
Automation in Construction 163 (2024) 105405

Available online 18 April 2024
0926-5805/© 2024 Elsevier B.V. All rights reserved.

High-resolution infrastructure defect detection dataset sourced by
unmanned systems and validated with deep learning

Benyun Zhao a, Xunkuai Zhou b,a,*, Guidong Yang a, Junjie Wen a, Jihan Zhang a, Jia Dou a,
Guang Li a, Xi Chen a,*, Ben M. Chen a

a Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
b School of Electronics and Information Engineering, Tongji University, Jiading, Shanghai, China

A R T I C L E I N F O

Keywords:
Defect detection
Object detection
High-resolution dataset
Deep learning
Unmanned system
Automated robotic platform
Infrastructure inspection

A B S T R A C T

Visual inspection of civil infrastructures has traditionally been a crucial yet labor-intensive task. In contrast,
unmanned robots equipped with deep learning-based visual defect detection methods offer a more compre-
hensive and efficient solution compared to conventional manual inspection techniques. However, the full po-
tential of deep learning in defect detection has yet to be fully realized, primarily due to the scarcity of annotated,
high-quality defect datasets. In this study, we introduce CUBIT-Det, a high-resolution defect detection dataset
that includes over 5500 images captured under various scenarios using professional-grade equipment. Dis-
tinguishing itself from existing datasets, CUBIT-Det encompasses a wide array of practical situations, back-
grounds, and defect categories. We perform extensive benchmarking experiments on the dataset with nearly 30
cutting-edge real-time detection methods, and analyze both the impact of the dataset’s annotation methods and
zero-shot transfer ability of it. This effort lays a robust foundation for future advancements in defect detection
solutions. Additionally, the practicality and effectiveness of CUBIT-Det are confirmed through thorough in-
spections of real-world buildings. Finally, we detail the features and acknowledge the limitations of our dataset,
thereby highlighting significant opportunities for future research.

1. Introduction

Civil infrastructure is vulnerable to damage caused by a multitude of
factors such as weather impacts, external loads, structural deterioration,
and poor design. Periodic infrastructure inspections are crucial for
remaining safe and functional infrastructures. Currently, non-
destructive testing (NDT) devices like optical cameras [1], laser scan-
ners [2], impact echo [3], and ground-penetrating radar [4] are used for
manual defect detections in civil infrastructure. Although human visual
inspection is the most flexible and feasible method for preliminary
diagnosis, it is subjective, time-consuming, laborious, and error-prone. It
can also pose significant health and safety risks to human inspectors,
especially when inspecting high-rise buildings and large spaces. To
overcome these challenges, robotic platforms like unmanned aerial ve-
hicles (UAVs) and unmanned ground vehicles (UGVs) [5,6] have been
developed to achieve more accurate and efficient infrastructure in-
spections, from data collection and defect detection. These unmanned
platforms integrating computer vision techniques help achieve better

inspection results.
Recent advancements in automatic image processing, driven by deep

learning methods [7–10], have marked a significant breakthrough,
demonstrating substantial advantages in efficiency and effectiveness
over traditional image processing techniques [11,12]. Object detection,
a task widely applied across various scenarios and domains, exemplifies
the exceptional performance of deep learning in speed and accuracy.
Consequently, an increasing number of researchers in the construction
field [13,14] are turning to deep learning-based object detection
methods for inspecting and managing infrastructure defects. However,
deep learning algorithms are notoriously data-hungry, necessitating
specialized image datasets tailored for object detection in the con-
struction domain. Most existing object detection models are trained on
high-quality, open-source datasets featuring common objects [15–17],
characterized by high image resolutions, a large volume of images, a di-
versity of object types, and varied target backgrounds. Yet, the collection
and annotation of images related to infrastructure defects present
unique challenges, given the complex and dynamic nature of

* Corresponding authors at: The Chinese University of Hong Kong, China
E-mail addresses: xunkuaizhou@cuhk.edu.hk (X. Zhou), xichen002@cuhk.edu.hk (X. Chen).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2024.105405
Received 22 October 2023; Received in revised form 14 March 2024; Accepted 22 March 2024

mailto:xunkuaizhou@cuhk.edu.hk
mailto:xichen002@cuhk.edu.hk
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2024.105405
https://doi.org/10.1016/j.autcon.2024.105405
https://doi.org/10.1016/j.autcon.2024.105405
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2024.105405&domain=pdf

Automation in Construction 163 (2024) 105405

2

construction activities. This leads to a scarcity of quality-assured, object-
level datasets specifically designed for the construction industry.

Building upon our previous work [18], we observed that the majority
of publicly available defect datasets [19–25] are primarily focused on
defect classification or segmentation tasks. Defect classification, while
useful, falls short in pinpointing the precise location of defects. Defect
segmentation, being a pixel-level classification task, often lacks the
speed necessary for rapid inspections. In contrast, the defect object
detection task not only swiftly classifies defect types but also provides
crucial coordinate information of the defects, which is instrumental for
subsequent defect registration processes. Furthermore, these existing
datasets exhibit two significant limitations: firstly, they generally consist
of a constrained collection of images with considerably low resolution;
secondly, they tend to either focus on a single type of infrastructure
scene (such as pavements, buildings, or bridges) or solely address the
common defect of cracking. However, in practical infrastructure sce-
narios, especially concerning buildings, there are additional predomi-
nant defect types like spalling and moisture that need to be accounted
for.

