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A B S T R A C T   

Visual inspection of civil infrastructures has traditionally been a crucial yet labor-intensive task. In contrast, 
unmanned robots equipped with deep learning-based visual defect detection methods offer a more compre-
hensive and efficient solution compared to conventional manual inspection techniques. However, the full po-
tential of deep learning in defect detection has yet to be fully realized, primarily due to the scarcity of annotated, 
high-quality defect datasets. In this study, we introduce CUBIT-Det, a high-resolution defect detection dataset 
that includes over 5500 images captured under various scenarios using professional-grade equipment. Dis-
tinguishing itself from existing datasets, CUBIT-Det encompasses a wide array of practical situations, back-
grounds, and defect categories. We perform extensive benchmarking experiments on the dataset with nearly 30 
cutting-edge real-time detection methods, and analyze both the impact of the dataset’s annotation methods and 
zero-shot transfer ability of it. This effort lays a robust foundation for future advancements in defect detection 
solutions. Additionally, the practicality and effectiveness of CUBIT-Det are confirmed through thorough in-
spections of real-world buildings. Finally, we detail the features and acknowledge the limitations of our dataset, 
thereby highlighting significant opportunities for future research.   

1. Introduction 

Civil infrastructure is vulnerable to damage caused by a multitude of 
factors such as weather impacts, external loads, structural deterioration, 
and poor design. Periodic infrastructure inspections are crucial for 
remaining safe and functional infrastructures. Currently, non- 
destructive testing (NDT) devices like optical cameras [1], laser scan-
ners [2], impact echo [3], and ground-penetrating radar [4] are used for 
manual defect detections in civil infrastructure. Although human visual 
inspection is the most flexible and feasible method for preliminary 
diagnosis, it is subjective, time-consuming, laborious, and error-prone. It 
can also pose significant health and safety risks to human inspectors, 
especially when inspecting high-rise buildings and large spaces. To 
overcome these challenges, robotic platforms like unmanned aerial ve-
hicles (UAVs) and unmanned ground vehicles (UGVs) [5,6] have been 
developed to achieve more accurate and efficient infrastructure in-
spections, from data collection and defect detection. These unmanned 
platforms integrating computer vision techniques help achieve better 

inspection results. 
Recent advancements in automatic image processing, driven by deep 

learning methods [7–10], have marked a significant breakthrough, 
demonstrating substantial advantages in efficiency and effectiveness 
over traditional image processing techniques [11,12]. Object detection, 
a task widely applied across various scenarios and domains, exemplifies 
the exceptional performance of deep learning in speed and accuracy. 
Consequently, an increasing number of researchers in the construction 
field [13,14] are turning to deep learning-based object detection 
methods for inspecting and managing infrastructure defects. However, 
deep learning algorithms are notoriously data-hungry, necessitating 
specialized image datasets tailored for object detection in the con-
struction domain. Most existing object detection models are trained on 
high-quality, open-source datasets featuring common objects [15–17], 
characterized by high image resolutions, a large volume of images, a di-
versity of object types, and varied target backgrounds. Yet, the collection 
and annotation of images related to infrastructure defects present 
unique challenges, given the complex and dynamic nature of 
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construction activities. This leads to a scarcity of quality-assured, object- 
level datasets specifically designed for the construction industry. 

Building upon our previous work [18], we observed that the majority 
of publicly available defect datasets [19–25] are primarily focused on 
defect classification or segmentation tasks. Defect classification, while 
useful, falls short in pinpointing the precise location of defects. Defect 
segmentation, being a pixel-level classification task, often lacks the 
speed necessary for rapid inspections. In contrast, the defect object 
detection task not only swiftly classifies defect types but also provides 
crucial coordinate information of the defects, which is instrumental for 
subsequent defect registration processes. Furthermore, these existing 
datasets exhibit two significant limitations: firstly, they generally consist 
of a constrained collection of images with considerably low resolution; 
secondly, they tend to either focus on a single type of infrastructure 
scene (such as pavements, buildings, or bridges) or solely address the 
common defect of cracking. However, in practical infrastructure sce-
narios, especially concerning buildings, there are additional predomi-
nant defect types like spalling and moisture that need to be accounted 
for. 

Overall, establishing a high-quality defect detection dataset anno-
tated at the bounding-box level is crucial and urgent to facilitate auto-
mated infrastructure defect detection. To address the aforementioned 
challenges, we present a large-scale defect detection dataset, namely 
CUBIT-Det1, consisting of more than 5500 high-resolution (4624×

3472) images with bounding-box level defect annotation. With the aim 
of detecting critical defect types including the crack, spalling, and 
moisture, our proposed dataset covers various infrastructure scenarios: 
buildings, pavements, and bridges. To demonstrate the feasibility of the 
proposed dataset, we conduct a comprehensive evaluation of state-of- 

the-art object detection algorithms on our dataset for detecting infra-
structure defects. The sample of detection result on the test set of our 
CUIBT-Det dataset are shown in Fig. 1, where the rectangles indicate the 
output prediction box containing the defect position, category, and 
confidence score from YOLOv6-l [26] trained on the training set of our 
proposed dataset. The inspection results demonstrate the feasibility of 
the CUBIT-Det dataset. 

The contributions of our work is as follows:  

• We release an open-source2 dataset, CUBIT-Det, that features high 
resolution, multiple defect types, and is applicable to defect detec-
tion in various infrastructure scenarios. For data from different sce-
narios, we extensively use our self-developed unmanned system 
platform combined with our custom-designed algorithms for 
collection, greatly reducing manual labor.  

• To verify the feasibility of our CUBIT-Det dataset, we comparatively 
conduct extensive benchmarking experiments on the CUBIT-Det 
dataset with more than 25 state-of-the-art models, where the influ-
ence of a particular defect category on the detection accuracy is 
analyzed. And the influence of annotation methods and the trans-
ferability of CUBIT-Det are explored.  

• Moreover, a real-world infrastructure defect detection has been 
conducted by utilizing the model trained on CUBIT-Det dataset to 
further demonstrate the reliability of our dataset and the effective-
ness and convenience of unmanned system platform. 

The remainder of this paper is organized as follows. In Section 2, we 
provide a detailed overview of previous defect detection datasets and 
the deep learning algorithms that have been utilized to assess their 
feasibility and usability. In Section 3, we present the production process 
of CUBIT-Det, which includes the selection of defect types; the use of our 
specially designed automated unmanned system to collect data from 
different scenarios, significantly reducing manual labor; as well as data 
cleaning and annotation. In Section 4 we describe the statistics analysis 
of our CUBIT-Det dataset, and compare with other existing datasets of 
the same task. In Section 5, we adopt nearly 30 state-of-the-art deep 
learning-based object detection models to evaluate the feasibility of our 
dataset. Additionally, we conduct an in-depth analysis of the models’ 
performance in identifying diverse defect categories, evaluating its 
inference speed, and assessing the effects of different annotation 
methods on the models’ performance. We also explore the zero-shot 
transfer potential of models that have been trained on your CUBIT-Det 
dataset. Furthermore, in Section 6, we demonstrate the feasibility of 
the proposed dataset by presenting a real-world infrastructure defect 
detection experiment. Section 7 concludes this paper and discusses po-
tential research directions for improving infrastructure defect detection. 

2. Literature review 

2.1. Infrastructure defect detection dataset 

Based on our previous work [18], a limited number of publicly 
available defect detection datasets have been developed for infrastruc-
ture defect detection in comparison to defect classification and seg-
mentation datasets. Maeda et al. [27] propose the Road Damage 
Detection dataset (RDD-2018) for large-scale road damage detection. All 
the images are collected by a smartphone installed on the dashboard of a 
vehicle in Japan. RDD-2018 [27] has 9,053 images with a uniform 
resolution of 600 × 600 and contains 15,435 defect instances. As an 
extension of RDD-2018, the RDD-2019 [28] dataset expands the data 
volume to 13,135 images with a uniform resolution of 600× 600, 
comprising 30,989 road damage instances. Based on RDD-2019 [28], 
RDD-2020 [29] incorporates road defect data from the Czech and India, 

Fig. 1. Prediction results on the test set of the proposed CUBIT-Det defect 
dataset. The CUBIT-Det dataset covers three infrastructure types: Building, 
Pavement, and Bridge, and aims for three types of defect: Crack, Spalling, and 
Moisture. Rectangles indicate the output prediction box (Red for Crack, Pink for 
Spalling, and Orange for Moisture) with inferred defect type and confidence 
score from YOLOv6-l trained on the training set of our proposed dataset. 

