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Underwater image enhancement (UIE) is crucial for 
high-level vision in underwater robotics. While convolu-
tional neural networks (CNNs) have made significant 
achievements in UIE, the locality of convolution 
poses a challenge in capturing the global context. 
In contrast, transformer-based networks, adept 
at handling long-range dependencies, have 
shown promise in various vision tasks. 
Nonetheless, directly applying a trans-
former to UIE faces critical challenges: 
1) it tends to produce results with coarse 
details due to the negligence of local 
texture and 2) the varicolored degrad-
ed images require the network to be 
adaptable to different underwater 
environments. In this article, we pro-
pose a novel transformer-based net-
work that can effectively leverage 
both the global contextual and local 
detailed information with some key 
designs (a global–local transformer 
[GL-Trans] block and a detail-enhanced 
skip connector [DESC]) while being 
computationally efficient. Moreover, by 
introducing a simple but effective learnable 
environment adaptor, the proposed network 
is flexible to deal with different underwater 
environments. Extensive experiments have 
been conducted and have demonstrated the supe-
riority of our proposed network compared with 
other state-of-the-art (SOTA) methods both qualitative-
ly and quantitatively.

INTRODUCTION
Benefiting from the development of deep learning, UIE, 
which is vital for autonomous underwater vehicles (AUVs) 
to acquire clear underwater images and perform down-
stream vision-related tasks, has gained impressive success 
in recent years.

Existing learning-based UIE methods [1], [2] mainly 
rely on CNNs. The fixed geometric structure of a CNN 
module makes it outstanding at efficiently extracting local 
representations but also prevents it from extracting long-
range dependencies. Moreover, each activation unit within 
the same CNN layer shares identical receptive fields with 
restricted regions, which is disadvantageous for high-level 
layers that encapsulate global semantic information.
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The popularity of transformers [4] in the natural language 
processing (NLP) field has led to the success of transformer-
based networks in a variety of discriminative vision tasks [5], 
[6]. Unlike the locality of convolution operations, the self-
attention (SA) mechanism, which is a core component of a 
transformer-based network, helps the network better extract 
the global context of input images by calculating the feature 
responses with a weighted sum of all other features.

However, directly applying a transformer 
to generative vision tasks like UIE is still chal-
lenging. As has been observed before [7], [8], 
transformer-based networks tend to generate 
coarse images with unclear details. It might 
be caused by the following reasons: 1) tradi-
tional vision transformers divide the input con-
tent into a limited number of patches to draw 
global dependencies, which inevitably lose 
detailed local information, or 2) the recently 
proposed window-based transformers [6], [9] 
apply SA locally on windows of small spatial 
sizes to alleviate the quadratic computational 
cost but might introduce blocking artifacts due 
to its window-based SA manner [7]. Previous 
researchers have either replaced the network 
decoders [8] with CNNs or introduced a gener-
ative adversarial network (GAN) loss [7], [10] 
to help alleviate the problem.

Moreover, the property of degraded under-
water images also poses special demands for 
UIE methods. Owing to the absorption of light 
that varies with wavelength, as well as back-
scattering, degraded underwater images could 
exhibit varicolored effects in different underwater environ-
ments, requiring the UIE methods to be adaptive to images in 
various conditions. Previous works have either applied com-
plex domain adaptation (DA) methods [11], [12] or explicitly 
classified different types of water [3] to help the network adapt 
to different underwater environments.

In this article, we propose a novel transformer-based net-
work, dubbed WaterFormer, for UIE. With the well-designed 
GL-Trans block and DESC as our key components, the net-
work is effective in balancing the global semantic and local 
detailed features while being computationally efficient. 
Moreover, we also present a simple but effective environ-
ment adaptor to make the network flexible to various under-
water environments.

Our main contributions are as follows:
■■ A novel transformer-based UIE network that effectively 

integrates both global and local features while maintaining 
computational efficiency has been proposed.

■■ A simple but effective environment adaptor is designed 
to enable the network’s adaptation to various underwa-
ter environments.

■■ Extensive experiments demonstrate that our method 
outperforms other SOTA methods both qualitatively 
and quantitatively.

