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Abstract
Unmanned aerial vehicles (UAVs) are emerging as a powerful tool for inspections and repair works in large-scale and
unstructured 3D infrastructures, but current approaches take a long time to cover the entire area. Planning using UAVs for
inspections and repair works puts forward a requirement of improving time efficiency in large-scale and cluster environments.
This paper presents a hierarchical multi-UAV cooperative framework for infrastructure inspection and reconstruction to
balance the workload and reduce the overall task completion time. The proposed framework consists of two stages, the
exploration stage and the exploitation stage, resolving the task in a sequential manner. At the exploration stage, the density
map is developed to update global and local information for dynamic load-balanced area partition based on reconstructability
and relative positions of UAVs, and the Voronoi-based planner is used to enable the UAVs to reach their best region. After
obtaining the global map, viewpoints are generated and divided while taking into account the battery capacity of each UAV.
Finally, a shortest path planning method is used to minimize the total traveling cost of these viewpoints for obtaining a
high-quality reconstruction. Several experiments are conducted in both a simulated and real environment to show the time
efficiency, robustness, and effectiveness of the proposed method. Furthermore, the whole system is implemented in real
applications.

Keywords Multi-UAV · Coverage path planning · Infrastructure inspection and reconstruction

1 Introduction

As the city grows, there are an increasing number of out-
dated buildings, making incidents like building collapses
more common. Regular inspections and repair works are
conducive and indispensable for building health and urban

This work was supported in part by the Research Grants Council of
Hong Kong SAR (Nos. 14209020, 14206821) and in part by the Hong
Kong Centre for Logistics Robotics (HKCLR).

B Xinyi Wang
xywangmae@link.cuhk.edu.hk

Chuanxiang Gao
cxgao@mae.cuhk.edu.hk

Xi Chen
xichen002@cuhk.edu.hk

Ben M. Chen
bmchen@cuhk.edu.hk

1 Department of Mechanical and Automation Engineering, The
Chinese University of Hong Kong, Hong Kong, Shatin, NT,
China

safety. These inspections typically require workers to enter
dangerous areas that are risky and difficult to access.With the
maturity of unmanned aerial technologies, in many emergent
scenarios, unmanned aerial vehicles (UAVs) play an essen-
tial role in collecting data efficiently and safely throughout
the inspection process [1–6] (such as infrared images, optical
images, etc.).

For inspection with a single UAV, Phung et al. [7] formu-
lated the building inspection path planning problem into a
traveling salesman problem (TSP) and verified their method
on open datasets. Tan et al. [8] proposed a building infor-
mation model (BIM) and UAV-integrated method to realize
automatic inspection data collection. The inspection path
planning problem is solved by a genetic algorithm based on
the BIM of the target building. For real-time path planning,
Kuang et al. [9] proposed a real-time flight path planning
method based on the reconstructed point clouds and poten-
tial coverage areas with the top view of the building as the
initial model. The approach can achieve coverage of the tar-
get building.
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Fig. 1 CUHKChengMing Building. A 52m long, 14mwide, and 16m
high building. a Physical building. b Reconstruction result

However, they concentrate on using a single UAV to com-
plete the inspection task, which takes a long time to cover
the entire building. Take the building shown in Fig. 1 as an
example. It is 52m long, 14m wide, and 16m high building.
To achieve full coverage of this building, 870 viewpoints
need to be reached, and it takes about 3h for a single UAV
to complete the whole task.

To provide fast and high-quality data for 3D building
models, multiple UAVs are used for inspection and recon-
struction problems to resolve task complexity and improve
time efficiency. Jing et al. [10] proposed an offline approach
by converting a multi-UAV inspection problem into a set-
covering vehicle routing problemandused amodifiedgenetic
algorithm to solve it. In [11], Zheng et al. presented a UAV
path planning methodology based on the pre-obtained rough
3D model of the building to cover the target building. The
above works [12–14], either generated the viewpoints and
path offline, or needed an initial model from pre-flight,
Google earth, or open datasets for planning. However, in
many real applications, the 3D model of the building and
surrounding environment cannot be acquired in advance.
Therefore, it becomes especially important to design an
exploration method that can quickly acquire information
about the target building and environment.