Overall, establishing a high-quality defect detection dataset anno-
tated at the bounding-box level is crucial and urgent to facilitate auto-
mated infrastructure defect detection. To address the aforementioned
challenges, we present a large-scale defect detection dataset, namely
CUBIT-Det1, consisting of more than 5500 high-resolution (4624×

3472) images with bounding-box level defect annotation. With the aim
of detecting critical defect types including the crack, spalling, and
moisture, our proposed dataset covers various infrastructure scenarios:
buildings, pavements, and bridges. To demonstrate the feasibility of the
proposed dataset, we conduct a comprehensive evaluation of state-of-

the-art object detection algorithms on our dataset for detecting infra-
structure defects. The sample of detection result on the test set of our
CUIBT-Det dataset are shown in Fig. 1, where the rectangles indicate the
output prediction box containing the defect position, category, and
confidence score from YOLOv6-l [26] trained on the training set of our
proposed dataset. The inspection results demonstrate the feasibility of
the CUBIT-Det dataset.

The contributions of our work is as follows:

• We release an open-source2 dataset, CUBIT-Det, that features high
resolution, multiple defect types, and is applicable to defect detec-
tion in various infrastructure scenarios. For data from different sce-
narios, we extensively use our self-developed unmanned system
platform combined with our custom-designed algorithms for
collection, greatly reducing manual labor.

• To verify the feasibility of our CUBIT-Det dataset, we comparatively
conduct extensive benchmarking experiments on the CUBIT-Det
dataset with more than 25 state-of-the-art models, where the influ-
ence of a particular defect category on the detection accuracy is
analyzed. And the influence of annotation methods and the trans-
ferability of CUBIT-Det are explored.

• Moreover, a real-world infrastructure defect detection has been
conducted by utilizing the model trained on CUBIT-Det dataset to
further demonstrate the reliability of our dataset and the effective-
ness and convenience of unmanned system platform.

The remainder of this paper is organized as follows. In Section 2, we
provide a detailed overview of previous defect detection datasets and
the deep learning algorithms that have been utilized to assess their
feasibility and usability. In Section 3, we present the production process
of CUBIT-Det, which includes the selection of defect types; the use of our
specially designed automated unmanned system to collect data from
different scenarios, significantly reducing manual labor; as well as data
cleaning and annotation. In Section 4 we describe the statistics analysis
of our CUBIT-Det dataset, and compare with other existing datasets of
the same task. In Section 5, we adopt nearly 30 state-of-the-art deep
learning-based object detection models to evaluate the feasibility of our
dataset. Additionally, we conduct an in-depth analysis of the models’
performance in identifying diverse defect categories, evaluating its
inference speed, and assessing the effects of different annotation
methods on the models’ performance. We also explore the zero-shot
transfer potential of models that have been trained on your CUBIT-Det
dataset. Furthermore, in Section 6, we demonstrate the feasibility of
the proposed dataset by presenting a real-world infrastructure defect
detection experiment. Section 7 concludes this paper and discusses po-
tential research directions for improving infrastructure defect detection.

2. Literature review

2.1. Infrastructure defect detection dataset

Based on our previous work [18], a limited number of publicly
available defect detection datasets have been developed for infrastruc-
ture defect detection in comparison to defect classification and seg-
mentation datasets. Maeda et al. [27] propose the Road Damage
Detection dataset (RDD-2018) for large-scale road damage detection. All
the images are collected by a smartphone installed on the dashboard of a
vehicle in Japan. RDD-2018 [27] has 9,053 images with a uniform
resolution of 600 × 600 and contains 15,435 defect instances. As an
extension of RDD-2018, the RDD-2019 [28] dataset expands the data
volume to 13,135 images with a uniform resolution of 600× 600,
comprising 30,989 road damage instances. Based on RDD-2019 [28],
RDD-2020 [29] incorporates road defect data from the Czech and India,

Fig. 1. Prediction results on the test set of the proposed CUBIT-Det defect
dataset. The CUBIT-Det dataset covers three infrastructure types: Building,
Pavement, and Bridge, and aims for three types of defect: Crack, Spalling, and
Moisture. Rectangles indicate the output prediction box (Red for Crack, Pink for
Spalling, and Orange for Moisture) with inferred defect type and confidence
score from YOLOv6-l trained on the training set of our proposed dataset.

1 CUBIT stands for CUHK Building Information Technology. 2 Our dataset is available at https://github.com/ZHAOBenyun/CUBIT.

B. Zhao et al.

https://github.com/ZHAOBenyun/CUBIT

Automation in Construction 163 (2024) 105405

3

with the aim of increasing the data diversity and improving the
robustness of the neural network model during training. Images from
Czech and Japan have a consistent resolution of 600 × 600 while images
from India have a larger resolution of 720× 720. RDD-2020 [29] con-
tains 26,336 frontal-facing road images with more than 31,000 road
damage instances under various light and weather conditions. Subse-
quently, RDD-2022 [30] expand based on RDD-2020 [29] by incorpo-
rating data from Norway, Ameraica, and China. Additionally, in RDD-
2022 [30], the maximum resolution of the data has been increased to
3650× 2044, and UAV is utilized for data collection, thereby enhancing
the collection efficiency. However, their primary focus remains on road
surface crack data, making the scenarios relatively monotonous.