RELATED WORK

UIE
UIE techniques could be broadly categorized into two groups: 
traditional and learning-based approaches. The majority of tra-
ditional strategies aim to produce clear images by estimating 
the direct transmission and backscattering with certain prior 
assumptions [13], [14], [15]. Nevertheless, these strategies 

might be ineffective in scenarios where the 
underlying assumptions are inapplicable.

Learning-based UIE methods, in contrast, 
are mostly developed with CNNs. Due to the 
difficulty of acquiring reference images, early 
researchers combined underwater image gen-
eration and enhancement with the guidance of 
the underwater image formation model [16]. 
For example, Li et al. [17] introduced Water-
GAN for synthesizing underwater images 
using in-air images and depth data pairs and 
employed a two-stage CNN-based network 
for the task of monocular underwater image 
color correction. Li et al. [3] trained multiple 
UWCNN models with synthetic underwater 
images based on different Jerlov water types 
[18] for the enhancement of underwater imag-
es. As these methods only used simple CNNs, 
other works applied special designs to make 
the network more suitable for UIE. Fu and 
Cao [2] adopted a two-branch global–local 
network to compensate for the global color 
distortion and local contrast reduction and 
designed a compressed histogram equaliza-

tion with fixed parameters to further enhance the quality. 
Wen et al. [11] designed a CNN-based network with wavelet 
transform and a complex DA method to make the network 
better adaptable to various underwater environments.

However, the locality nature of convolution limits the 
CNN-based network’s ability to effectively extract the global 
context of the input content, which may result in suboptimal 
performance. In this article, we take advantage of the long-
range understanding capability of the SA mechanism and 
design an efficient and effective transformer-based network 
to boost the enhancement performance of various underwa-
ter images.

VISION TRANSFORMERS
A transformer [4] is a network solely based on SA mecha-
nisms, which was initially proposed for machine translation 
tasks. Since then, transformer-based networks [19], [20] 
have achieved SOTA performances on various NLP tasks. 
The SA mechanism employed by the transformer greatly 
improves the network’s ability to capture long-range depen-
dencies across input features and helps transformer-based 
networks adapt to various vision tasks. For instance,  
Dosovitskiy et al. [5] first proposed a vision transformer on 
image classification tasks with a pure transformer instead of 
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CNNs by directly treating the input image as sequences of 
image patches, achieving excellent results compared with 
SOTA CNN-based networks. Carion et al. [21] then proposed 
DETR with a transformer encoder–decoder architecture for 
object detection and significantly outperformed competitive 
CNN-based baselines.

Although transformer-based networks have achieved great 
success in various discriminative vision tasks, their capability 
in UIE, which requires the network to generate clear images 
with detailed texture, is still under study and 
exploration. However, the long-range captur-
ing nature of the SA mechanism makes the 
local detailed information inevitably ignored 
by the transformer. Although some research-
ers limit SA on small size windows [9], [10], 
[22] to extract local attentions, it could gener-
ate blocking artifacts due to the window-based 
SA mechanism [7].

In addition, degraded underwater images 
may hold varicolored representations due to the 
light absorption and backscattering in differ-
ent environments, requiring the UIE meth-
ods to be flexible to consistently enhance 
images from various environments, which has 
been ignored by previous transformer-based 
UIE methods [23], [24], [25], [26], [27], [28], 
[29], [30]. In this article, we propose a trans-
former-based UIE network that leverages the 
benefits of both global and local attention 
features to enhance images with detailed texture. A simple 
but effective environment adaptor to assist the network 
gain a better understanding of the underwater environment 
is also presented.

PROPOSED METHOD
In this section, the overall pipeline of WaterFormer is first 
introduced in the section “Overall Pipeline.” Then, the section 
“GL-Trans Block” details the proposed GL-Trans block. The 
DESC is discussed in the section “DESC.” Finally, the section 
“Environment Adaptor” describes the environment adaptor.

OVERALL PIPELINE
As shown in Figure  1, the overall design of our proposed 
WaterFormer is inspired by the U-shaped hierarchical net-
works [31] that have been widely applied in generative vision 
tasks. Specifically, the degraded underwater images 
I R H W3! # #  are first processed by a 3 3#  convolutional 
layer for extracting the low-level feature embeddings 

,X RC H W
0 ! # #  where C denotes the channels number and 

H W#  is the spatial dimension. These features are then 
transformed through K encoder stages, resulting in deep 
features ,X R / /( ) ( )

K
H W2 2 2K K K

! # #  with each stage comprising 
GL-Trans blocks that efficiently integrate both global and 
local information, where K is the number of encoder stages.