Recently, more and more researchers focus on using
multiple UAVs to autonomously explore the unknown envi-
ronment and reach their best regions. More specifically,
numerous solutions tend to use cellular decomposition meth-
ods to reduce the workload for each UAV and perform
a complete coverage task in real time. The most popular
method is to utilize the Voronoi partition. It is tractable for
a large number of robots or in large-scale environments, and
beneficial to obtaining a quick and feasible solution only
based on the position of robots [15, 16]. Collins et al. [17]
proposed a Voronoi-based scalable approach by splitting the
non-convex area for each UAV to minimize the task com-
pletion time. However, this work mainly focused on 2D
environments without considering the 3D geometry of the
target. The researchers further expand upon the convergence
findings of the aforementioned work, transitioning from pla-
nar environments to encompass 3D scenarios [18]. However,

it is important to note that these studies primarily focus on
addressing the challenges posed by a static Voronoi partition,
assuming prior knowledge of the environment. Regrettably,
the consideration of unforeseenout-of-range obstacles occur-
ring abruptly is seldom taken into accountwithin theseworks.

To tackle these challenges, this paper presents an explore-
then-exploit framework for multi-UAV cooperative building
inspection and reconstruction. Building upon our previ-
ous work in [16], this framework guarantees the coverage
of the target buildings, balanced workload assignment for
each UAV, and realizes online data collection without a
pre-obtained 3D model of the target building. The main con-
tributions of this paper are as follows:

• Wepropose an explore-then-exploit framework formulti-
UAV cooperative building inspection and reconstruction,
which can significantly enhance data collection quality.

• We design a density map construction method that
supplies both global and local information for real-
time planning and execution. Concurrently, a dynamic
Voronoi-based safe region is established to decrease the
total inspection time by evenly distributing the workload
among multi-UAV.

• Simulations are conducted in various environments to
show the time efficiency, robustness, and effectiveness
of the proposed framework. Furthermore, our developed
system, which includes a team of three UAVs, is used to
physically inspect different large-scale industrial build-
ings. This approach considerably reduces the overall
operation time, effectively minimizing potential hazards.

The rest of the paper is organized as follows. In Sect. 2,
the overall framework is introduced. The design of the den-
sity map, spatial deployment, exploration, and exploitation
method has been covered in Sect. 3. The real applications are
described in Sect. 4. Experimental results and evaluations are
provided in Sect. 5. Conclusion is given in Sect. 6.

2 Explore-then-exploit framework

Existing methods for multi-UAV inspection problems can
be divided into two steps. In the first step, a set of view-
points are generated around the surface of the target facility.
Then, in the second step, the shortest paths that travel through
these viewpoints are founded by solving a multiple traveling
salesman problem (mTSP). However, mTSP is an NP-hard
(Non-deterministic polynomial hard) problemwhen the envi-
ronment is large and complex. It takes a long time to solve
mTSP with plenty of viewpoints to be optimized. More-
over, for large-scale infrastructures, even though multiple
UAVs are used, each UAV needs to travel back and forth
frequently, which is very time-consuming. As a result, we
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Fig. 2 Overview of the proposed framework

propose an explore-then-exploit framework to decouple this
complex and time-consuming problem and solve it in two
stages. This framework reduces the requirement of knowing
the 3D model of the target building and the whole process
can be processed online. The overall framework is shown in
Fig. 2.

During the online exploration of unknown environments,
a density map is updated with consideration of the building’s
reconstructability. According to the information obtained
from the density map and relative state information, a
Voronoi-based planner is implemented to construct the safe
corridor of the flight region, and UAVs cooperatively con-
verge their corresponding working domains in a distributed
way to cover the building as best as they can. This bal-
anced workload deployment can reduce the total inspection
time and improve flight efficiency. The Voronoi corridor is
constructed to avoid obstacles in the movement. The advan-
tages of performing multi-agent coverage exploration in a
distributed way include robustness to agents being added to
or leaving the system, less information must be shared with
each other agent, and there is no central point of failure.