Majidifard et al. develops Pavement Image Dataset (PID) [31] con-
taining 7,237 images of 22 different pavement sections in the United
States. All the images are crawled from Google street view. The images,
with a resolution of 600× 600, consist of two camera views: a wide view
and a top-down view, which are used to detect pavement distress and
calculate the crack density for automated pavement rating in the future,
respectively. Murad Al Qurishee et al. [32] also propose a dataset
concentrating on detecting pavement damages, which includes 2,620
images with resolution up to 838× 809. All the images are captured
from hand-held phone and hand-held UAV. Recently, Sabouri et al. [33]
introduce a relatively high-resolution (4032× 3024) pavement dataset,
SUT-Crack. This dataset encompasses both bounding-box-level and
pixel-level annotations, making it suitable for both detection and seg-
mentation tasks. However, the dataset contains only 130 images, which
limits its size. Due to this limitation, SUT-Crack [33] is primarily
appropriate for use in the testing phase.

Despite the great contribution of the aforementioned datasets, most
of their image resolutions are relatively low (no more than 1000× 1000)
and they all focus on road defects only. However, the functional safety of
other critical infrastructures such as buildings and bridges are also of
great concern. Concrete Defect Bridge Image (CODEBRIM) dataset [34]
focuses on detecting the defects of concrete bridges. To detect minor
defects on bridges from different scales, cameras on UAVs with high
resolution (up to 6000× 4000) and large focal lengths are adopted to
collect data. Nevertheless, the CODEBRIM only contains 1590 images,
inadequate to extract defect feature information.

Synthesizing the shortcomings of the existing bounding-box-level
datasets described above, we present a large-scale, high-resolution,
and multi-scenario defect dataset for civil infrastructure defect
detection.

2.2. Data augmentation of defect dataset

In recent times, an increasing number of researchers begin utilizing
generative models, specifically Generative Adversarial Networks (GANs
[35]), for data augmentation. As a popular deep learning generative
model, GANs have been successfully applied in various practical appli-
cations. An original GAN consists of a generator and a discriminator. The
generator receives random noise as its input, while the discriminator is
fed with a combination of real data and fake data generated by the
generator. The discriminator’s primary objective is to accurately
differentiate between the real and generated data. Conversely, the
generator aims to intricately map the distribution of the training data,
effectively creating realistic imitations. In order to be effective on de-
fects data, modifications to the GAN network. For example, Tian et al.
[36] modify the generator’s loss to be higher in regions with cracks and
lower in areas without cracks, enabling the generator to reconstruct
more accurate images. Except the original GAN, Xu et al. [37] utilize
DCGAN [38] for dataset expansion, using real collected data as the
training set for DCGAN, and then feeding both real and DCGAN-
generated data into VGG16 [8] for defect detection. Maeda et al. [28]
apply PGGAN [39] to synthesize uncommon “pothole” road surface
defects, but the final dataset only contains real-world data. Mei et al.

[40] introduce cWGAN to generate connective masks for crack images,
replacing ordinary binary masks, thereby aiding the network in better
performing detection tasks. While generative networks can achieve data
augmentation, the common feature of these methods is the low resolu-
tion of the generated images, with the highest being only 256 × 256 in
the aforementioned methods. Low-resolution images limit in semantic
information, and models trained on these images have restricted scal-
ability. When faced with high-resolution images as input (e.g., 8000×

6000), resizing them to 256 × 256 results in the loss of significant in-
formation, rendering the missing detection of small defects. Therefore,
generative models may not be universal approaches in creating a high-
quality dataset.

2.3. Defect detection approaches

Deep learning approaches have made great progress in recent years
due to the availability of massive datasets and ultra-powerful hardware.
The representative networks mentioned in Section 1 are mainly the
upstream image feature extraction networks. As one of the most com-
mon downstream tasks in various fields and scenarios, object detection
needs have emerged in infrastructure inspections.

Few deep learning approaches have been tested in the infrastructure
defect dataset mentioned in Section 2.1. Maeda et al. use SSD [41]
networks (recast the original backbone to Inception V2 [42] and
MobileNetV1 [43]) to train RDD-2018 from scratch with random images
flipping during training as the data augmentation method. RDD-2019 is
also fed to the SSD network for training, using ResNet50 [9] as the
backbone instead of Inception V2. Maeda et al. utilize PG-GAN [39] to
generate synthetic images and add these images to the training process
for dataset diversity. For RDD-2020 [29] and PID [31], transfer learning
is adopted with the weights trained based on ImageNet [15] and MS
COCO [17] as a powerful feature extractor. Transfer learning is to
employ this powerful feature extractor and then fine-tune this feature
extractor for the application to a specific dataset. Except for SSD [41],
YOLOv2 [44] and Fast R-CNN [45] are trained on PID [31] as well.

Recently, several trends that bypass human design intuition have
also been identified to treat the neural architecture itself from a meta-
learning perspective and perform black-box optimizations on the basis
of weight training to find an architecture design suitable for a particular
task. When training CODEBRIM [34], two meta-learning [46,47]
frameworks based on Reinforcement Learning (RL) are added to the
convolutional neural network for better frameworks and hyper-
parameters on CODEBRIM [34].