Following the K encoder stages, the bottleneck stage with 
Lb  GL-Trans blocks is used to process the deep features .XK  

The GL-Trans block in the bottleneck stage differs from those 
in encoder/decoder stages as it contains an environment adap-
tor to enhance the network’s adaptability to diverse underwa-
ter environments.

The decoder stages mirror the encoder stages to progres-
sively reconstruct clear underwater images. Unlike tradition-
al U-shaped networks, the inputs for each decoder stage are 
a combination of upstream decoder features and features from 
our DESC. We observe that directly merging encoder and 

decoder features leads to a performance drop 
with coarse detail, possibly due to the patch-
based SA mechanism’s limitations in detail 
extraction. Finally, a 1 1#  convolutional 
layer generates a residual map ,I R H W3! # #l  
resulting in the enhanced image .I II = + lu

During training, our network’s total loss is 
calculated by combining the L1  loss and the 
structural similarity (SSIM) loss [32] Lssim  
with their corresponding balanced weights 1m  
and ,ssimm  which is

	 .L L L1 1 ssim ssimm m= + � (1)

GL-TRANS BLOCK
Traditional vision transformers [5], [21] are 
adept at extracting long-range dependencies 
using full SA across all image patches. How-
ever, applying this approach to high-resolu-
tion images is computationally expensive, 

with computational cost rising quadratically ( ) .H WO 2 26 @  
Although larger image patches could alleviate the computa-
tional burden, it somehow results in diminished image detail. 
Some researchers [6], [10] have limited SA to smaller spatial 
windows, focusing on local features, but this approach com-
promises the ability to model long-range dependencies.

To tackle computational challenges and utilize both 
global and local SA advantages, we introduce the GL-Trans 
block. As shown in Figure  1(b), this block includes two 
parallel SA branches: a window-based local multihead SA 
(L-MSA) and a global MSA (G-MSA). As shown in Fig-
ure 1, after layer normalization, input features are passed to 
these branches.

The structure of L-MSA is detailed in Figure  2(a). The 
local features of size C M M# #t t t  (Ct  for channel number 
and Mt  for window size) are processed with 1 1#  pointwise 
convolutions and 3 3#  depthwise convolutions for both cross-
channel context and spatial information extraction. They are 
transformed into three feature maps, ,Ql  ,Kl  and ,Vl  which 
are then reshaped into MMt t  feature vectors with dimension .Ct  
The SA mechanism is then applied to the MMt t  feature vectors, 
and the local attention matrix is generated to multiply to Vl  
with matrix multiplication.

Unlike L-MSA, G-MSA operates on global features of 
size .C H W# #t t t  As depicted in Figure  2 (b), it uses 1 1#  
pointwise and 3 3#  depthwise convolutions to accentuate 
local context, creating feature maps ,Qg  ,Kg  and .Vg  These 
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maps are reconstructed into two-dimensional features of 
size ,N N#t t  then reshaped into Ct  feature vectors with dimen-
sion .N Nt t  Following this, the SA mechanism is applied to 
these vectors, forming a global attention matrix that is matrix-
multiplied with .Vg

The computational costs for L-MSA and G-MSA can then 
be computed as follows:

	
( )

( ) .

HWC HWC HW M C

HWC HWC N C HWC

3 27 2

3 27

L-MSA

G-MSA

2 2

2 2 2 2

X

X

= + +

= + + +

t t t t t t t t t t

t t t t t t t t t t t �
(2)

The equations demonstrate that the computational 
costs for both MSA modules exhibit linear complexity 

( ) .HWO t t

In the proposed approach, as depicted in Figure 2(c), local 
Xl  and global Xg  features are combined using a feature 
modulator. This process involves averaging the global fea-
tures and converting them into weighting parameters d  with 
a sigmoid function, which indicate the relative importance of 
Xg  and .Xl  The modulator then merges these features with 
weighting parameters.