After completion of exploration, the UAVs have access
to environmental and building information. The viewpoints
for each UAV are generated within its working region. With
regard to the number of viewpoints and the endurance of
the batteries of each UAV, a capacity-constrained Voronoi
is used to distribute the viewpoints for each flight. There-
fore, a complex building inspection task is simplified into a
series of TSPs with a small number of viewpoints that can be
calculated online. Furthermore, in consideration of the safety
constraints of the UAV, an A* planner is used to connect each
viewpoint, and the distance of the trajectory is regarded as
the travel cost. Eventually, the shortest trajectory with mini-
mization of task completion time that travels through all these
viewpoints can be generated by solving TSPs.

During both the exploration and exploitation stage, the
online sensing and positioning module plays a significant
role in providing robust localization and mapping informa-
tion. We utilize a Lidar-based simultaneous localization and
mapping (SLAM) [19] to calculate the local position and
update the surface point cloud of the target building in real
time. Euclidean distance map can be built with the accel-
eration of GPU [20]. Furthermore, the density map can be
updated based on the surface point cloud, the reconstructabil-
ity, the Euclidean distance map, and the local position. It is
used to predict the distribution of viewpoints to achieve bal-
anced workload deployment.

With the combination of the above three modules, multi-
ple UAVs can fly autonomously in an unknown environment
without the 3D model of the target building. UAVs can cover
the entire building with an optimal and collision-free trajec-
tory and reach their best region. After task assignment, UAVs
can follow the generated trajectory and collect the images
at specified locations and orientations. The collected images
can be used in reconstruction and inspection for further appli-
cations.

3 Methodology

3.1 Density map construction

In multi-UAV region division, especially for the centroid
Voronoi-based method, just using an occupancy grid map
or Euclidean distance map to represent the environment is
not enough. A map that represents the information about the
environment is needed to guide the UAV. To reduce the com-
plexity of tasks and improve time efficiency, the whole area
needs to be divided into non-intersecting regions uniformly
for each UAV, and the best region division is highly related to
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the viewpoints for inspection in each region.However, before
getting the 3Dmodel of the target building, the distribution of
the viewpoints is unknown. As a result, a density map needs
to be built to predict the distribution of the viewpoints over
the environment W .

A common method for creating a density map involves
utilizing an occupancy grid map to divide the environment
into discrete spaces, each represented by a voxel that holds
a predicted density value. This density value is influenced
by two factors: the reconstructability and the distance to the
obstacles. The distance to the obstacles can be obtained from
the Euclidean distance map built by the GPU acceleration
method [20]. Furthermore, the calculation of reconstructabil-
ity is based on two theorems: stereo camera-based theorem
[21] and light field-based theorem [22].

As shown in Fig. 3, the reconstruction of two images can
be simplified into a stereo camera image matching and depth
estimation process. The depth estimation error of a stereo
camera is determined by the baseline between two cam-
eras and the distance between the observed object and the
cameras [23]. Based on this definition, the reconstructabil-
ity can be calculated by the view correlation relationship
between each viewpoint. As shown in Fig. 4. α is the par-
allax angle between two viewpoints V1 and V2, and s is
the surface point of the building. Based on the stereo cam-
era matching theorem, the error in reconstruction grows as
the distance increases and the parallax decreases. Concur-
rently, the capability to reconstruct points using stereo-image
matching reduces when dealing with a larger parallax. As a
result, we define the view correlation relationship between
two viewpoints as follows:

c(α) = 1

1 + e−(α−α1)

(
1 − 1

1 + e−(α−α2)

)
, (1)

where α1 and α2 are the lower and upper bounds of the par-
allax angle.

Furthermore, according to the light field theorem, as the
camera gets farther from the measured object, the effective
field of view of the camera becomes smaller. To determine
which surface points are effect, the effective field of view
needs to be calculated. We define θmax being the maximum
field of view of each viewpoint, di being the distance between
Vi and the surface f . dmin is the minimum attenuation dis-
tance and γdecay is the decay parameter. When the distance
between the viewpoint and the surface is less than the mini-
mum attenuation distance, the effective field of view θ ieff will
not attenuate. Based on the above definition, the effective
field of view of each viewpoint Vi can be calculated by Eq.
(2)

θ ieff = θmaxe
−max(di−dmin,0)

γdecay . (2)

ZED camera

Fig. 3 The relationship between stereo camera depth estimation and
the reconstruction process

V
1
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α

V
2

Fig. 4 View correlation relationship

After getting the effective field of view of each viewpoint,
we can use the following equation to determine if the point
s is in the field of view of Vi :

Γ s
Vi =

⎧⎨
⎩
1, if

∣∣arccos
(

ns · vi
‖ns‖‖vi‖

) ∣∣ < θ ieff ,

0, otherwise,
(3)

where ns represents the normal of point s and vi represents
the vector of Vi and s. As shown in Fig. 5, when the distance
di is larger than dmin, the effective field of view becomes
smaller as the distance becomes farther.