Beyond its application in the selection of hyperparameters, the meta-
learning has been employed in road surface defect detection tasks that
utilize few-shot learning. This approach enables networks to learn in a
manner akin to human learning, applying existing knowledge to novel
defect categories. Zhou et al. [48] use Faster R-CNN [49] as the detec-
tion model, employing the common object dataset FSOD [50] for base
learning and conducting transfer training on an upgraded open-source
defect dataset, culminating in tests on a real-world highway crack
dataset. Dong et al. [51] propose a new few-shot learning framework,
enhancing feature extraction by adding an attention module to
ResNet18 [9]. During testing, cosine similarity is applied to compare the
unlabeled query set with the labeled support set, thereby facilitating
more effective classification of road surface cracks.

The aforementioned deep learning methods, being either limited in
quantity or outdated, fall short of fully representing the state of the art.
Therefore, we have conducted expanded evaluation experiments to
assess the performance of various advanced deep learning methods on
our proposed dataset, applying these trained models in real-world sce-
narios to validate the flexibility of our dataset. However, despite the
effectiveness of few-shot learning methods [48,51] in addressing data
scarcity, the limitation of insufficient and single-scenario crack data
restricts the breadth of their application. Therefore, the creation of a
high-resolution, multi-scenario dataset is still a necessity.

B. Zhao et al.

Automation in Construction 163 (2024) 105405

4

3. Methodology of dataset establishment

We introduce a more comprehensive dataset for defect detection,
CUBIT-Det, encompassing a wide range of infrastructures across
different districts in Hong Kong. Representative sample images from our
dataset are showcased in Fig. 2. The bulk of the data in CUBIT-Det is
meticulously collected using a self-developed unmanned system plat-
form, equipped with corresponding algorithms, from various locations
across Hong Kong Island, Kowloon, and the New Territories in the Hong
Kong SAR, China. In addition to this, we employ high-resolution Single-
lens reflex (SLR) cameras and smartphones to capture supplementary
data from diverse angles, thereby enriching the dataset with a broad
spectrum of perspectives.

3.1. Defect category selection

We refer to numerous reports, standards, and infrastructure inspec-
tion guidelines when selecting the types of defects. Initially, we consult
the BSI (British Standards Institution) standards publication about
“building and constructed assets – service life planning3”. This standard
primarily focuses on visible defects on the building surface. It discusses
the relationship between the degree of deterioration and the exposure

time of the building, among which spalling of the concrete cover is a
highly dangerous type of defect. This defect can easily lead to the
collapse of the building. The occurrence of spalling is often due to
moisture erosion, the initial stage of which is manifested as wall seepage
and moss. Therefore, we preliminarily select spalling and moisture as
two defect categories.

Since the data we collected is from various regions in Hong Kong, we
refer to the inspection reports of the Hong Kong Buildings Department as
well. The Hong Kong Buildings Department conducts mandatory regular
inspections of buildings over 30 years old and higher than three floors to
maintain the safety of the buildings. According to some reports from the
Buildings Department, we summary that due to aging and wear, build-
ings in Hong Kong are prone to defects such as cracks (structural cracks,
non-structural cracks) and spalling (spalling of concrete and defective
external wall finishes). Except for non-structural cracks, other defects
require timely contact with the Buildings Department and professionals
for regular maintenance and repair work. At this time, our automated
unmanned infrastructure inspection system can greatly improve effi-
ciency and assist professionals in completing regular maintenance work.

In addition to the reports from the Hong Kong Buildings Department,
a series of guidelines and reports such as the professional guide of
building inspections4 from the Building Surveying Division of the Hong

Fig. 2. Sample images from the CUBIT-Det dataset. The first row of images are crack defects on building surfaces and the second row includes crack defects on
pavements (first and second column) and bridges (third and forth column). The third row is about spalling, and the forth row is about moisture.

3 BS ISO 15686-7:2017. 4 Volume 1: Pre-1980 Residential&Composite Buildings in Hong Kong.

B. Zhao et al.

Automation in Construction 163 (2024) 105405

5

Kong Institute of Surveyors are also utilized to guide our selection of
defect types. Ultimately, combining our previous work (citation) and the
aforementioned series of standards, guidelines, and reports, we select
crack, spalling, and moisture in CUBIT-Det dataset.

3.2. Data collection

3.2.1. Building
The CUBIT-Det dataset includes abundant images of old buildings in

Hong Kong, captured by UAV and DSLR. Building in our dataset com-
prises stone and concrete walls with three typical types of defects: crack,
spalling, and moisture. Data about buildings covers various scenarios,
involving different infrastructures, viewing angles, and background
scenes. Since the overall population density of Hong Kong is relatively
large, especially in Sham Shui Po and Mong Kok in Kowloon Peninsula,
there are many pedestrians on the road and narrow spaces between
buildings, forming the main difficulty in data collection. We use a
relatively small-size UAV for horizontal shooting and DSLR for up-view
shooting. According to the path planning method in photogrammetry,
we design a energy-saving path algorithm to make the UAV orderly
photograph the building to collect images at different locations. A zig-
zag pattern, which is designed by ourselves, means flying the UAV in
vertical or horizontal strips. All the strips should lie in a plane parallel to
the target building façade. Vertical stripes are not recommended
because the vertical movement of the lens decreases the clarity and
quality of data gathered [52,53].