X

k X

k

(C, M, M )

k k k
(C, N, N )

k k k

(C, N, N )

k k k

(MM, C )
k k k

(HW, C )

k k k

(HW, C )

k k k

(NN, C )

k k k

(MM, M M )

k k k k

(C, MM )

k k k

(C, NN )

k k k

(C, C)

k k

(C, MM )

k k k

(C, MM )

k k k

(C, H, W )

k k k

1 × 1
Conv

1 × 1
Conv

1 × 1
Conv

1 × 1
Conv

1 × 1
Conv

1 × 1
Conv

3 × 3
DWConv

3 × 3
DWConv

3 × 3
DWConv

3 × 3
DWConv

3 × 3
DWConv

3 × 3
DWConv

Vl

Vg Kg

Xg

Qg

Kl

Xl

Ql

Reshape Reshape Reshape

Reshape Reshape Reshape

X

X

S

Local-Attention Matrix
Global-Attention Matrix

AP AP

S

X

X

(a) Architecture of L-MSA (b) Architecture of G-MSA

(c) Data Flow of Feature Modulator

AP

P

X

S

Xg

Xl

Xm

1 – δ

δ

+

1

P+

Adaptive Average Pooling

Global Average Pooling

Element-Wise Addition

Element-Wise Multiplication

Element-Wise Subtraction

Matrix Multiplication

Softmax

Sigmoid

FIGURE 2. The details of our proposed GL-Trans block. (a) The L-MSA. (b) The G-MSA. (c) The feature modulator.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 21,2024 at 12:45:14 UTC from IEEE Xplore.  Restrictions apply. 



IEEE ROBOTICS & AUTOMATION MAGAZINE     MARCH 202434

DESC
In generative vision tasks, maintaining detailed structural 
and textual context is crucial for producing high-quality 
images. While U-shaped networks based on CNNs effective-
ly extract local context through direct connec-
tions among encoder and decoder features, 
transformer-based networks face challenges 
in capturing local information due to their 
inherent focus on longer contextual informa-
tion through SA mechanisms. Consequently, 
directly linking encoder and decoder features 
in transformer-based architectures often leads 
to a loss of local detail.

To tackle this challenge, we introduce the 
DESC, consisting of a sequence of convo-
lutional layers. As illustrated in Figure 1(a), 
the process begins with a 1 1#  convolutional 
layer applied to the encoder features, expand-
ing their dimensionality. This is followed by 
a 3 3#  depthwise convolution for gathering 
information around each pixel. Subsequent-
ly, a 1 1#  convolution is employed to gather 
cross-channel context and to resize features 
back to their original dimension.

ENVIRONMENT ADAPTOR
Given the challenges posed by wavelength-
dependent light absorption and backscat-
tering, effective UIE methods should handle degraded 
underwater images in various underwater environments. 
Instead of using intricate DA techniques [11], [12], we 
propose a straightforward yet effective environment adap-
tor that makes the network flexible to different underwa-
ter environments.

As illustrated in Figure 1(b), we incorporate the environ-
ment adaptor at the bottleneck stage, preceding the L-MSA/
G-MSA modules. The insight is that the deep features in the 
bottleneck stage preserve more global information pertinent 
to the underwater environment. As shown in Figure 3, the 
core of the adaptor lies in the learnable environment embed-
dings with shape ,L C#  where L is the possible environment 
type number and C is the deep feature dimension. The deep 
features first undergo a selection process from the learn-

able environment embeddings, aligning with the environ-
ment after Linear and Softmax processing. Subsequently, 
the selected environment embedding is channelwise multi-
plied with the deep features and integrated as a bias term. 

This approach improves the flexibility of the 
feature maps and contributes to improved 
enhancement performance.

EXPERIMENTS AND ANALYSIS

EXPERIMENTAL SETTINGS

NETWORK SETUP
In the proposed WaterFormer, the count of 
encoder/decoder stages K is set to four. 
Across stages 1 to 4, each contains two GL-
Trans blocks, with attention heads and chan-
nel dimensions configured as , , ,1 2 4 8" , 
and , , , ,32 64 128 256" ,  respectively. The 
bottleneck stage is also designed with two 
GL-Trans blocks, each having eight atten-
tion heads. It is observed that increasing the 
number of network parameters beyond 
K 4$  does not lead to notable improvements 
in performance.