1 CUBIT stands for CUHK Building Information Technology. 2 Our dataset is available at https://github.com/ZHAOBenyun/CUBIT. 
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with the aim of increasing the data diversity and improving the 
robustness of the neural network model during training. Images from 
Czech and Japan have a consistent resolution of 600 × 600 while images 
from India have a larger resolution of 720× 720. RDD-2020 [29] con-
tains 26,336 frontal-facing road images with more than 31,000 road 
damage instances under various light and weather conditions. Subse-
quently, RDD-2022 [30] expand based on RDD-2020 [29] by incorpo-
rating data from Norway, Ameraica, and China. Additionally, in RDD- 
2022 [30], the maximum resolution of the data has been increased to 
3650× 2044, and UAV is utilized for data collection, thereby enhancing 
the collection efficiency. However, their primary focus remains on road 
surface crack data, making the scenarios relatively monotonous. 

Majidifard et al. develops Pavement Image Dataset (PID) [31] con-
taining 7,237 images of 22 different pavement sections in the United 
States. All the images are crawled from Google street view. The images, 
with a resolution of 600× 600, consist of two camera views: a wide view 
and a top-down view, which are used to detect pavement distress and 
calculate the crack density for automated pavement rating in the future, 
respectively. Murad Al Qurishee et al. [32] also propose a dataset 
concentrating on detecting pavement damages, which includes 2,620 
images with resolution up to 838× 809. All the images are captured 
from hand-held phone and hand-held UAV. Recently, Sabouri et al. [33] 
introduce a relatively high-resolution (4032× 3024) pavement dataset, 
SUT-Crack. This dataset encompasses both bounding-box-level and 
pixel-level annotations, making it suitable for both detection and seg-
mentation tasks. However, the dataset contains only 130 images, which 
limits its size. Due to this limitation, SUT-Crack [33] is primarily 
appropriate for use in the testing phase. 

Despite the great contribution of the aforementioned datasets, most 
of their image resolutions are relatively low (no more than 1000× 1000) 
and they all focus on road defects only. However, the functional safety of 
other critical infrastructures such as buildings and bridges are also of 
great concern. Concrete Defect Bridge Image (CODEBRIM) dataset [34] 
focuses on detecting the defects of concrete bridges. To detect minor 
defects on bridges from different scales, cameras on UAVs with high 
resolution (up to 6000× 4000) and large focal lengths are adopted to 
collect data. Nevertheless, the CODEBRIM only contains 1590 images, 
inadequate to extract defect feature information. 

Synthesizing the shortcomings of the existing bounding-box-level 
datasets described above, we present a large-scale, high-resolution, 
and multi-scenario defect dataset for civil infrastructure defect 
detection. 

2.2. Data augmentation of defect dataset 

In recent times, an increasing number of researchers begin utilizing 
generative models, specifically Generative Adversarial Networks (GANs 
[35]), for data augmentation. As a popular deep learning generative 
model, GANs have been successfully applied in various practical appli-
cations. An original GAN consists of a generator and a discriminator. The 
generator receives random noise as its input, while the discriminator is 
fed with a combination of real data and fake data generated by the 
generator. The discriminator’s primary objective is to accurately 
differentiate between the real and generated data. Conversely, the 
generator aims to intricately map the distribution of the training data, 
effectively creating realistic imitations. In order to be effective on de-
fects data, modifications to the GAN network. For example, Tian et al. 
[36] modify the generator’s loss to be higher in regions with cracks and 
lower in areas without cracks, enabling the generator to reconstruct 
more accurate images. Except the original GAN, Xu et al. [37] utilize 
DCGAN [38] for dataset expansion, using real collected data as the 
training set for DCGAN, and then feeding both real and DCGAN- 
generated data into VGG16 [8] for defect detection. Maeda et al. [28] 
apply PGGAN [39] to synthesize uncommon “pothole” road surface 
defects, but the final dataset only contains real-world data. Mei et al. 

[40] introduce cWGAN to generate connective masks for crack images, 
replacing ordinary binary masks, thereby aiding the network in better 
performing detection tasks. While generative networks can achieve data 
augmentation, the common feature of these methods is the low resolu-
tion of the generated images, with the highest being only 256 × 256 in 
the aforementioned methods. Low-resolution images limit in semantic 
information, and models trained on these images have restricted scal-
ability. When faced with high-resolution images as input (e.g., 8000×

6000), resizing them to 256 × 256 results in the loss of significant in-
formation, rendering the missing detection of small defects. Therefore, 
generative models may not be universal approaches in creating a high- 
quality dataset. 

2.3. Defect detection approaches 

Deep learning approaches have made great progress in recent years 
due to the availability of massive datasets and ultra-powerful hardware. 
The representative networks mentioned in Section 1 are mainly the 
upstream image feature extraction networks. As one of the most com-
mon downstream tasks in various fields and scenarios, object detection 
needs have emerged in infrastructure inspections. 

Few deep learning approaches have been tested in the infrastructure 
defect dataset mentioned in Section 2.1. Maeda et al. use SSD [41] 
networks (recast the original backbone to Inception V2 [42] and 
MobileNetV1 [43]) to train RDD-2018 from scratch with random images 
flipping during training as the data augmentation method. RDD-2019 is 
also fed to the SSD network for training, using ResNet50 [9] as the 
backbone instead of Inception V2. Maeda et al. utilize PG-GAN [39] to 
generate synthetic images and add these images to the training process 
for dataset diversity. For RDD-2020 [29] and PID [31], transfer learning 
is adopted with the weights trained based on ImageNet [15] and MS 
COCO [17] as a powerful feature extractor. Transfer learning is to 
employ this powerful feature extractor and then fine-tune this feature 
extractor for the application to a specific dataset. Except for SSD [41], 
YOLOv2 [44] and Fast R-CNN [45] are trained on PID [31] as well. 

Recently, several trends that bypass human design intuition have 
also been identified to treat the neural architecture itself from a meta- 
learning perspective and perform black-box optimizations on the basis 
of weight training to find an architecture design suitable for a particular 
task. When training CODEBRIM [34], two meta-learning [46,47] 
frameworks based on Reinforcement Learning (RL) are added to the 
convolutional neural network for better frameworks and hyper-
parameters on CODEBRIM [34]. 

Beyond its application in the selection of hyperparameters, the meta- 
learning has been employed in road surface defect detection tasks that 
utilize few-shot learning. This approach enables networks to learn in a 
manner akin to human learning, applying existing knowledge to novel 
defect categories. Zhou et al. [48] use Faster R-CNN [49] as the detec-
tion model, employing the common object dataset FSOD [50] for base 
learning and conducting transfer training on an upgraded open-source 
defect dataset, culminating in tests on a real-world highway crack 
dataset. Dong et al. [51] propose a new few-shot learning framework, 
enhancing feature extraction by adding an attention module to 
ResNet18 [9]. During testing, cosine similarity is applied to compare the 
unlabeled query set with the labeled support set, thereby facilitating 
more effective classification of road surface cracks. 

The aforementioned deep learning methods, being either limited in 
quantity or outdated, fall short of fully representing the state of the art. 
Therefore, we have conducted expanded evaluation experiments to 
assess the performance of various advanced deep learning methods on 
our proposed dataset, applying these trained models in real-world sce-
narios to validate the flexibility of our dataset. However, despite the 
effectiveness of few-shot learning methods [48,51] in addressing data 
scarcity, the limitation of insufficient and single-scenario crack data 
restricts the breadth of their application. Therefore, the creation of a 
high-resolution, multi-scenario dataset is still a necessity. 
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3. Methodology of dataset establishment 

We introduce a more comprehensive dataset for defect detection, 
CUBIT-Det, encompassing a wide range of infrastructures across 
different districts in Hong Kong. Representative sample images from our 
dataset are showcased in Fig. 2. The bulk of the data in CUBIT-Det is 
meticulously collected using a self-developed unmanned system plat-
form, equipped with corresponding algorithms, from various locations 
across Hong Kong Island, Kowloon, and the New Territories in the Hong 
Kong SAR, China. In addition to this, we employ high-resolution Single- 
lens reflex (SLR) cameras and smartphones to capture supplementary 
data from diverse angles, thereby enriching the dataset with a broad 
spectrum of perspectives. 