Fig. 3 illustrates the UAV data collection path in the horizontal zig-
zag pattern. At each corner, UAV does not makes right-angle turns as
shown in Fig. 3; instead, we opt for a rounded, smooth transition. Such
path planning not only reduces the inertial force generated by the UAV
from abrupt stops during turns but also shortens the overall distance,
thereby achieving energy conservation. Fig. 3(a) is the front view of the
zig-zag pattern in horizontal strips, which are proven to be ideal espe-
cially when paired with a low flight speed [52,53], Fig. 3(b) and (c)
respectively show the UAV flying and shooting following the designed
zig-zag route under the top view and right view conditions. There is an
overlap between images, similar to a form of image enhancement (i.e.,
translation). Overlapped parts of adjacent images are labeled consis-
tently. The automated UAV system with our energy-saving path

planning algorithm greatly saves labor costs during the collection of
data in building scenarios.

3.2.2. Pavement
In addition to the defects on the exterior walls of the buildings, we

also collect crack data on the pavements. Since the cracks on the pave-
ment surface are relatively long, we use the UGV with external USB
cameras to take videos of the pavement surface. After that, the collected
videos are sampled at a designed interval. The UGV is named Jackal, a
small, fast, customizable robotics research platform from Clearpath
Robotics company, shown in Fig. 4(a). We customize the stark Jackal
UGV and install some sensors including a mechanical LiDAR Velodyne
VLP16, a solid-state LiDAR Livox Mid40, an RGB-D binocular camera
Realsense D435i, and a monocular USB camera. When collecting the
optical pavement cracks data, we first activate the Velodyne VLP-16 to
run SLAM algorithm to realize mapping [54,55]. We only need to
manually control the UGV to roughly circle the target area, and the map
of this area will be completed. After mapping, we directly mark the
target points on the built map, shown in (Fig. 4(b), allowing the UGV to
automatically explore the path to the target, which can greatly save
labor costs. At the same time, a high-resolution monocular USB camera
is always activated to record videos. Finally, we sample the video at
intervals of 20 frames per second to obtain images. It should be noted
that sampling at a lower FPS (e.g. 5 FPS) could result in overfitting deep
neural networks. Therefore, slightly larger sampling intervals are
employed.

3.2.3. Bridge
In addition to buildings and pavements, given Hong Kong’s hilly

terrain, bridges are also a common infrastructure feature, rendering the
detection of bridge cracks essential. However, as the collection of bridge
data necessitates governmental approval, we confined ourselves to
collecting defects on bridges within the CUHK campus to enrich our
CUBIT-Det dataset. Unlike cracks data on dark pavement, the bridge has
a light colour background, making the cracks more visible while
increasing the model’s robustness. All bridge images are captured using
the backend camera of mobile phones.

3.3. Data cleaning

Upon completing data collection, data cleansing becomes impera-
tive. Given our collection methodology, a portion of the gathered data is
unusable. Initially, eliminating such invalid data is necessary to facili-
tate subsequent annotation. For the building defect data acquired via
drones, some images lack the targeted defects, necessitating their
removal. Similarly, for road defect data captured using the Jackal UGV,
the high-speed movement and sudden stops often result in blurred video
segments and unfocused images, which also require exclusion.

Ultimately, after several rigorous rounds of selection and cleansing,
we narrow our dataset down from over 8,000 original images to 5,527
high-definition images, each featuring various infrastructure defects.
This comprehensive process plays a pivotal role in ensuring the integ-
rity, quality, and applicability of our dataset for thorough analysis and
model training purposes.

3.4. Data annotation

Upon successfully completing data filtering and cleaning, we embark
on the critical phase of data annotation. The Visual Object Classes (VOC)
data format, commonly known as the Pascal VOC format [16], is the
most prevalent, standardized, and universally adopted format in both
computer vision and industrial applications. Therefore, we choose this
format as the designated output for our annotation tools. During the
annotation process, we adhere to strict guidelines: (1) Each defect target
must be completely enclosed within its respective bounding box,
ensuring no overlaps between the box and the defects. (2) Every

Fig. 3. UAV data collection route with a horizontal zig-zag pattern. (a) Front
view. The gray block represents the building façade, and the white dot repre-
sents the waypoint, where the UAV takes images in a stop-shoot-go mode. (b)
Top view. This view illustrates two horizontally adjacent waypoints with
overlapped horizontal fields of view (FoV). (c) Right view. This view illustrates
two vertically adjacent waypoints with overlapped vertical FoV. Where d1
represents the distance interval between two adjacent waypoints, d2 represents
the distance from UAV to the building façade, θ represents the angle which is
half of the camera FoV and s1 represents the maximum distance on the building
façade the camera covers.

B. Zhao et al.

Automation in Construction 163 (2024) 105405

6

discernible defective object in the images must be labeled, with no
omissions. Following these stringent rules, our annotation procedure
unfolds in three rounds: initially, students annotate the images inde-
pendently; then, in the second round, they cross-verify each other’s
work, identifying images with ambiguous labels; finally, in the last
round, we consult professors and construction field experts to resolve
any remaining ambiguities. This meticulous process ensures the highest
level of quality and accuracy in our dataset annotations.

Fig. 5(a) presents the interface of the widely-used annotation tool,
LabelImg5, renowned for its efficacy in bounding box-level object
detection tasks. This tool generates labels in the form of Pascal VOC
format XML files. The interface’s left side features tools essential for
image annotation, including options for folder selection, output format
choice, and image zooming capabilities. The central section of the
interface displays the image being annotated, with various classes
distinguished by rectangles in different colors. On the right side, the
interface reveals a list of all defects identified in the image and an in-
ventory of all images pending annotation in the selected folder. Fig. 5(b)
illustrates the label information encapsulated in the XML file, encom-
passing details such as the image name, path, dimensions, and the cat-
egories and coordinates of all defective objects within the image.