The density value is also related to the distance to the
obstacles, because the UAV needs to maintain a safe dis-
tance from the environment. Define the distance value of
each voxel as Di . Based on the above equations, the total
reconstructability stored as a value on each voxel can be cal-
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Fig. 5 Light field theorem. s3, s4, . . . , s7 can be seen in V1.
s2, s3, . . . , s8 can be seen in V2

culated by Eq. (4)

Ri =
Nv∑

j=1, j �=i

Ns∑
k=1

Γ
sk
Vj
c(α) + λDi , (4)

where Nv is the total number of voxels, Ns is the total number
of surface points, and λ is coefficient. Each voxel coordinate
corresponds to a position on a map. As a result, the density
map of the environment can be represented as a function
of position R( p), p ∈ W to guide the UAV inspecting the
building. A sample of generated density map is shown in
Fig. 6.

3.2 Spatial deployment

After constructing the densitymap, the area coveragemethod
needs to be designed to drive eachUAVmoving to itsworking
region to achieve the best coverage of the target building. In
particular, the Voronoi partition is conducive to obtaining
convergence results for complete coverage problems while
strictly avoiding duplicated task execution and collisions.

The Voronoi cell is used for generating non-intersecting
convex regions for each UAV. For each time t , the Voronoi
cell for each UAV is only determined by neighboring UAVs
and the building, thus can be formed as the intersection of
the following half-spaces:

1. n−1 half-spaces separating UAV i from UAV j with the
parameters of separating hyper-planes ai j and bi j , where
i, j ∈ {1, . . . , n};

2. One half-spaces separating UAV i from target building
with parameters of separating hyper-planes aio and bio.

To establish a hyper-plane for inter-robot, we need to sepa-
rate a safe region forUAV i , so that each point in this region is
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Fig. 6 An illustration of density map in top view, where the voxel with
high value means high reconstructability

closer to the position of the UAV than to other UAVs.We can
calculate ai j and bi j by finding a perpendicular line of any
two positions of UAV pi , p j using the following equations:

⎧⎨
⎩
ai j = pi j = pi − p j ,

bi j = pTi j
pi + p j

2
.

(5)

In the context of constructing hyper-planes between the robot
and the building, we regard the building as a bounded convex
hull decided by a vertex vector qo = [q1, . . . , qno ] ∈ R

d×no .
The object is to minimize the length of the collision vector
from the UAV to the building, and the aio can be quickly
calculated by solving the following low-dimensional opti-
mization problem:

min aTioaio,

s.t. (ql − pi )
Taio ≥ 1, ∀l ∈ {1, . . . , no}.

(6)

We then shift the hyper-plane to be tight with the building.
Thus, bio = min aTioqo.

Based on the above, for a teamof nUAVs localized at P =
[ p1, . . . , pn] in an environmentW , the Voronoi tessellation,
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V r(P) = {V1
r , . . . ,Vn

r } is defined by

V i
r =

{
p ∈ W|aTi j p ≤ bi j ,∀ j �= i, i, j ∈ I,

aTio p ≤ bio
}

.
(7)

As a result, each UAV can compute its own working domain
region V i

r according to the relative positions of others in a
distributed fashion.

To evaluate how well the structure is inspected by the
UAVs, we can use the following coverage function to opti-
mize the location of deployment based on the density map:

H(P) =
n∑

i=1
Hi (P) =

n∑
i=1

∫
V r
i

‖ p − pi‖2R( p)d p. (8)

Solving the above optimization problem, a gradient decent
control policy ui is designed to steer UAVs to converge to a
centroidal Voronoi tessellation (CVT) [24], that is

ui = −umax
pi − CV i

r

‖ pi − CV i
r
‖ , (9)

where umax is the maximum velocity of UAV. Using the con-
trol policy in Eq. (9), Each UAV can cooperatively update its
disjointVoronoi cell according to its and neighbors’ positions
at each time step. Eventually, a load-balanced separation of
the workspace can be constructed. This division, which is
crucial for optimal operations, ensures that the workload is
distributed evenly among the available spaces. In this spe-
cific context, each UAV is assigned a distinct portion of the
building to cover.