3.1. Defect category selection 

We refer to numerous reports, standards, and infrastructure inspec-
tion guidelines when selecting the types of defects. Initially, we consult 
the BSI (British Standards Institution) standards publication about 
“building and constructed assets – service life planning3”. This standard 
primarily focuses on visible defects on the building surface. It discusses 
the relationship between the degree of deterioration and the exposure 

time of the building, among which spalling of the concrete cover is a 
highly dangerous type of defect. This defect can easily lead to the 
collapse of the building. The occurrence of spalling is often due to 
moisture erosion, the initial stage of which is manifested as wall seepage 
and moss. Therefore, we preliminarily select spalling and moisture as 
two defect categories. 

Since the data we collected is from various regions in Hong Kong, we 
refer to the inspection reports of the Hong Kong Buildings Department as 
well. The Hong Kong Buildings Department conducts mandatory regular 
inspections of buildings over 30 years old and higher than three floors to 
maintain the safety of the buildings. According to some reports from the 
Buildings Department, we summary that due to aging and wear, build-
ings in Hong Kong are prone to defects such as cracks (structural cracks, 
non-structural cracks) and spalling (spalling of concrete and defective 
external wall finishes). Except for non-structural cracks, other defects 
require timely contact with the Buildings Department and professionals 
for regular maintenance and repair work. At this time, our automated 
unmanned infrastructure inspection system can greatly improve effi-
ciency and assist professionals in completing regular maintenance work. 

In addition to the reports from the Hong Kong Buildings Department, 
a series of guidelines and reports such as the professional guide of 
building inspections4 from the Building Surveying Division of the Hong 

Fig. 2. Sample images from the CUBIT-Det dataset. The first row of images are crack defects on building surfaces and the second row includes crack defects on 
pavements (first and second column) and bridges (third and forth column). The third row is about spalling, and the forth row is about moisture. 

3 BS ISO 15686-7:2017. 4 Volume 1: Pre-1980 Residential&Composite Buildings in Hong Kong. 
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Kong Institute of Surveyors are also utilized to guide our selection of 
defect types. Ultimately, combining our previous work (citation) and the 
aforementioned series of standards, guidelines, and reports, we select 
crack, spalling, and moisture in CUBIT-Det dataset. 

3.2. Data collection 

3.2.1. Building 
The CUBIT-Det dataset includes abundant images of old buildings in 

Hong Kong, captured by UAV and DSLR. Building in our dataset com-
prises stone and concrete walls with three typical types of defects: crack, 
spalling, and moisture. Data about buildings covers various scenarios, 
involving different infrastructures, viewing angles, and background 
scenes. Since the overall population density of Hong Kong is relatively 
large, especially in Sham Shui Po and Mong Kok in Kowloon Peninsula, 
there are many pedestrians on the road and narrow spaces between 
buildings, forming the main difficulty in data collection. We use a 
relatively small-size UAV for horizontal shooting and DSLR for up-view 
shooting. According to the path planning method in photogrammetry, 
we design a energy-saving path algorithm to make the UAV orderly 
photograph the building to collect images at different locations. A zig- 
zag pattern, which is designed by ourselves, means flying the UAV in 
vertical or horizontal strips. All the strips should lie in a plane parallel to 
the target building façade. Vertical stripes are not recommended 
because the vertical movement of the lens decreases the clarity and 
quality of data gathered [52,53]. 

Fig. 3 illustrates the UAV data collection path in the horizontal zig- 
zag pattern. At each corner, UAV does not makes right-angle turns as 
shown in Fig. 3; instead, we opt for a rounded, smooth transition. Such 
path planning not only reduces the inertial force generated by the UAV 
from abrupt stops during turns but also shortens the overall distance, 
thereby achieving energy conservation. Fig. 3(a) is the front view of the 
zig-zag pattern in horizontal strips, which are proven to be ideal espe-
cially when paired with a low flight speed [52,53], Fig. 3(b) and (c) 
respectively show the UAV flying and shooting following the designed 
zig-zag route under the top view and right view conditions. There is an 
overlap between images, similar to a form of image enhancement (i.e., 
translation). Overlapped parts of adjacent images are labeled consis-
tently. The automated UAV system with our energy-saving path 

planning algorithm greatly saves labor costs during the collection of 
data in building scenarios. 

3.2.2. Pavement 
In addition to the defects on the exterior walls of the buildings, we 

also collect crack data on the pavements. Since the cracks on the pave-
ment surface are relatively long, we use the UGV with external USB 
cameras to take videos of the pavement surface. After that, the collected 
videos are sampled at a designed interval. The UGV is named Jackal, a 
small, fast, customizable robotics research platform from Clearpath 
Robotics company, shown in Fig. 4(a). We customize the stark Jackal 
UGV and install some sensors including a mechanical LiDAR Velodyne 
VLP16, a solid-state LiDAR Livox Mid40, an RGB-D binocular camera 
Realsense D435i, and a monocular USB camera. When collecting the 
optical pavement cracks data, we first activate the Velodyne VLP-16 to 
run SLAM algorithm to realize mapping [54,55]. We only need to 
manually control the UGV to roughly circle the target area, and the map 
of this area will be completed. After mapping, we directly mark the 
target points on the built map, shown in (Fig. 4(b), allowing the UGV to 
automatically explore the path to the target, which can greatly save 
labor costs. At the same time, a high-resolution monocular USB camera 
is always activated to record videos. Finally, we sample the video at 
intervals of 20 frames per second to obtain images. It should be noted 
that sampling at a lower FPS (e.g. 5 FPS) could result in overfitting deep 
neural networks. Therefore, slightly larger sampling intervals are 
employed. 

3.2.3. Bridge 
In addition to buildings and pavements, given Hong Kong’s hilly 

terrain, bridges are also a common infrastructure feature, rendering the 
detection of bridge cracks essential. However, as the collection of bridge 
data necessitates governmental approval, we confined ourselves to 
collecting defects on bridges within the CUHK campus to enrich our 
CUBIT-Det dataset. Unlike cracks data on dark pavement, the bridge has 
a light colour background, making the cracks more visible while 
increasing the model’s robustness. All bridge images are captured using 
the backend camera of mobile phones. 

3.3. Data cleaning 

Upon completing data collection, data cleansing becomes impera-
tive. Given our collection methodology, a portion of the gathered data is 
unusable. Initially, eliminating such invalid data is necessary to facili-
tate subsequent annotation. For the building defect data acquired via 
drones, some images lack the targeted defects, necessitating their 
removal. Similarly, for road defect data captured using the Jackal UGV, 
the high-speed movement and sudden stops often result in blurred video 
segments and unfocused images, which also require exclusion. 

Ultimately, after several rigorous rounds of selection and cleansing, 
we narrow our dataset down from over 8,000 original images to 5,527 
high-definition images, each featuring various infrastructure defects. 
This comprehensive process plays a pivotal role in ensuring the integ-
rity, quality, and applicability of our dataset for thorough analysis and 
model training purposes. 

3.4. Data annotation 

Upon successfully completing data filtering and cleaning, we embark 
on the critical phase of data annotation. The Visual Object Classes (VOC) 
data format, commonly known as the Pascal VOC format [16], is the 
most prevalent, standardized, and universally adopted format in both 
computer vision and industrial applications. Therefore, we choose this 
format as the designated output for our annotation tools. During the 
annotation process, we adhere to strict guidelines: (1) Each defect target 
must be completely enclosed within its respective bounding box, 
ensuring no overlaps between the box and the defects. (2) Every 

Fig. 3. UAV data collection route with a horizontal zig-zag pattern. (a) Front 
view. The gray block represents the building façade, and the white dot repre-
sents the waypoint, where the UAV takes images in a stop-shoot-go mode. (b) 
Top view. This view illustrates two horizontally adjacent waypoints with 
overlapped horizontal fields of view (FoV). (c) Right view. This view illustrates 
two vertically adjacent waypoints with overlapped vertical FoV. Where d1 
represents the distance interval between two adjacent waypoints, d2 represents 
the distance from UAV to the building façade, θ represents the angle which is 
half of the camera FoV and s1 represents the maximum distance on the building 
façade the camera covers. 
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discernible defective object in the images must be labeled, with no 
omissions. Following these stringent rules, our annotation procedure 
unfolds in three rounds: initially, students annotate the images inde-
pendently; then, in the second round, they cross-verify each other’s 
work, identifying images with ambiguous labels; finally, in the last 
round, we consult professors and construction field experts to resolve 
any remaining ambiguities. This meticulous process ensures the highest 
level of quality and accuracy in our dataset annotations. 