4. Statistics of CUBIT-Det

4.1. Overall analysis

Fig. 6(a) illustrates the data collection scenarios. Our dataset pri-
marily consists of building data (65%), as buildings are among the most
ubiquitous forms of infrastructure in daily life. However, due to the
considerable challenge in data collection, no existing datasets include
defect data specific for buildings. To tackle this challenge, we concen-
trate our efforts on building data during dataset establishment. With the
help of our unmanned system platform, we greatly reduce the difficulty
of collecting building defect data and enhance the efficiency. Pavements
are the second-most typical (29%) scenario in CUBIT-Det owing to the
prevalence of surface cracking. Bridges make up the remaining for 6%.
As the collection of bridge data necessitates governmental approval, we
confined ourselves to collecting defects on bridges within the CUHK
campus to enrich our dataset.

Fig. 6(b) illustrates the proportion of defect types. Cracks are

Fig. 4. (a) Self-designed pavement data collection UGV system: Clearpath
Jackal. The onboard computer is the Intel NUC. Two LiDARs sensors are
Velodyne VLP16 and Livox Mid40, and Visual sensors includes a high-
resolution USB monocular camera and a RealSense D435i RGB-D camera. (b)
The demonstration of traversibility algorithm based on SLAM algorithm LeGO-
LOAM [54,55]. The green circle is the current position of the car, and the ar-
rows in the oval circle are the target points given on the map we have built. The
car will explore the path from the initial position to the target point.

Fig. 5. (a) Interface of LabelImg. The rectangular boxes are used to select de-
fects, with different defects in different colors. (b) XML format file. The anno-
tation information include basic information about the images, image size and
defect targets information.

Fig. 6. (a) Defect collection scenarios; (b) Defect categories; (c) Defect target
dimensions: Large targets are exceeding 10% of image dimensions, medium-size
targets are ranging from 5% to 10% and small targets are less than 5%. 5 https://github.com/HumanSignal/labelImg.

B. Zhao et al.

https://github.com/HumanSignal/labelImg

Automation in Construction 163 (2024) 105405

7

undoubtedly the most significant and common defects, constituting the
highest percentage in our dataset (82%). Following is spalling, which
poses the most significant threat to infrastructure, accounting for 12%.
As mentioned in the Section 3.1, spalling can easily lead to building
collapse. The final 6% pertains to moisture-related issues, which is one
of the main causes of spalling.

Regarding the size of the defect objects, the statistics are shown in
Fig. 6(c), illustrating that our dataset pays more attention to large ob-
jects (80%), which are larger than 10% of the entire image size. The
medium-size objects are the defects whose width and height are larger
than 5% but less than 10% of the image size, accounting for 15%. And
the small objects, whose defect dimension is less than 5% of the whole
image, making up 5% of CUBIT-Det dataset. Large objects are clearer
than small objects and contain more defect features and information. For
object detection tasks, there is a close relationship between the object
size and the receptive field. If the object is small, then the model needs to
have a small enough receptive field to detect the object correctly, and a
higher resolution to determine the location of the object accurately. In
addition, during the training process, if the number of small objects is
greater than the number of large objects, the model tends to concentrate
more on the small objects, thus affecting its ability to detect large ob-
jects. So, we concentrate on high resolution images and large size defect
objects.

4.2. Defect targets position distribution

Object distribution is another significant consideration in the object
detection dataset. The distribution of objects can affect the model’s
spatial awareness, which is the model’s understanding of the distribu-
tion and relative position of objects in space. This distribution can also
affect the model’s ability to detect offset targets, indicating the model’s
robustness to target position shifts. When detecting buildings in real
scenes, many defects could be sparsely distributed in various locations of
the image input to the deep neural network model. Models with strong
target offset detection capabilities can easily capture these defects.
Furthermore, the generalization ability of the model has a strong rela-
tionship with the target position distribution. If the target distribution in
the training dataset is not representative, the model will encounter
targets with unknown positions in the real scene, and false detections
and missed detections will occur. Fig. 7 shows the defect object position

distribution of CUBIT-Det, the overall distribution of objects is uniform
across the whole image area. The points on the central axis are relatively
dense, forming a cross shape, since most objects are located in the
middle area of the image. This data-position distribution ensures that
the model trained based on our CUBIT-Det dataset has a better spatial
perception, offset objects detection ability, and generalization.

4.3. Comparison with other datasets

The comparative analysis of existing bounding-box-level defect
datasets, as discussed in Section 2.1, with our CUBIT-Det dataset is
illustrated in Table 1. While our dataset may not rank as the largest in
terms of sheer volume, it excels in image resolution and scene diversity.
The image resolutions in our dataset range from a minimum of 4624 ×

3472 to a maximum of 8000× 6000. The data encompasses a wide array
of infrastructures and scenarios, with a particular emphasis on buildings,
which are both challenging to collect and ubiquitous in everyday life.
This diversity ensures the effectiveness of models trained on our dataset
in detecting defects across various scenarios. The efficacy of CUBIT-Det
has been demonstrated through the training of nearly 30 state-of-the-art,
deep learning-based, real-time object detection models. Detailed results
of this evaluation are provided in Section 5.