TRAINING DETAILS
Our network is trained on a single NVIDIA 

Tesla V100 GPU using PyTorch, with an ADAM optimizer 
initiated at learning rate of 0.0001. We employ cosine anneal-
ing for learning rate adjustment until convergence. The bal-
anced weights, 1m  and ,ssimm  are set to 1. Training involves 
initially cropping input images to 128 128#  pixels at a batch 
size of 16 and progressively scaling up to full size with a 
smaller batch size. The training extends for 100  epochs, 
incorporating an early stop technique [33] applied to miti-
gate overfitting.

DATASETS
We first evaluate the performance of our network on 
synthetic underwater images. The synthetic training 
datasets are selected from UWCNN [3], LNRUD [34], and 
SYREA [11].  Their testing datasets are denoted as Test-
600U, Test-1000L, and Test-600S, respectively. For evaluating 
the network performance on real-world images, two real-
world underwater datasets are used, including UIEB 
[35] and EUVP [36]. The distribution of training, valida-
tion,  and testing images across these datasets is detailed 
in Table 1.

EVALUATION METRICS
The commonly used peak signal-to-noise ratio (PSNR) and 
SSIM [32] are adopted for both the synthetic and real-world 
UIE evaluations. Moreover, for real-world underwater imag-
es, we also compute the nonreference metrics underwater 
image quality measure (UIQM) [37] and underwater color 
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image quality evaluation (UCIQE) [38] that 
are commonly used for evaluating underwa-
ter image qualities. A human subjective 
user study is also conducted to further eval-
uate the network performance on real 
underwater images.

EXPERIMENTS ON SYNTHETIC 
UNDERWATER IMAGES
Experiments are first conducted using syn-
thetic underwater image datasets. The perfor-
mances of various image enhancement 
methods have been compared, including 
traditional prior-based methods like UDCP 
[13] and SOTA CNN-based methods such as 
UNet [31], UColor [1], GLNet [2], and Syre-
aNet [11], along with transformer-based methods like 
SwinIR [10], URSCT [24], UshapeTrans [23], UDAFormer 
[27], Uformer [9], and Restormer [39]. For a fair compari-

son, the released codes of these methods are 
used if they are publicly available; other-
wise, they are retrained with the same syn-
thetic training data.

Figure 4 illustrates the visual comparison 
of synthetic images under different underwa-
ter conditions from Test-600U. The results 
indicate that the traditional prior-based 
method, UDCP [13], inadequately enhances 
image quality, leaving water effects visible. 
Other learning-based methods exhibit color 
deviations or obvious artifacts. Our meth-
od, however, generates images that closely 
resemble the ground truth with superior 
PSNR/SSIM scores.

Table 2 details the quantitative results on 
testing datasets, where our WaterFormer achieves the high-
est PSNR and SSIM scores across all synthetic datasets. 
It surpasses other SOTA methods substantially, averag-
ing 2.27 dB higher in PSNR and 0.017 in SSIM. Further-
more, WaterFormer not only excels in image enhancement 
but also demonstrates computational efficiency. This effi-
ciency is evident in Figure 5, where it attains the optimal 
PSNR in Test-600U without compromising computational 
efficiency. Table  3 presents a comprehensive analysis of 
transformer-based networks in terms of GFLops, param-
eter count, and inference time. WaterFormer ranks sec-
ond in inference speed and maintains fewer parameters 
compared with most other networks, striking an effective 
balance between performance and computational effi-
ciency. Figure 6 displays training loss curves for various 
UIE methods on the SYREA training set, showcasing 

8.12/0.436 10.23/0.503 12.17/0.565 19.3/0.861 18.33/0.765 24.11/0.904 PSNR/SSIM

11.31/0.574 15.57/0.665 18.73/0.735 27.27/0.951 26.66/0.931 31.19/0.976 PSNR/SSIM

16.31/0.847 18.95/0.853 18.12/0.681 26.68/0.975 27.04/0.967 29.16/0.98 PSNR/SSIM

Raw Input UDCP [13] UFormerB [9] UDAFormer [27] Restormer [39] WaterFormer (Ours) Reference

FIGURE 4. Visual comparisons of the performances of WaterFormer and other SOTA methods on synthetic underwater images 
sampled from Test-600U [3]. Zoom in for a better view.