Fig. 5(a) presents the interface of the widely-used annotation tool, 
LabelImg5, renowned for its efficacy in bounding box-level object 
detection tasks. This tool generates labels in the form of Pascal VOC 
format XML files. The interface’s left side features tools essential for 
image annotation, including options for folder selection, output format 
choice, and image zooming capabilities. The central section of the 
interface displays the image being annotated, with various classes 
distinguished by rectangles in different colors. On the right side, the 
interface reveals a list of all defects identified in the image and an in-
ventory of all images pending annotation in the selected folder. Fig. 5(b) 
illustrates the label information encapsulated in the XML file, encom-
passing details such as the image name, path, dimensions, and the cat-
egories and coordinates of all defective objects within the image. 

4. Statistics of CUBIT-Det 

4.1. Overall analysis 

Fig. 6(a) illustrates the data collection scenarios. Our dataset pri-
marily consists of building data (65%), as buildings are among the most 
ubiquitous forms of infrastructure in daily life. However, due to the 
considerable challenge in data collection, no existing datasets include 
defect data specific for buildings. To tackle this challenge, we concen-
trate our efforts on building data during dataset establishment. With the 
help of our unmanned system platform, we greatly reduce the difficulty 
of collecting building defect data and enhance the efficiency. Pavements 
are the second-most typical (29%) scenario in CUBIT-Det owing to the 
prevalence of surface cracking. Bridges make up the remaining for 6%. 
As the collection of bridge data necessitates governmental approval, we 
confined ourselves to collecting defects on bridges within the CUHK 
campus to enrich our dataset. 

Fig. 6(b) illustrates the proportion of defect types. Cracks are 

Fig. 4. (a) Self-designed pavement data collection UGV system: Clearpath 
Jackal. The onboard computer is the Intel NUC. Two LiDARs sensors are 
Velodyne VLP16 and Livox Mid40, and Visual sensors includes a high- 
resolution USB monocular camera and a RealSense D435i RGB-D camera. (b) 
The demonstration of traversibility algorithm based on SLAM algorithm LeGO- 
LOAM [54,55]. The green circle is the current position of the car, and the ar-
rows in the oval circle are the target points given on the map we have built. The 
car will explore the path from the initial position to the target point. 

Fig. 5. (a) Interface of LabelImg. The rectangular boxes are used to select de-
fects, with different defects in different colors. (b) XML format file. The anno-
tation information include basic information about the images, image size and 
defect targets information. 

Fig. 6. (a) Defect collection scenarios; (b) Defect categories; (c) Defect target 
dimensions: Large targets are exceeding 10% of image dimensions, medium-size 
targets are ranging from 5% to 10% and small targets are less than 5%. 5 https://github.com/HumanSignal/labelImg. 
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undoubtedly the most significant and common defects, constituting the 
highest percentage in our dataset (82%). Following is spalling, which 
poses the most significant threat to infrastructure, accounting for 12%. 
As mentioned in the Section 3.1, spalling can easily lead to building 
collapse. The final 6% pertains to moisture-related issues, which is one 
of the main causes of spalling. 

Regarding the size of the defect objects, the statistics are shown in 
Fig. 6(c), illustrating that our dataset pays more attention to large ob-
jects (80%), which are larger than 10% of the entire image size. The 
medium-size objects are the defects whose width and height are larger 
than 5% but less than 10% of the image size, accounting for 15%. And 
the small objects, whose defect dimension is less than 5% of the whole 
image, making up 5% of CUBIT-Det dataset. Large objects are clearer 
than small objects and contain more defect features and information. For 
object detection tasks, there is a close relationship between the object 
size and the receptive field. If the object is small, then the model needs to 
have a small enough receptive field to detect the object correctly, and a 
higher resolution to determine the location of the object accurately. In 
addition, during the training process, if the number of small objects is 
greater than the number of large objects, the model tends to concentrate 
more on the small objects, thus affecting its ability to detect large ob-
jects. So, we concentrate on high resolution images and large size defect 
objects. 

4.2. Defect targets position distribution 

Object distribution is another significant consideration in the object 
detection dataset. The distribution of objects can affect the model’s 
spatial awareness, which is the model’s understanding of the distribu-
tion and relative position of objects in space. This distribution can also 
affect the model’s ability to detect offset targets, indicating the model’s 
robustness to target position shifts. When detecting buildings in real 
scenes, many defects could be sparsely distributed in various locations of 
the image input to the deep neural network model. Models with strong 
target offset detection capabilities can easily capture these defects. 
Furthermore, the generalization ability of the model has a strong rela-
tionship with the target position distribution. If the target distribution in 
the training dataset is not representative, the model will encounter 
targets with unknown positions in the real scene, and false detections 
and missed detections will occur. Fig. 7 shows the defect object position 

distribution of CUBIT-Det, the overall distribution of objects is uniform 
across the whole image area. The points on the central axis are relatively 
dense, forming a cross shape, since most objects are located in the 
middle area of the image. This data-position distribution ensures that 
the model trained based on our CUBIT-Det dataset has a better spatial 
perception, offset objects detection ability, and generalization. 

4.3. Comparison with other datasets 

The comparative analysis of existing bounding-box-level defect 
datasets, as discussed in Section 2.1, with our CUBIT-Det dataset is 
illustrated in Table 1. While our dataset may not rank as the largest in 
terms of sheer volume, it excels in image resolution and scene diversity. 
The image resolutions in our dataset range from a minimum of 4624 ×

3472 to a maximum of 8000× 6000. The data encompasses a wide array 
of infrastructures and scenarios, with a particular emphasis on buildings, 
which are both challenging to collect and ubiquitous in everyday life. 
This diversity ensures the effectiveness of models trained on our dataset 
in detecting defects across various scenarios. The efficacy of CUBIT-Det 
has been demonstrated through the training of nearly 30 state-of-the-art, 
deep learning-based, real-time object detection models. Detailed results 
of this evaluation are provided in Section 5. 

5. Evaluation experiments of CUBIT-Det 

We train 9 state-of-the-art series (more than 25 models) of real-time 
object detection algorithms on CUBIT-Det: YOLOv5 [60], YOLOv6 [26], 
YOLOv7 [61], YOLOX [59], PP-YOLO [56], PP-YOLOv2 [57], PP- 
YOLOE [58], PP-YOLOE+ [58] and Faster R-CNN [49]. With these al-
gorithms, we adopt the most common two object detection metrics 
(AP0.5 for Pascal VOC [16], and the other is AP0.5:0.95 for MS COCO [17]) 
based on the mean Average Precision (mAP) to evaluate the above 
networks. The trained models are selected for two reasons. Firstly, all 
networks are able to achieve real-time while performing the detection 
task. Secondly, these models are superior to other real-time object 
detection models with robust capabilities in detecting common objects. 
Thus, these models are expected to perform better in their infrastructure 
defect detection task. Additionally, training more network models not 
only verifies the usability of the dataset but also provides more options 
in different defect detection scenarios. 

Classic object detection models can be broadly divided into two 
categories: single-stage networks which directly complete classification 
and regression on the feature map to obtain faster detection results; and 
two-stage networks which consist of the region proposal network (RPN) 
generating many candidate boxes and the classification and regression 
network for recognition and localization of each object. YOLOv5 [60], 
YOLOv6 [26], YOLOv7 [61], YOLOX [59], PP-YOLO [56], PP-YOLOv2 
[57], PP-YOLOE [58] and PP-YOLOE+ [58] are single-stage object 
detection networks, and Faster R-CNN [49] belongs to two-stage 
networks. 