5. Evaluation experiments of CUBIT-Det

We train 9 state-of-the-art series (more than 25 models) of real-time
object detection algorithms on CUBIT-Det: YOLOv5 [60], YOLOv6 [26],
YOLOv7 [61], YOLOX [59], PP-YOLO [56], PP-YOLOv2 [57], PP-
YOLOE [58], PP-YOLOE+ [58] and Faster R-CNN [49]. With these al-
gorithms, we adopt the most common two object detection metrics
(AP0.5 for Pascal VOC [16], and the other is AP0.5:0.95 for MS COCO [17])
based on the mean Average Precision (mAP) to evaluate the above
networks. The trained models are selected for two reasons. Firstly, all
networks are able to achieve real-time while performing the detection
task. Secondly, these models are superior to other real-time object
detection models with robust capabilities in detecting common objects.
Thus, these models are expected to perform better in their infrastructure
defect detection task. Additionally, training more network models not
only verifies the usability of the dataset but also provides more options
in different defect detection scenarios.

Classic object detection models can be broadly divided into two
categories: single-stage networks which directly complete classification
and regression on the feature map to obtain faster detection results; and
two-stage networks which consist of the region proposal network (RPN)
generating many candidate boxes and the classification and regression
network for recognition and localization of each object. YOLOv5 [60],
YOLOv6 [26], YOLOv7 [61], YOLOX [59], PP-YOLO [56], PP-YOLOv2
[57], PP-YOLOE [58] and PP-YOLOE+ [58] are single-stage object
detection networks, and Faster R-CNN [49] belongs to two-stage
networks.

5.1. Experimental setup

All experiments are conducted on a computer equipped with an Intel
i9-10900k CPU and an NVIDIA RTX 3090 GPU. For training and testing
various models, our CUBIT-Det dataset is divided into three segments:
3,980 images for training (72%), 442 images for validation (8%), and
1,105 images (20%) for robustness testing. The models train for 400
epochs without using any pre-trained weights from other common ob-
ject detection datasets. Stochastic gradient descent (SGD) is employed as
the optimizer. Additionally, Non-Maximum Suppression (NMS [62]) is
utilized to eliminate redundant candidate boxes targeting the same ob-
ject. Algorithm 1 outlines the detailed procedures for NMS-based object
detection. Let B represent the list of initially detected boxes, with S
containing the respective detection scores. The threshold of NMS,
denoted as Nt, plays a pivotal role. The set D is used to store the final

Fig. 7. Object position distribution of CUBIT-Det dataset. The form of scatter
plots is used to describe the position distribution of objects’ relative cen-
ter location.

B. Zhao et al.

Automation in Construction 163 (2024) 105405

8

selection of boxes. The Intersection-over-Union (IoU) threshold Nt is a
critical parameter in NMS, assessing the overlap rate between predicted
candidate boxes (C-Box) and the ground-truth bounding box (G-Box),
with an ideal ratio being 1. In common object datasets, an IoU threshold
of 0.5 is typically predefined for classifying whether a predicted candi-
date box is a true positive or a false positive. During validation and
testing phases, the confidence threshold is set at 0.03 and the IoU
threshold at 0.6. A visual explanation of IoU is provided in Fig. 8.

Algorithm 1. The non-maximum suppression-based algorithm for ob-
ject detection.

5.2. Evaluation metric

Precision (P), Recall (R), and Average Precision (AP) are three most
common used metrics in object detection for infrastructure defect
detection tasks. Precision (P) is a metric to measure false detection,
denoting the ratio of correctly detected target defects among all those
predicted by a model. While Recall (R) is a metric to assess miss-
detection, denoting the probability that these target defects are correct
among all ground truth target defects. Precision and Recall are defined
respectively as follows:

Table 1
The comparison between existing bounding-box-level defect dataset with CUBIT-Det.

Dataset Num. of
images

Resolution Data collection
platform

Defect type Structure Material Experiments

RDD-2018
[27]

9053 600× 600 Cameras on ground
vehicle

Crack Corrosion Pavement Asphalt - SSD [41] (Inception V2
[42], MobileNet [43])

RDD-2019
[28]

13,135 600× 600 Cameras on ground
vehicle

Crack Corrosion Pavement Asphalt - SSD [41] (ResNet50 [9],
(MobileNet [43])

RDD-2020
[29]

26,336 600 × 600 720×

720
Cameras on ground
vehicle

Crack Pothole Pavement Asphalt - SSD [41] (MobileNet [43])

RDD-2022
[30]

47,420 512× 512 Smartphones Crack Pothole Pavement Asphalt –
600× 600 Hand-held cameras
720× 720 UAV cameras
3650× 2044 Google street view

PID [31] 7237 640× 640 Crawled from
Internet

Crack Pavement Asphalt a. YOLOv2 [44]
b. Fast R-CNN [45]

Murad [32] 2620 up to 838× 809 Hand-held phones
and UAV

Crack Pavement Asphalt - Faster R-CNN [49]

SUT-Crack
[33]

130 4032× 3024 Cameras on ground
vehicle

Crack Pavement Asphalt –

CODEBRIM
[34]

1590 up to 6000× 4000 Hand-held cameras Crack Corrosion Bridge Concrete a. MetaQNN [46]
Cameras on UAV b. Efficient Neural

Architecture Search [47]
CUBIT-Det 5527 4624 × 3472 and

8000× 6000
Cameras in
Unmanned Systems

Crack Spallinig
Moisture

Building (65%)
Pavement (29%) Bridge
(6%)