DATASET TRAINING VALIDATION TESTING

UWCNN [3] 2,342 552 596 

LNRUD [34] 26,146 1,700 1,154 

SYREA [11] 20,675 513 638 

UIEB [35] 703 95 92 

EUVP [36] 4,050 500 550 

TABLE 1. The counts of training, validation, and testing 
images across each dataset.

OUR METHOD, 
HOWEVER, GENER-
ATES IMAGES THAT 
CLOSELY RESEMBLE 

THE GROUND 
TRUTH WITH SUPE-
RIOR PSNR/SSIM 

SCORES.
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WaterFormer’s superiority by achieving the lowest training 
loss among SOTA methods.

EXPERIMENTS ON REAL UNDERWATER IMAGES
The efficacy of our WaterFormer has been further assessed 
on real underwater images from the UIEB [35] and EUVP 
[36] testing sets, comparing it with other SOTA methods. 
Figure  7 illustrates visual comparisons in greenish and 
bluish underwater conditions. Real underwater images pose 
greater challenges than synthetic ones due to their com-
plex environments. In these scenarios, UDCP [13] inade-
quately addresses the color variations, often leading to 
darker tones. Methods like SwinIR [10], SyreaNet [11], 
UshapeTrans [23], and UDAFormer [27] tend to generate 
noticeable artifacts. GLNet [2] and Restormer [39] are 
less effective in eliminating greenish/bluish effects. 

METHOD GFLOPS PARAMETER (M) TIME (MS)

UFormerB 87.6 69.5 53.1 

SwinIR 202.1 31.4 53.2

Restormer 87.2 16.9 59.1 

UDAFormer 41.6 9.6 48.4 

UShapeTrans 3.03 31.6 28.5 

URSCT 14.2 11.4 49.8 

WaterFormer 49.8 27.1 44.3 

The bold values denote the best, while the underlined values indicate 
the second best.

TABLE 3. Quantitative comparisons of GFLops, 
parameter counting, and inference time of 
transformer-based networks. 
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FIGURE 6. The training loss curves of various UIE methods on 
the SYREA [11] training set.
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FIGURE 5. Our proposed WaterFormer achieves SOTA perfor-
mance on the synthetic underwater image dataset (Test-600U) 
[3] while maintaining computational efficiency.

METHOD 

TEST-600U [3] TEST-1000L [34] TEST-600S [11] AVERAGE

PSNR- SSIM- PSNR- SSIM- PSNR- SSIM- PSNR- SSIM-

UDCP [13] 18.81 0.858 21.17 0.886 19.25 0.865 19.74 0.869 

GLNet [2] 26.07 0.926 27.81 0.951 25.73 0.922 26.54 0.933 

UColor [1] 25.63 0.901 27.31 0.949 23.44 0.909 25.46 0.919 

UNet [31] 25.53 0.893 27.93 0.953 23.51 0.915 25.66 0.920 

UFormerB [9] 22.59 0.857 27.49 0.947 22.41 0.897 24.16 0.900 

SwinIR [10] 25.64 0.913 28.95 0.958 23.62 0.933 26.07 0.935 

Restormer [39] 28.08 0.934 30.07 0.961 25.57 0.932 27.91 0.942 

UDAFormer [27] 26.26 0.906 26.49 0.934 25.38 0.941 26.04 0.927 

SyreaNet [11] 26.73 0.918 28.75 0.964 26.21 0.952 27.23 0.945 

UShapeTrans [40] 24.35 0.863 27.31 0.941 23.27 0.903 24.98 0.902 

URSCT [24] 24.86 0.891 27.52 0.950 23.39 0.902 25.26 0.914 

WaterFormer 30.09 0.943 32.61 0.978 27.84 0.965 30.18 0.962 

The bold values denote the best, while the underlined values indicate the second best.

TABLE 2. A quantitative comparison of our proposed method and other SOTA methods on various synthesis 
underwater dataset. 
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Conversely, WaterFormer consistently improves image 
quality across various underwater conditions and achieves 
higher PSNR/SSIM scores with reference images. Table 4 
presents the quantitative comparison of PSNR and SSIM 
scores for our network on the UIEB [35] and EUVP [36] 
datasets. Our network outperforms other SOTA methods 
in both datasets, demonstrating its capability on real 
underwater images.