3.3 Online exploration

We now give a detailed process of our online exploration
method described in Algorithm 1. In real-world applications,
each agent is equipped with a sensor with limited sensing
capability. The density map that reflects the information on
the environment needs to be updated online. At the begin-
ning of the inspection task, we assume that the building is
a rectangle with estimated surface points S̄, and the exact
surface points S of the building will be constantly updated
as the group of UAVs moves. First, the global density map R
is constructed based on the rough estimate of the building. It
is formulated as a grid map and the initial value of R( p) is
defined as

R( p) =
{
1, if p ∈ W \ B,

0, if p ∈ B,
(10)

where B is the target building.
During exploring the surface of the building at each time

step, theVoronoi regionV r
i for eachUAV i can be constructed

Algorithm 1 Distributed online exploration
Input: S̄, W , P , B
Output: V r(P),S
1: R ← MapConstruction(S̄,W)

2: for each UAV i ∈ n do
3: while ui �= 0 do
4: V i

r ← GetVoronoiRegion(P,B)

5: ui ← ChooseNextMove(V r
i , R)

6: pi ← pi + ui
7: S ← UpdateSurfacePoints(B)

8: for each in ∈ Nv do
9: Rin ← UpdateLocalMap(S,W)

10: end for
11: R ← UpdateMap(R1, R2, . . . , RNv )

12: end while
13: end for

based on the relative positionswith otherUAVs and the build-
ing. Then, the control policy in Eq. (9) drives each UAV to
cover the building guided by the density map. During the
movement, the shape of the surface of the building is grad-
ually updated according to the limited sensor range and the
point clouds generated byLidar SLAM.The point clouds that
are in the building area B are extracted to replace the initial
surface points. Meanwhile, the density map can be updated
based on the surface points and the relative position using
Eq. (4). After several iterations of these processes, a group of
agentswill complete the exploration of the unknown environ-
ment. Subsequently, a spatial deployment can be formulated,
aiming to offer locally optimal sensor coverage across the
structure.

3.4 Exploitation

Upon completion of coverage exploration, the multi-agent
system has access to environmental and structure surface
information S. The online exploitation module is performed
to let the UAVs collect the reconstruction and inspection
data. First, Np viewpoints are generated according to the
shape of the surface of the target building. The viewpoints
are generated in the normal direction of the surface with the
consideration of the shooting distance and obstacles [25].

To consider the endurance of battery life during flight,
we need to uniformly divide the number of viewpoints to be
traveled Np for each UAV on each flight. Partitioning Np

into m clusters will be equivalent to a problem that divides
the working area of each UAV V i

r into m smaller Voronoi
cells. Therefore, capacity-constrained Voronoi diagrams are
introduced to solve this clustering problem.

Consider a set Pm of m generators determines a new
Voronoi partition V i

r (Pm) = {Vvpt,i
1 , . . . ,Vvpt,i

m } in the

regionV i
r , p ∈ V i

r . Denote the capacity |Vvpt,i
k | of a generator

pk ∈ Pm with respect to its Voronoi region Vvpt,i
k ∈ V i

r (Pm)
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as follows:

|Vvpt,i
k | =

∫
p∈Vvpt,i

k

R( p)d p. (11)

To improve the flight efficiency and reduce the total execution
time, the distribution of m generators needs to satisfy the
capacity constraint C = {ck |k ∈ {1, . . . ,m}}, where ck is
defined as

ck = 1

m

∫
V i
r

R( p)d p. (12)

Then, a capacity-constrained Voronoi tessellation with a
capacity constraint fulfills the following equation:

m∑
k

(
|Vvpt,i

k | − ck
)

= 0. (13)

Our method first generates an initial partition that fulfills the
capacity constraint for all sub-regions. Similar to the above
centroid Voronoi tessellation, this partition is then optimized
so that m generators are relocated to the centroids of their
sub-regions, while simultaneously maintaining the capacity
for each site. As a result, a capacity-constrained Voronoi par-
tition separates the working region of each UAV into a set of
sub-regions that balance the workload for the batteries and
minimize the sum of the shortest distances from the view-
points to assigned generators.