5.1. Experimental setup 

All experiments are conducted on a computer equipped with an Intel 
i9-10900k CPU and an NVIDIA RTX 3090 GPU. For training and testing 
various models, our CUBIT-Det dataset is divided into three segments: 
3,980 images for training (72%), 442 images for validation (8%), and 
1,105 images (20%) for robustness testing. The models train for 400 
epochs without using any pre-trained weights from other common ob-
ject detection datasets. Stochastic gradient descent (SGD) is employed as 
the optimizer. Additionally, Non-Maximum Suppression (NMS [62]) is 
utilized to eliminate redundant candidate boxes targeting the same ob-
ject. Algorithm 1 outlines the detailed procedures for NMS-based object 
detection. Let B represent the list of initially detected boxes, with S 
containing the respective detection scores. The threshold of NMS, 
denoted as Nt, plays a pivotal role. The set D is used to store the final 

Fig. 7. Object position distribution of CUBIT-Det dataset. The form of scatter 
plots is used to describe the position distribution of objects’ relative cen-
ter location. 
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selection of boxes. The Intersection-over-Union (IoU) threshold Nt is a 
critical parameter in NMS, assessing the overlap rate between predicted 
candidate boxes (C-Box) and the ground-truth bounding box (G-Box), 
with an ideal ratio being 1. In common object datasets, an IoU threshold 
of 0.5 is typically predefined for classifying whether a predicted candi-
date box is a true positive or a false positive. During validation and 
testing phases, the confidence threshold is set at 0.03 and the IoU 
threshold at 0.6. A visual explanation of IoU is provided in Fig. 8. 

Algorithm 1. The non-maximum suppression-based algorithm for ob-
ject detection.  

5.2. Evaluation metric 

Precision (P), Recall (R), and Average Precision (AP) are three most 
common used metrics in object detection for infrastructure defect 
detection tasks. Precision (P) is a metric to measure false detection, 
denoting the ratio of correctly detected target defects among all those 
predicted by a model. While Recall (R) is a metric to assess miss- 
detection, denoting the probability that these target defects are correct 
among all ground truth target defects. Precision and Recall are defined 
respectively as follows: 

Table 1 
The comparison between existing bounding-box-level defect dataset with CUBIT-Det.  

Dataset Num. of 
images 

Resolution Data collection 
platform 

Defect type Structure Material Experiments 

RDD-2018 
[27] 

9053 600× 600 Cameras on ground 
vehicle 

Crack Corrosion Pavement Asphalt - SSD [41] (Inception V2 
[42], MobileNet [43]) 

RDD-2019 
[28] 

13,135 600× 600 Cameras on ground 
vehicle 

Crack Corrosion Pavement Asphalt - SSD [41] (ResNet50 [9], 
(MobileNet [43]) 

RDD-2020 
[29] 

26,336 600 × 600 720×

720 
Cameras on ground 
vehicle 

Crack Pothole Pavement Asphalt - SSD [41] (MobileNet [43]) 

RDD-2022 
[30] 

47,420 512× 512 Smartphones Crack Pothole Pavement Asphalt – 
600× 600 Hand-held cameras 
720× 720 UAV cameras 
3650× 2044 Google street view 

PID [31] 7237 640× 640 Crawled from 
Internet 

Crack Pavement Asphalt a. YOLOv2 [44] 
b. Fast R-CNN [45] 

Murad [32] 2620 up to 838× 809 Hand-held phones 
and UAV 

Crack Pavement Asphalt - Faster R-CNN [49] 

SUT-Crack 
[33] 

130 4032× 3024 Cameras on ground 
vehicle 

Crack Pavement Asphalt – 

CODEBRIM 
[34] 

1590 up to 6000× 4000 Hand-held cameras Crack Corrosion Bridge Concrete a. MetaQNN [46] 
Cameras on UAV b. Efficient Neural 

Architecture Search [47] 
CUBIT-Det 5527 4624 × 3472 and 

8000× 6000 
Cameras in 
Unmanned Systems 

Crack Spallinig 
Moisture 

Building (65%) 
Pavement (29%) Bridge 
(6%) 

Concrete 
Asphalt Stone 

a. Faster R-CNN [49] 
(MobileNet [43], ResNet 
[9]) 
b. PP-YOLO [56] 
c. PP-YOLOv2 [57] 
b. PP-YOLOE(s,m,l) [58] 
c. PP-YOLOEþ(s,m,l) [58] 
d. YOLOX(n,t,s,m,l,x) [59] 
e. YOLOv5(n,s,m,l,x) [60] 
f. YOLOv7(t,normal,x) 
[61] 
g. YOLOv6(n,s,m,l) [26] 
i. Real-site experiment  

Fig. 8. Visualization of Intersection-over-Union (IoU). Blue rectangle and or-
ange rectangle represent the ground-truth bounding box (G-Box) and candidate 
box (C-Box) of this spalling sample, respectively. In IoU equation, the denom-
inator symbolizes the union of the G-Box and the C-Box, which is represented 
by a green rectangle. The overlapping area of the G-Box and the C-Box, which 
denoted their intersection, is also indicated by the green part. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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Precision =
TP

TP + FP
(1)  

Recall =
TP

TP + FN
(2) 

TP, TN, and FN are True Positives, True Negatives, and False Nega-
tives, respectively. If one defect is successfully detected and its predicted 
box’s IoU with the ground truth box is over threshold Nt, the predicted 
candidate box will be seen as the true positive (TP). Otherwise, it will be 
regarded as a false positive (FP). In addition, if one target defect fails to 
be detected, it will be designated as a false negative (FN). 

The area under the Precision-Recall curve (AUC-PR) is a metric to 
judge the performance of an object detection model which considers 
false detections and miss-detections for varying IoU thresholds. Like the 
AUC-PR metric, Average Precision is a way to summarize the PR curve 
into a single value. The Average Precision metric (AP) is the weighted 
mean of Precision scores achieved at each PR curve threshold, with the 
increase in Recall from the previous threshold as the weight. Since our 
detection task is multi-category, after obtaining AP for each category, 
we also need to average it to obtain a mean value of different AP, for 
short mAP. The equations of AP and mAP are shown below, where APk is 
the AP of class k and n is the number of classes. 

AP =

∫ 1

0
p(r)dr (3)  

mAP =
1
n
∑n

k=1
APk (4)  

5.3. Benchmarking experiment and analysis 

5.3.1. Overall analysis 
The detailed experimental results of the selected models tested on 

our CUBIT-Det are shown in Table 2. YOLOv6-l [26] has the best per-
formance among all the models in terms of the accuracy, whose mAPtest

0.5 
is 82.9% and mAPtest

0.5:0.95 is 55.9%, while the worst one is PP-YOLOE-s 
[58], whose results on mAPtest

0.5 and mAPtest
0.5:0.95 are 64.6% and 38.9%, 

respectively. The two models are single-stage object detection networks. 
For Faster R-CNN [49] which is the most representative two-stage object 
detection network, we abandon the original backbone network VGG16 
[8] and change it to a more lightweight but stronger backbone, Mobi-
leNetV2 [63] and a classic backbone, ResNet50 [9]. However, when the 
backbone is MobileNetV2 [63], mAPtest

0.5 and mAPtest
0.5:0.95 are 45.6% and 

19.4%, respectively, lower compared to the results of the one-stage 
network in Table 2. When the backbone is ResNet50 [9], compared 
with MobileNetV2 [63], the detection capability has been greatly 
improved, mAPtest

0.5 and mAPtest
0.5:0.95 are 71.5% and 43.3% respectively. 

However, they are still lower than most one-stage detection models. 
Among these networks, we visualize the number of parameters of 

these selected state-of-the-art real-time object detection networks for a 
complexity comparison. As shown in Fig. 9, YOLO5-n [60] takes the 