To better validate the performances of various UIE meth-
ods on real-world images, we also compute the nonreference 
metrics UIQM [37] and UCIQE [38] that are commonly used 
for underwater image quality evaluation. Moreover, we con-
duct a user study by randomly choosing 10 enhanced under-
water images from each method and invite 30 volunteers to 
score the results in a range of 0–10, with a higher score indi-
cating better enhancement quality. As shown in Table 5, our 
proposed WaterFormer achieves comparable performances 
with other SOTA methods with respect to the metrics of 
UIQM/UCIQE and gets the highest score in the user study, 
indicating its effectiveness in generating visually pleasing 
enhanced images.

12.34/0.68 13.91/0.69 21.01/0.82 16.05/0.81 19.1/0.78

19.02/0.81 18.38/0.76 20.32/0.79 22.56/0.83 PSNR/SSIM

16.08/0.79 15.79/0.72 20.99/0.9 18.18/0.83 18.09/0.84

17.13/0.78 17.48/0.81 21.81/0.92 22.85/0.93 PSNR/SSIM

(a) (b) (e)(d)(c)

(f) (g) (j)(i)(h)

(k) (l) (o)(n)(m)

(p) (q) (t)(s)(r)

FIGURE 7. Visual comparisons of the performances of WaterFormer and other SOTA methods on real underwater images sampled 
from UIEB [35]. Zoom in for a better view. The enhancement results in a greenish underwater environment: (a) Raw input. (b) UDCP 
[13]. (c) GLNet [2]. (d) SwinIR [10]. (e) SyreaNet [11]. (f) UshapeTrans [40]. (g) UDAFormer [27]. (h) Restormer [39]. (i) WaterFormer. 
(j) Reference. The enhancement results in a bluish underwater environment: (k) Raw input. (l) UDCP [13]. (m) GLNet [2]. (n) SwinIR 
[10]. (o) SyreaNet [11]. (p) UshapeTrans [40]. (q) UDAFormer [27]. (r) Restormer [39]. (s) WaterFormer. (t) Reference. 

UIEB [35] EUVP [36]

METHOD PSNR↑ SSIM↑ PSNR↑ SSIM↑

UDCP [13] 15.18 0.763 16.38 0.772

GLNet [2] 22.85 0.913 23.08 0.889

UColor [1] 22.51 0.914 23.11 0.892

UFormerB [9] 22.28 0.918 23.88 0.887

SwinIR [10] 22.21 0.912 23.97 0.901

Restormer [39] 23.38 0.919 24.12 0.903

UDAFormer [27] 23.18 0.916 23.85 0.897

SyreaNet [11] 23.26 0.926 24.08 0.908

UShapeTrans [40] 22.08 0.909 23.18 0.885

URSCT [24] 22.55 0.913 23.98 0.891

WaterFormer 23.79 0.932 24.58 0.915

The bold values denote the best, while the underlined values indicate 
the second best.

TABLE 4. Quantitative comparisons of real-world 
underwater image datasets.  

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 21,2024 at 12:45:14 UTC from IEEE Xplore.  Restrictions apply. 



IEEE ROBOTICS & AUTOMATION MAGAZINE     MARCH 202438

ABLATION STUDY
This section details ablation studies conducted to evaluate the 
effects of our proposed modules on synthetic and real-world 
underwater images.
1)	 The effectiveness of the GL-Trans block: We evaluate the 

effectiveness of our GL-Trans block by removing the 
G-MSA/L-MSA branch in each transformer block. 
Table 6 reveals that removing G-MSA/L-MSA results in a 
PSNR decrease of approximately 3.0 on synthetic images 
and 1.5 on real images. Figure  8 shows that the model 
lacking L-MSA can produce noticeable artifacts and 
struggles to uniformly enhance image quality. Conversely, 
the model without G-MSA tends to 
create blocking artifacts in the back-
ground due to the window-based 
SA mechanism. Additionally, we 
explore the impact of the global–
local feature modulator by replac-
ing it with pointwise addition in 
each GL-Trans block. The results 
in Table 6 indicate that the feature 
modulator improves network per-
formance, emphasizing the necessi-
ty of effectively integrating global 
and local transformer features.