After viewpoints distribution, the Np number of view-
points is divided into several small subsets Nm

p . For each
subset, to get the shortest path that travels through all these
viewpoints, we formulate it into a collision-free trajectory-
based TSP. Based on the occupancy grid map, every two
viewpoints are connected by A* planner [26]. A collision-
free path can be extracted, and the distance of the path is
the travel cost ci j between every two viewpoints. As a result,
it becomes an asymmetric traveling salesman problem. The
formulation is shown in Eq. (14). vi j represents the connec-
tion relationship between viewpoint vi and v j . ui and u j are
any real numbers. The objective function of this optimization
problem is to minimize the total distance traveling through
all these viewpoints

min
n∑

i=1

n∑
j=1

ci jvi j ,

s.t.
∑
j∈N̄

vi j = 1, ∀i ∈ Nm
p ,

∑
i∈N̄

vi j = 1, ∀ j ∈ Nm
p ,

ui − u j + nvi j ≤ n − 1, ∀i, j ∈ Nm
p ,

vi j ∈ {0, 1}, ∀i, j ∈ Nm
p ,

ui , u j ∈ R, ∀i, j ∈ Nm
p .

(14)

Because the number of each set is small, the TSP of each
set can be solved online. Finally, the UAVs will follow the
generated paths and collect the images of the target building.

4 Applications

To verify the performance of our coverage control within a
real-time operating platform, particularly when faced with
limited computational resources, we have implemented the
system into a real-world inspection application. The inspec-
tion task is conducted by three fully autonomous UAVs.
These UAVs are tasked with the role to inspect and recon-
struct an academic building, as shown in Fig. 1.

The building exhibits a range of defects of various magni-
tudes, with some necessitating more in-depth inspections to
ensure the safety of the surrounding infrastructure. To com-
pletely cover this building, the UAVs must access roughly
900 different viewpoints for image capture. Carrying out this
task is a lengthy process for a single UAV, especially con-
sidering the vast scale of the environment. As a result, to
accomplish these tasks and decrease the total time needed, it
is important to utilize a spatially load-balanced deployment
ofmultipleUAVs.This approach allows formore efficient use
of resources and a significant reduction in the time required
to complete the inspection.

We deploy area coverage, sensing, viewpoints generation,
and path generation module on these UAVs. Starting from
one corner of the building, three UAVs autonomously fly to
their own load-balanced areas based on the reconstructabil-
ity obtained from the density map. The flight path and the
generated density map are shown in Fig. 7. They coordinate
with other UAVs to expand the range of perceived buildings
gradually. They collaborate with other drones to progres-
sively broaden the scope of buildings they can perceive until
reaching the best regions. This figure suggests that our cover-
age control strategy encourages each agent to investigate the
unexplored surroundings in a decentralizedmanner, ensuring
safety throughout the dynamic coverage operation.

After reaching the best regions, as shown in Fig. 8a, the
3D point cloud of this building can be obtained and the view-
points can be generated along the vertical direction of the
surface. Furthermore, the viewpoints are divided into several
sub-regions by considering the battery endurance of theUAV.

Finally, the viewpoints are connected by solving the TSP
and UAVs travel all of the viewpoints in the shortest path to
collect images,which can be used byAI detection. The region
division result and travel paths are shown in Fig. 8b, c. The
paths with different colors represent the task of each flight.
3D reconstruction [27] is conducted using these collected
images to verify the effectiveness. The result shown in Fig. 9
can achievemillimeter-level accuracy. To further evaluate the
generatedmodel, we conduct a scan toBIM [28] process. The
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Fig. 7 Coverage process of our algorithm. Top row: paths of 3 UAVs taking off from a corner in an obstacles-dense environment. Bottom row:
density map information

generated building informationmodel is shown in themiddle
row of Fig. 9. The RGB and infrared information that reflect
the found defects are shown in the right row. Despite some
instability of the GPS signal and uncertainty of localization,
these three UAVs successfully finished the inspection and
reconstruction task using our proposed framework.