Table 2 
The test results of selected models based on CUBIT-Det.1, 2  

Model Backbone mAPtest
0.5↑ mAPtest

0.5:0.95↑ Crack Spalling Moisture 

APtest
0.5↑ APtest

0.5:0.95↑ APtest
0.5↑ APtest

0.5:0.95↑ APtest
0.5↑ APtest

0.5:0.95↑ 

YOLOv5-n [60] New CSP-Darknet 73.4% 39.9% 68.8% 35.6% 81.9% 49.9% 69.4% 34.4% 
YOLOv5-s [60] New CSP-Darknet 78.5% 47.2% 77.1% 44.1% 85.7% 59.8% 72.6% 37.8% 
YOLOv5-m [60] New CSP-Darknet 80.4% 51.3% 81.3% 50.5% 86.3% 62.3% 73.8% 41.2% 
YOLOv5-l [60] New CSP-Darknet 80.6% 52.6% 81.5% 52.1% 87.0% 64.1% 73.2% 41.7% 
YOLOv5-x [60] New CSP-Darknet 81.4% 53.0% 82.0% 52.8% 88.6% 64.1% 73.6% 41.9% 
YOLOv6-n [26] EfficientRep 76.3% 47.9% 80.6% 49.2% 88.8% 60.9% 59.5% 33.6% 
YOLOv6-s [26] EfficientRep 79.0% 48.2% 80.0% 48.4% 86.0% 59.1% 70.9% 37.1% 
YOLOv6-m [26] CSPBep 80.4% 54.1% 83.4% 54.1% 90.1% 64.7% 67.8% 43.6% 
YOLOv6-l [26] CSPBep 82.9% 55.9% 85.7% 55.8% 91.7% 67.5% 71.4% 44.3% 
YOLOv7-t [61] E-ELAN 71.1% 39.7% 67.4% 36.0% 79.8% 49.8% 66.1% 33.2% 
YOLOv7 [61] E-ELAN 77.5% 47.8% 77.4% 45.9% 82.5% 57.2% 72.7% 40.2% 
YOLOv7-x [61] E-ELAN 79.7% 53% 81.9% 52.8% 85.7% 64.1% 71.5% 41.9% 
YOLOX-n [59] CSP-DarkNet 73.0% 39.5% 71.3% 37.3% 80.7% 48.2% 67.1% 32.9% 
YOLOX-t [59] CSP-DarkNet 77.7% 49.2% 75.9% 48.0% 85.7% 60.2% 71.5% 39.5% 
YOLOX-s [59] CSP-DarkNet 77.8% 50.2% 76.0% 48.5% 85.7% 60.7% 71.6% 41.3% 
YOLOX-m [59] CSP-DarkNet 78.2% 52.2% 76.4% 51.4% 86.3% 62.2% 72.0% 43.0% 
YOLOX-l [59] CSP-DarkNet 78.5% 52.6% 76.8% 52.1% 86.4% 62.6% 72.3% 43.2% 
YOLOX-x [59] CSP-DarkNet 78.8% 53.4% 77.1% 52.2% 86.9% 64.1% 72.5% 43.9% 
PP-YOLO [56] ResNet50-vd-dcn 76.4% 45.1% 75.7% 42.6% 84.3% 56.3% 69.2% 36.5% 
PP-YOLOv2 [57] ResNet50-vd-dcn 77.3% 47.1% 77.8% 44.8% 84.6% 58.1% 69.5% 38.2% 
PP-YOLOE-s [58] CSPRepResNet 64.6% 38.9% 64.6% 36.4% 78.6% 50.1% 50.5% 27.5% 
PP-YOLOE-m [58] CSPRepResNet 74.2% 44.8% 73.9% 43.4% 84.5% 56.7% 64.3% 34.4% 
PP-YOLOE-l [58] CSPRepResNet 75.4% 46.4% 76.7% 46.0% 85.6% 57.9% 63.8% 35.4% 
PP-YOLOE+-s [58] CSPRepResNet 70.6% 44.0% 68.1% 40.4% 82.6% 56.1% 61.0% 35.6% 
PP-YOLOE+-m [58] CSPRepResNet 78.8% 50.9% 79.2% 49.3% 85.2% 60.4% 72.1% 42.9% 
PP-YOLOE+-l [58] CSPRepResNet 78.9% 51.0% 79.1% 49.9% 85.8% 61.7% 71.9% 41.4% 
Faster R-CNN [49] MobileNetV2 45.6% 19.4% 38.5% 15.8% 60.6% 26.3% 30.5% 12.6% 
Faster R-CNN [49] ResNet50 71.5% 43.3% 72.5% 42.3% 83.9% 54.2% 54.2% 29.3%  

1 The best results in each evaluation metric column are in bold. 
2 ↑ (↓) indicates that larger (smaller) values lead to better (worse) performance.  

Fig. 9. Comparison of parameters for the state-of-the-art methods. The 
YOLOv5-n [60] possesses the smallest number of parameters, and the YOLOX-x 
[59] possesses the largest number of parameters. 
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smallest parameters while the YOLOX-x [59] takes the largest. 

5.3.2. Categorized detection analysis 
Table 2 also presents the test results for different defect categories to 

further evaluate the detection ability of selected network models trained 
on our CUBIT-Det dataset. 

For crack, YOLOv6-l [26] has the strongest detection ability with an 
APtest

0.5 and APtest
0.5:0.95 accuracy of 85.7% and 55.8%, respectively. For the 

spalling category, YOLOv6-l [26] also has the strongest detection ability, 
achieving an APtest

0.5 accuracy of 91.7% (the highest APtest
0.5 value of all 

categories) and an APtest
0.5:0.95 accuracy of 67.5%. But for the moisture 

category, YOLOv5-m [60] achieves the best performance under the 
APtest

0.5 metric, followed by YOLOv5-x [60]. Under the APtest
0.5:0.95 metric, 

YOLOv6-l [26] regains the top spot (44.3%) followed by YOLOX-x [59]. 
The classic two-stage model Faster R-CNN [49] is not well adapted to 

our dataset. Faster R-CNN with a backbone of MobileNetV2 [63] ach-
ieves the lowest scores in each category, especially in the more difficult- 
to-detect the moisture category, with a mAPtest

0.5 of only 30.5%. After 
recasting the backbone with ResNet50 [9], the detection ability of Faster 
R-CNN [49] in the three categories has greatly enhanced, especially for 
the crack, which is increased from 38.5% to 72.5%. 

5.3.3. Network attributes affecting defect detection 
The inference time (latency) of the algorithm is another crucial in-

dicator for the practical implementation of real-time infrastructure in-
spections. Table 3 shows the latency of the selected deep learning 
algorithm based on our CUBIT-Det dataset. Obviously, the inference 
time required for single-stage object detection networks is significantly 
less than that of two-stage object detection networks. The YOLOX-x [59] 
model, which is the largest model in single-stage networks, takes the 
longest inference time of 41.2 ms. However, the Faster R-CNN [49] with 
a lightweight backbone (MobileNetV2 [63]) still needs 55 ms. 

In the same algorithm network series, due to the continuous 
expansion of the backbone network, the parameters and corresponding 
inference time are constantly increased. However, different networks do 

not follow this rule that fewer parameters mean shorter inference time. 
For example, the YOLOv6-n [26] model only needs 2.2 ms to complete 
the inference of one input image with resolution of 1024× 1024, but its 
Params. is 4.63 M. (In deep learning, “Params.” refers to the number of 
trainable parameters in a neural network model. The small “Params” 
also represents the small storage space occupied by the trained model. 
“GFLOPs” stands for “giga floating point operations per second”. It is a 
measure of the computational complexity of a model, calculated as the 
number of floating point operations, for short FLOPs, performed per 
second, divided by one billion, which is to express the value in billions of 
FLOPs per second. This metric is often used to estimate the computa-
tional cost or efficiency of running a given model on a particular hard-
ware platform) Contrarily, the Params. of YOLOX-n [59] model is only 
2.24 M, but it takes 4.2 ms to complete the inference of one image with 
resolution of 1024× 1024. Moreover, PP-YOLOv2 [57], which is not an 
enlarged version of PP-YOLO [56] but an upgraded version with struc-
tural improvements to realize the feature extraction ability, takes 11.0 
ms to complete the inference for one image, while PP-YOLO [56] needs 
11.2 ms to finish inference. 

Combined with the mAP results in Table 2, we visualize the latency 
versus mAP in Fig. 10. For all series of algorithms, as the model size 
increases, the inference speed will decrease while the detection capa-
bility will improve. However, there is a bottleneck in detection capa-
bility, which means that simply enlarging the model to realize the 
enhancement of detection performance cannot always be effective. By 
magnifying the top-left corner of Fig. 10, it becomes clearer that, on our 
CUBIT-Det dataset, YOLOv6 [26] series networks demonstrate a fabu-
lous trade-off between accuracy and latency. The YOLOv6-l [26] algo-
rithm with the strongest detection ability can infer an image in 15.9 ms. 
Compared with the other largest model of each series, YOLOv6-l [26] 
takes the least time. The reason is that the number of parameters of 
YOLOv6-l [26] is relatively small, and its backbone is a structurally 
reparameterized network, which saves a lot of inference time. 

5.3.4. Label attributes affecting defect detection 
In addition to the influence of different network models on the 

detection of infrastructure defects, we also experiment with the effect of 
data labels on the detection. Taking the crack category which is the most 
defect type in our CUBIT-Det dataset as an example, we classify cracks 
and labeled different cracks into three categories: “Linear”, “Branch”, 
and “Web” given their varied shape, style, and thickness. “Linear” usu-
ally refers to a single crack with no branch. “Branch” refers to a crack 
with a bifurcation, like a tree branch. “Web” refers that the cracks can be 

Table 3 
The inference speed test on CUBIT-Det.  