2)	 The effectiveness of DESC: The effi-
cacy of our proposed DESC is 
assessed by eliminating all DESCs 
and directly concatenating encoder 
with decoder features. As indicated 
in Table  6, this removal results in 
diminished performance, indicating 
the significance of utilizing detailed 

local information. As illustrated in Figure 8, visual com-
parisons show that the model without DESC struggles 
with handling the edges of foreground objects.

3)	 The effectiveness of the environment adaptor: The impor-
tance of the environment adaptor has been examined by 
removing it from the bottleneck GL-Trans block. Table 6 
shows PSNR reductions of 1.78 and 0.77 for synthetic and 
real underwater images upon its removal. As seen in 
Figure 8, the network lacking the environment adaptor retains 
a greenish tone, indicating its limited ability to handle varied 
underwater environments. Further, to assess its effectiveness, 
input images are classified using the environment adaptor 
based on their underwater scenarios. The insight is that the 
environment adaptor can autonomously learn environmental 
features in an unsupervised manner during training. With the 
number of possible environment types set to ,L 10=  
Figure 9 validates the adaptor’s capability in distinguishing  

MODELS

TEST-600U [3] UIEB [35]

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Full model 30.09 0.943 23.79 0.932 

Without G-MSA 26.82 0.923 22.27 0.910 

Without L-MSA 27.04 0.926 22.38 0.912 

Without feature modulator 28.56 0.931 23.28 0.926 

Without DESC 27.81 0.929 22.50 0.917 

Without environment adaptor 28.31 0.933 23.02 0.921 

The bold values denote the best, while the underlined values indicate the 
second best.

TABLE 6. Quantitative comparisons of ablated models 
on both synthetic and real-world underwater image 
testing sets. 

Raw Input Full Model Without
Environment Adaptor

Without DESC Without L-MSA Without G-MSA

FIGURE 8. Visual comparisons of ablated models. The red arrows indicate the major  
differences between the ablated model and the full model. Zoom in for a better view.

METHODS UIQM ↑ UCIQE ↑ USER STUDY ↑

UDCP [13] 1.290 0.556 4.11 

GLNet [2] 1.541 0.619 6.18 

UColor [1] 1.371 0.553 5.92 

UFormerB [9] 1.259 0.552 3.56 

SwinIR [10] 1.511 0.621 4.68 

Restormer [39] 1.689 0.614 5.42 

UDAFormer [27] 1.523 0.506 5.18 

SyreaNet [11] 1.656 0.582 4.27 

UShapeTrans [40] 1.404 0.577 4.52 

URSCT [24] 1.310 0.528 4.35 

WaterFormer 1.659 0.625 6.53 

The bold values denote the best, while the underlined values indicate 
the second best.

TABLE 5. Nonreference evaluations of  
real-world images. 
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different underwater environments. The images in each col-
umn correlate with a specific environment type, correspond-
ing to distinct environment embeddings within the adaptor.

DISCUSSION
While our WaterFormer shows SOTA results on various UIE 
datasets, it faces challenges in certain conditions. The first 
row in Figure 10 illustrates that in shallow waters with sun-
light reflections, our method may generate unwanted artifacts 
due to nonuniform illustration. Additionally, in highly turbid 
waters, as shown in the second row, WaterFormer’s effective-
ness is reduced. This issue is not unique to our method; other 
SOTA methods like Restormer [39], as demonstrated in the 
second column in Figure 10, also struggle under these com-
plex illumination conditions. It can be attributed to the lack of 
comprehensive training data covering these specific under-
water environments, limiting the generalizability of current 
learning-based approaches. Future efforts will thus be 
directed toward enhancing UIE performance in underwater 
scenarios with intricate lighting.

CONCLUSION
In this article, we propose a novel transformer-based network 
for UIE. Benefiting from our well-designed GL-Trans block, 

the network is superior in leveraging the 
global semantic and local detailed fea-
tures while being computationally effi-
cient. In addition, the proposed DESC 
module could boost the network’s capa-
bility to generate fine details. Moreover, 
we introduce a simple but effective envi-
ronment adaptor that helps the network 
better adapt to various underwater 
environments and further improves the 
network’s performance. Extensive 
experiments have demonstrated that 
our proposed network surpasses other 
SOTA methods in both qualitative and 
quantitative evaluations on synthetic 
and real underwater images, which 

could establish a solid foundation for future AUV tasks with 
respect to vision-related applications.
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