservation. 
They expressed that although the 3D cloud point reconstruction can provide an accurate and complete model, they prefer the rendered 
mesh model. Therefore, the work at the next stage is to develop an approach to create mesh model based on our 3D reconstruction 
model. Moreover, while we have made significant strides in 3D reconstruction technology and software that facilitate public 
engagement in recording architectural heritage, a key challenge remains, as digital information captured by the public now resides 
solely on their individual devices, limiting its accessibility and impact [26]. To address this issue, there is a pressing need to establish a 
dedicated digital platform where the public can upload, share, and access these valuable heritage data. Moreover, the web-based 

Table 7 
Satisfaction levels on scanning technologies.  

Questions LiDAR-based scanning Single drone photography 

Mean Std. Deviation Mean Std. Deviation 

a) Portability 3.3 1.4 4.1 0.5 
b) Operation 2.9 1.4 4.5 0.7 
c) Cost 1.8 1.9 4.6 0.8  
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platform is supposed to provide the online 3D interaction service with low technical barrier and cost. Besides public participation, this 
platform can serve a dual purpose, also offer a space for publicizing, conducting business related to heritage, and heritage restoration. 
We have preliminarily leveraged Geographic Information Systems (GIS) and digital twin technology to create an integrated platform to 
showcase the digitized Tulou and will continue to optimize the user interface and build up a world heritage map [66]. The platform is 
being developed and improved, as shown in Fig. 12. Based on the models derived from the software tool CU-Recon. This platform will 
offer an innovative technical avenue for public engagement in heritage protection, further advancing the goal of bottom-up, sus
tainable architectural heritage preservation. 

6. Conclusions 

This study developed a single drone-based novel 3D reconstruction approach for public engagement into architectural heritage 
conservation. Firstly, the LCM-based MVS network was developed, enabling the public to employ only one drone for image capture and 
3D reconstruction of buildings. Next, a photogrammetry software tool CU-Recon was provided for executing the codes of the LCM- 
based MVS network. CU-Recon offers a simple operational interface in order to streamline the 3D reconstruction process for users. 

For the LCM-based MVS network, its performance was proved by experiments. The network shows 0.313 mm overall score on the 
standard MVS benchmarks. The experimental results on the BlendedMVS dataset show that our MVS network achieves the lowest 
estimation error in the depth estimation. Particularly, our method is well-suited for scenes at the building scale, demonstrating 
competitive performance in 3D reconstruction. 

To verify the effectiveness of the SD-3DR approach, the study selected architectural heritage Hakka Tulou, Zhenchenglou, for a 
real-world test. The 3D model of Zhenchenglou was reconstructed with CU-Recon and other four commercial 3D reconstruction 
software. Practitioners in the field of heritage conservation was invited for a satisfaction survey to quantitatively examine the 
reconstruction quality through CU-Recon and the effectiveness of the SD-3DR approach from a perspective of heritage conservation. 
For the reconstruction quality evaluation, satisfaction scores were obtained across four aspects: clearness (3.6), accuracy (4.2), 
integrity (4.5), and authenticity (4.4). For the effectiveness of the SD-3DR approach, participants expressed a mean satisfaction score of 
4.175 out of 5. The survey results also show that single drone photography for architectural heritage conservation is preferred over 
LiDAR-based scanning. It is noted that drone operation experience significantly influences the satisfaction on CU-Recon. 

Overall, based on the software tool CU-Recon, the SD-3DR approach significantly contributes to improving public engagement in 
protecting remote and lesser-known heritage buildings. It will change the situation of government-led architectural heritage con
servation. The approach provides valuable insights for practitioners in creating bottom-up heritage conservation routes. 

Table 8 
Determinants of satisfaction on the reconstruction quality of CU-Recon.   

Coeff. St. Coeff. 

Constant 4.175  
Personal data 
Working years 
1–5 − 0.453* − 0.163 
6–10 − 0.152 − 0.093 
>10 − 0.245*** − 0.136 
Working countries 
Developed country 0.229* 0.128 
Developing country 0.163* 0.08 
Drone experience 
Do you have one drone? 0.186** 0.113 
Do you have a drone driving license? 
Did you operate the drone before? 0.284*** 0.17 
Did you take photos for buildings by drone? 0.205*** 0.128 
R square 0.482  

*p < 0.05. **p < 0.01. ***p < 0.001. 

Fig. 12. The 3D model on the WebGIS platform.  
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