Model Params. 
(M) 

GFLOPs Input 
size 

Latency (ms) 
↓ 

YOLOv5-n [60] 1.76 4.10 1024 1.8 
YOLOv5-s [60] 7.18 15.80 1024 3.3 
YOLOv5-m [60] 20.86 47.90 1024 7.1 
YOLOv5-l [60] 46.12 107.70 1024 12.5 
YOLOv5-x [60] 86.19 203.80 1024 24.6 
YOLOv6-n [26] 4.63 29.03 1024 2.2 
YOLOv6-s [26] 18.50 115.64 1024 5.3 
YOLOv6-m [26] 37.90 225.55 1024 9.8 
YOLOv6-l [26] 65.05 396.57 1024 15.9 
YOLOv7-t [61] 6.01 13.00 1024 5.4 
YOLOv7 [61] 36.49 61.94 1024 8.4 
YOLOv7-x [61] 70.79 188.00 1024 17.9 
YOLOX-n [59] 2.24 17.75 1024 4.4 
YOLOX-t [59] 5.06 39.00 1024 5.8 
YOLOX-s [59] 8.94 68.51 1024 7.6 
YOLOX-m [59] 25.30 73.80 1024 13.7 
YOLOX-l [59] 54.20 155.60 1024 20.3 
YOLOX-x [59] 99.10 281.90 1024 41.2 
PP-YOLO [56] 48.99 136.43 1024 11.2 
PP-YOLOv2 [57] 56.91 146.50 1024 11.0 
PP-YOLOE-s [57] 8.02 20.73 1024 9.4 
PP-YOLOE-m [57] 24.63 62.93 1024 11.2 
PP-YOLOE-l [57] 55.82 142.13 1024 11.3 
PP-YOLOE+-s [57] 8.02 20.73 1024 8.1 
PP-YOLOE+-m [57] 24.63 62.93 1024 8.9 
PP-YOLOE+-l [57] 55.82 142.13 1024 10.4 
Faster R-CNN (MBNv2) 

[49] 
19.36 44.93 1024 55.0 

Faster R-CNN (Res50) 
[49] 

42.62 477.24 1024 76.9  

Fig. 10. Trade-off performance of different models about latency versus mAP 
trained on CUBIT-Det. The further the point is toward the top-left corner, the 
stronger the detection capability and the shorter the inference time. YOLOv6 
[26] series (green dash line) are able to complete inference with relatively little 
time, but them maintain the highest accuracy. 
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formed into rings, and the rings are close together to form a spiderweb- 
like structure. The visualization samples of 3-classes cracks are shown in 
Fig. 11. 

However, we later hypothesize that such annotations might impact 
the model’s inference speed, leading to detection errors. Furthermore, 
certain types of cracks, particularly “Branch” and “Web”, can be chal-
lenging to identify. This complexity could potentially confuse annota-
tors during the labeling process, resulting in inaccurate annotations. 
Such inaccuracies might also confuse the model, thereby reducing its 
detection accuracy. Therefore, we select 1000 images containing only 
cracks from the CUBIT-Det dataset for as precise annotation as possible. 
We test these images using the lightest models among the three powerful 
series algorithms - YOLOv5 [60], YOLOv6 [26], and YOLOv7 [61]. The 
hardware environment for training remains the same as mentioned in 
Section 5.1, and we still experiment without any pre-trained weights, 
training from scratch for 200 epochs. After training, we deploy these 
three models on an onboard computer (NVIDIA Xavier NX) of our UAV. 

In the quantitative analysis presented in Table 4, the YOLOv5-n [60], 
YOLOv6-n [26], and YOLOv7-t [61] models demonstrate that the 1-class 
labeling approach significantly boosts their detection capabilities. This 
method not only simplifies the identification of cracks but also mini-
mizes the potential for model confusion. Notably, in the YOLOv6-n [26] 
model, the detection accuracy, as measured by the (m)APtest

0.5 metric, 
shows an almost 20-percentage-point disparity favoring the 1-class la-
beling over the 3-classes labeling approach, underscoring the profound 
impact of annotation methods on model accuracy. Another critical 
metric, inference time (measured by the latency), also shows differences 
based on labeling approaches. Typically, models encounter faster 
decision-making processes when dealing with cracks labeled under a 
single category compared to those with three categories. However, the 
use of smaller models in these experiments means that the variance in 
inference time is relatively minimal. 3 classes labeling takes, on average, 
2 ms longer in inference time compared to 1 class labeling, but this is not 
a greatly small gap in the inference time according to Table 3. 

The qualitative comparisons of 1-class labeling versus 3-classes la-
beling for crack detection, as depicted in Fig. 12, further elucidate these 
findings. Models trained with a single-category crack annotation 
approach exhibit a lower propensity for missing crack detections, more 
precise and confident bounding box delineations, and a reduced ten-
dency for redundant detection of individual cracks, compared to their 
counterparts trained with a multi-category annotation approach. 

Based on the numerical metrics and actual detection results, it can be 
concluded that labeling cracks into one category has more advantages 
than subdividing cracks into three categories. It may be attributed to the 

fact that more categories can lead to more neuron nodes in the last 
classification layer of deep neural network model, which requires more 
time to infer. However, the subdivision of cracks into more categories 
may be helpful for the subsequent crack grade assessment and other 
related work. 

Fig. 11. Samples of three different crack labels. “Linear” refers to a single 
crack; “Branch” is like a branch on a tree but forms a circle; “Web” refers to 
forming multiple rings and gathering together. 

Table 4 
The crack detection results about different annotation methods.  

Label type Model Input size (m)APtest
0.5 Latency (ms) 

1-class Labeling YOLOv5-n [60] 1024 44.6% 19.1 
3-classes Labeling YOLOv5-n [60] 1024 33.2% 22.0 
1-class Labeling YOLOv6-n [26] 1024 53.6% 21.8 
3-classes Labeling YOLOv6-n [26] 1024 34.3% 24.5 
1-class Labeling YOLOv7-t [61] 1024 43.8% 24.7 
3-classes Labeling YOLOv7-t [61] 1024 30.9% 26.8  

Fig. 12. Comparison of crack prediction results under 3-classes labeling and 1- 
class labeling. The left column shows the crack detection results under 3-classes 
labeling and the right column shows the results under 1-class labeling. The 
better detection results are demonstrated by the 1-class crack labeling method. 
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5.3.5. Transferability of the CUBIT-Det dataset 
In addition to the analyses previously discussed about CUBIT-Det, an 

effective approach to validate the newly proposed dataset involves 
directly assessing models trained on it using similar open-source data-
sets. Following an extensive review and analysis of datasets akin to our 
CUBIT-Det dataset, as detailed in Table 1, we select the SUT-Crack [33] 
dataset as the testing ground. Then, We conduct the zero-shot tests by 
using YOLOv5 [60], YOLOv6 [26], and YOLOv7 [61] models that have 
consistently shown superior detection performance on our dataset. 

The decision to select the SUT-Crack dataset [33] for evaluation is 
based on its high-resolution data, which aligns with the quality of our 
CUBIT-Det dataset. And its labeling methodology, with a significant 
focus on “crack”, closely resembles ours. Moreover, a more challenging 
aspect is that the SUT-Crack [33] contains numerous images with 
shadows caused by varying angles of light exposure. While other data-
sets referenced in our study, such as RDD [27–30] and CODEBRIM [46], 
differ significantly in terms of image scenarios, resolution, and the 
granularity of defect labels (ranging from overly detailed to excessively 
broad), they lack dedicated test sets. These datasets are primarily 
designed for training purposes and are not optimized for comprehensive 
testing. Given that there are no open-source datasets specifically tailored 
to building exterior surface defects, and considering the trailblazing role 
of our CUBIT-Det in providing an extensive range of building defect 
data, finding a perfectly compatible open-source test dataset is chal-
lenging. Therefore, taking all these factors into account, the SUT-Crack 
dataset [33] stands out as the most suitable option for our transferability 
testing, effectively demonstrating the adaptability and robustness of our 
dataset. 