5 Experiment

To elaborate on the proposed explore-then-exploit cooper-
ative framework, we conduct several experiments in both
simulators and real scenarios. We use Gazebo as the sim-
ulation platform and Pixhawk as the flight controller. The
simulation and algorithms are running on a laptop with an
Intel i7-9700 CPU and 16GB RAM. The parameters of our
algorithm are set as follows. The resolution of the grid map
is 1m for all axes. To meet the real-world requirements, the

maximum velocity of the agent is 2m/s, and the time inter-
val is chosen as �t = 0.1s. We assume that each UAV is
equipped with a lidar with the same range radius.

5.1 Validate time efficiency

To show the real-time performance of our proposed work,
we select mTSP as the benchmark and conduct the experi-
ments on a large-scale environment with different numbers
of UAVs, as shown in Fig. 10. The scene is a school with 10m
high, 20m wide, and 10m long. We use the calculation time
(CT) per re-planning iteration and total inspection time (IT)
as the evaluation metrics. For a fair comparison, because the
mTSP can onlywork in known environments, we assume that
the 3D model of the building is known, and mTSP has con-
verged. As shown in Table 1, CT per iteration for each UAV
in our method remains the same basically, which shows that
our method is intractable for a large-scale multi-UAV sys-
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Fig. 8 Illustration of point clouds and viewpoints

Fig. 9 Sample of reconstruction result, building information model, and collected images

tem and satisfied with real-time requirements. On the other
hand, as the number of coordinated UAVs becomes larger, IT
has decreased dramatically shorter than the mTSP method.
This is because our method distributes the multi-UAV into
more workload-balanced working regions. It is observed that
compared with others, our proposed work gains higher time
efficiency satisfying the real-time requirements.

5.2 Validate robustness

We continue to assess how well our proposed system han-
dles a situation where a single UAV fails during the mission.
To check how broadly our algorithm can be applied, we run
it in a different, messy environment. We keep the dimen-
sions of this environment and the target building identical
to those used earlier. The obstacles are scattered randomly
and come from different heights. As depicted in Fig. 11,
five agents, beginning from random starting points, collab-

Fig. 10 Simulation environments

oratively aim to cover the building extensively, guided by
the reconstructability data from the density map. When the
light blue agent becomes non-functional at the 7.6 s mark, its
nearby agents (the dark blue and red ones) adjust their oper-
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Table 1 Scalability analysis 3 UAVs 5 UAVs 7 UAVs 9 UAVs

Metric CT (s) IT (s) CT (s) IT (s) CT (s) IT (s) CT (s) IT (s)

mTSP – 374 – 225 – 164 – 134

Ours 0.205 353 0.194 207 0.197 138 0.201 98

Comparison of total inspection time and calculation time of our proposed method and mTSP over different
numbers of UAVs in a simulation environment
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Fig. 11 Coverage paths of 5 UAVs taking off from a random initial configuration. One of the UAVs (light blue) suddenly failed and others
dynamically adjust the responsible area

ational areas to make up for the coverage shortfall due to
the faulty drone. Ultimately, all agents manage to fully cover
the building by employing our distributed spatial deployment
algorithm, achieving this at the 14.6 s mark. It is noticeable
that evenwith aUAV failuremid-flight, the remaining drones
can still successfully complete the mission by adapting to the
changes in the information density map.

6 Conclusion

This paper proposes an explore-then-exploit multi-UAV
cooperative framework for building inspection and recon-
struction. The proposed framework guarantees the coverage
of the target buildings, balanced workload assignment for
each UAV, and realizes online data collection without a pre-
obtained 3Dmodel of the target building. Despite an increase
in obstacle density, the computational time of our suggested
algorithm remains consistent, and the collision avoidance
technique guarantees a safe region. We have effectively car-
ried out a comprehensive inspection of a large industrial
building using the system we developed. The high-quality
images gathered by the multi-agent system can help prop-
erty managers identify any structural issues that need to be

addressed. The system we have proposed holds substantial
value for the maintenance and management of industrial
facilities. Furthermore, the comparison results show that
our method has higher time efficiency compared with other
method and the experiments verify the effectiveness of our
method in different large-scale environments.
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