We conduct the zero-shot experiments under the same hardware 
environment as mentioned in Section 5.1, and the quantitative test re-
sults are demonstrated in Table 5. It is evident that models trained on 
our CUBIT-det dataset demonstrate considerable scalability, which also 
attests to the notable transferability of our dataset. Although our models 
are not trained on this SUT-Crack [33] dataset and are directly subjected 
to zero-shot testing, the performance on larger models of YOLOv5 [60], 
YOLOv6 [26] and YOLOv7 [61] are still quite favorable. Particularly 
noteworthy is the YOLOv6-l [26] model, which not only performed 
exceptionally well on our dataset but also continued to excel in this 
transferability test. It achieved an AP0.5 of 89.6%, nearing 90%, and an 
AP0.5:0.95 of 58.2%. This performance surpasses that on the test set of 
CUBIT-Det, validating both the transferability of our dataset and the 
scalability of models trained on it. 

In Fig. 13, we demonstrate the qualitative detection results of SUT- 
Crack [33] from YOLOv6-l [26] trained on our CUBIT-Det. Despite the 
challenges posed by varied shadow and lighting conditions in the SUT- 
Crack [33] dataset and no more any other training, the YOLOv6-l [26] 
model, which is trained on our CUBIT-Det dataset, consistently exhibits 
exceptional performance in this zero-shot test. It accurately identifies 
and delineates almost every crack in its entirety, showcasing its robust 
detection capabilities. 

6. Real-world experiment 

To further verify the feasibility of our CUBIT-Det dataset, a real- 
world infrastructure inspection is conducted on an industrial building 

in Fo Tan, Sha Tin District, New Territories in Hong Kong. YOLOv6-l 
[26] is chosen because of its particularly good performance for crack 
detection, and the fact that the target building is relatively new, nearly 
without apparent spalling and moisture defects. 

Three drones are used to ensure a high-efficiency and complete and 
coverage of the building façades and an exhaustive detection of cracks. 
The left part of Fig. 14 illustrates that the automated multi-UAVs system 
is utilized to capture the images of this industrial building equipped with 
our energy-saving path planning algorithm. At the same time, the 
detection model, YOLOv6-l [26], pre-trained based on our CUBIT-Det 
dataset, has a great detection performance, with almost no false detec-
tion and a low miss detection rate, accurately locating and detecting 
small defects. 

In total, 1016 images are detected according to different wall sur-
faces, and some detected results have been shown in the right part of 
Fig. 14, including 129 for northeast façade, 200 for southeast façade, 
393 for northwest façade, and 294 for southwest façade. Of the 1016 
exterior wall images, our model detects 1095 cracks. Most of these de-
fects belong to light, the detailed information is presented in Table 6. 
The Precision and Recall of this inspection task is 97.8% and 85.7%, 
respectively. The results are endorsed by the company of this industrial 
building. In addition to the visual inspection results in the images, the 
defect information (Table 7) also includes the defect class (1, 2, 3 
represent crack, spalling, moisture), relative position (coordinates of the 
center point of the prediction box, with the upper left corner of the 
detected image as coordinate origin), dimension (width and height of 
the prediction box), and the confidence score of the detected defects. All 
these defect data information will be used in the subsequent workflow, 
for instance, within a GIS (Geographic information system) platform, the 
detected defects are registered onto a point cloud entity model recon-
structed by our developed learning-based algorithm [64], utilizing both 

Table 5 
The test results on SUT-Crack [33] dataset.  

Model Input size Precision Recall APtest
0.5 APtest

0.5:0.95 

YOLOv5-m [60] 1024 57.9% 68.7% 59.9% 25.4% 
YOLOv5-l [60] 1024 63.7% 73.9% 68.4% 33.8% 
YOLOv5-x [60] 1024 72.3% 74.4% 71.6% 37.9% 
YOLOv6-m [26] 1024 76.0% 82.8% 80.7% 48.4% 
YOLOv6-l [26] 1024 82.7% 85.8% 89.6% 58.2% 
YOLOv7 [61] 1024 70.8% 72.4% 66.2% 31.5% 
YOLOv7-x [61] 1024 76.8% 69.4% 74.0% 41.8%  

Fig. 13. The validation about the transferability of CUBIT-Det dataset. (a) 
Original images with groud-truth labels from SUT-Crack [33]; (b) Detection 
results from YOLOv6-l trained based on CUBIT-Det. Despite the interference 
caused by shadow and light exposure in the data, YOLOv6-l [26] trained on our 
CUBIT-Det dataset manage to figure out the cracks in zero-shot task. 
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global and relative positional information. This real-site detection re-
sults of this industrial building inspection task demonstrate that the deep 
learning models trained on our CUBIT-Det can be easily transferred to 
real-world applications. 

7. Conclusions and discussion 

This paper presents a multi-scenario, high-resolution, and sufficient 
dataset named CUBIT-Det, which is collected by our self-developed 

Fig. 14. Visualization of this real-world building inspection task. On the left, three of our UAVs (framed by the red ellipse) with path planning algorithm have 
cooperated to inspect the building. On the right, each of the four columns shows the results of the façade in one direction of this building. 

Table 6 
The distribution of cracks per direction in the target building.  

Direction Light Mild Moderate Critical Sum 

Southeast 315 0 1 5 321 
Southwest 291 9 9 26 335 
Northeast 211 0 5 13 229 
Northwest 189 0 3 18 210  
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automated unmanned system, for infrastructure inspections, especially 
in building applications. And we have evaluated nearly 30 state-of-the- 
art real-time deep-learning object detection algorithms based on our 
dataset to further verify its reliability. The detection performance of 
each model is comprehensively compared regarding the accuracy and 
the inference speed metrics, while the effect of different labeling ap-
proaches on the detection performance is also analyzed. In the selected 
models, YOLOv6 series demonstrate the best trade-off in latency versus 
mAP. Among them, YOLOv6-l performs the best, which can reach 82.9% 
and 55.9% under the two indicators mAPtest

0.5 and mAPtest
0.5:0.95, respec-

tively. And YOLOv6-l only takes 15.9 ms to complete the inference of 
one 1024 × 1024 input image. More importantly, to validate the feasi-
bility and expansibility of our CUBIT-Det, we conduct a real-world 
experiment on an industrial building in Hong Kong by using the 
model trained on our dataset, and excellent inspection results have been 
achieved. 

Firstly, while we introduce a dataset centered on diverse infra-
structure defects, especially for building façade, marking it as a pio-
neering collection, its volume of samples still remains suboptimal. The 
richness and diversity of a dataset, particularly in quantity, play a 
crucial role in ensuring the robustness and generalizability of a trained 
model. And, an insufficiently large dataset may lead to an overfitted 
model and reduced performance on unseen or real-world data. There-
fore, in our future work, we aim to further optimize our unmanned 
system platforms to fully leverage its capabilities for collecting more 
data, thus expanding our dataset. We specifically intend to utilize drone 
platforms to gather data on exterior building surface defects, a chal-
lenging and underrepresented scenario in existing infrastructure data-
sets. Then, in the process of expanding the dataset, it is imperative to 
include images captured under various lighting conditions (such as 
daytime and nighttime) and different weather scenarios (overcast, rainy, 
and snowy conditions) to enhance the diversity of the dataset. Addi-
tionally, there should be an effort to incorporate a broader range of 
defect types, with particular attention paid to less common defect cat-
egories. These diverse data inputs will enable the trained models to 
become more robust and versatile, allowing for their application in a 
wider array of detection scenarios. 

Furthermore, even though we rigorously test across nearly 30 object 
detection networks, emphasizing the extensive nature of our experi-
ments, relying solely on existing algorithmic frameworks might not 
unveil the full potential of our dataset. The absence of a network tailored 
to infrastructure defect detection might inadvertently lead to the over-
look of certain domain-specific defect types. 

Lastly, but of utmost importance, in order to enhance the scalability 
and application scope of our dataset, it is crucial to extend beyond 
merely bounding box level annotations and incorporate pixel level 
segmentation masks as labels. Segmentation labels, being more gran-
ular, focus exclusively on the defect itself and better mitigate the in-
fluence of background noise. The addition of segmentation labels will 
render our dataset more comprehensive. Models trained on our dataset, 
augmented with these detailed annotations, will be equipped to handle a 
variety of task requirements, thus offering a more robust foundation for 
community. 

In summary, this research provides a foundational work and in-
dicates future directions for more efficiency infrastructure defect 

detection, despite space for further refinement and exploration. Future 
endeavors should focus on not only augmenting the volume, diversity 
and richness of dataset but also specializing a more lightweight but 
accurate algorithm tailored for the real-world infrastructure inspection 
tasks. 
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