Concrete
Asphalt Stone

a. Faster R-CNN [49]
(MobileNet [43], ResNet
[9])
b. PP-YOLO [56]
c. PP-YOLOv2 [57]
b. PP-YOLOE(s,m,l) [58]
c. PP-YOLOEþ(s,m,l) [58]
d. YOLOX(n,t,s,m,l,x) [59]
e. YOLOv5(n,s,m,l,x) [60]
f. YOLOv7(t,normal,x)
[61]
g. YOLOv6(n,s,m,l) [26]
i. Real-site experiment

Fig. 8. Visualization of Intersection-over-Union (IoU). Blue rectangle and or-
ange rectangle represent the ground-truth bounding box (G-Box) and candidate
box (C-Box) of this spalling sample, respectively. In IoU equation, the denom-
inator symbolizes the union of the G-Box and the C-Box, which is represented
by a green rectangle. The overlapping area of the G-Box and the C-Box, which
denoted their intersection, is also indicated by the green part. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

B. Zhao et al.

Automation in Construction 163 (2024) 105405

9

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

TP, TN, and FN are True Positives, True Negatives, and False Nega-
tives, respectively. If one defect is successfully detected and its predicted
box’s IoU with the ground truth box is over threshold Nt, the predicted
candidate box will be seen as the true positive (TP). Otherwise, it will be
regarded as a false positive (FP). In addition, if one target defect fails to
be detected, it will be designated as a false negative (FN).

The area under the Precision-Recall curve (AUC-PR) is a metric to
judge the performance of an object detection model which considers
false detections and miss-detections for varying IoU thresholds. Like the
AUC-PR metric, Average Precision is a way to summarize the PR curve
into a single value. The Average Precision metric (AP) is the weighted
mean of Precision scores achieved at each PR curve threshold, with the
increase in Recall from the previous threshold as the weight. Since our
detection task is multi-category, after obtaining AP for each category,
we also need to average it to obtain a mean value of different AP, for
short mAP. The equations of AP and mAP are shown below, where APk is
the AP of class k and n is the number of classes.

AP =

∫ 1

0
p(r)dr (3)

mAP =
1
n
∑n

k=1
APk (4)

5.3. Benchmarking experiment and analysis

5.3.1. Overall analysis
The detailed experimental results of the selected models tested on

our CUBIT-Det are shown in Table 2. YOLOv6-l [26] has the best per-
formance among all the models in terms of the accuracy, whose mAPtest

0.5
is 82.9% and mAPtest

0.5:0.95 is 55.9%, while the worst one is PP-YOLOE-s
[58], whose results on mAPtest

0.5 and mAPtest
0.5:0.95 are 64.6% and 38.9%,

respectively. The two models are single-stage object detection networks.
For Faster R-CNN [49] which is the most representative two-stage object
detection network, we abandon the original backbone network VGG16
[8] and change it to a more lightweight but stronger backbone, Mobi-
leNetV2 [63] and a classic backbone, ResNet50 [9]. However, when the
backbone is MobileNetV2 [63], mAPtest

0.5 and mAPtest
0.5:0.95 are 45.6% and

19.4%, respectively, lower compared to the results of the one-stage
network in Table 2. When the backbone is ResNet50 [9], compared
with MobileNetV2 [63], the detection capability has been greatly
improved, mAPtest

0.5 and mAPtest
0.5:0.95 are 71.5% and 43.3% respectively.

However, they are still lower than most one-stage detection models.
Among these networks, we visualize the number of parameters of

these selected state-of-the-art real-time object detection networks for a
complexity comparison. As shown in Fig. 9, YOLO5-n [60] takes the

Table 2
The test results of selected models based on CUBIT-Det.1, 2

Model Backbone mAPtest
0.5↑ mAPtest

0.5:0.95↑ Crack Spalling Moisture

APtest
0.5↑ APtest

0.5:0.95↑ APtest
0.5↑ APtest

0.5:0.95↑ APtest
0.5↑ APtest

0.5:0.95↑

YOLOv5-n [60] New CSP-Darknet 73.4% 39.9% 68.8% 35.6% 81.9% 49.9% 69.4% 34.4%
YOLOv5-s [60] New CSP-Darknet 78.5% 47.2% 77.1% 44.1% 85.7% 59.8% 72.6% 37.8%
YOLOv5-m [60] New CSP-Darknet 80.4% 51.3% 81.3% 50.5% 86.3% 62.3% 73.8% 41.2%
YOLOv5-l [60] New CSP-Darknet 80.6% 52.6% 81.5% 52.1% 87.0% 64.1% 73.2% 41.7%
YOLOv5-x [60] New CSP-Darknet 81.4% 53.0% 82.0% 52.8% 88.6% 64.1% 73.6% 41.9%
YOLOv6-n [26] EfficientRep 76.3% 47.9% 80.6% 49.2% 88.8% 60.9% 59.5% 33.6%
YOLOv6-s [26] EfficientRep 79.0% 48.2% 80.0% 48.4% 86.0% 59.1% 70.9% 37.1%
YOLOv6-m [26] CSPBep 80.4% 54.1% 83.4% 54.1% 90.1% 64.7% 67.8% 43.6%
YOLOv6-l [26] CSPBep 82.9% 55.9% 85.7% 55.8% 91.7% 67.5% 71.4% 44.3%
YOLOv7-t [61] E-ELAN 71.1% 39.7% 67.4% 36.0% 79.8% 49.8% 66.1% 33.2%
YOLOv7 [61] E-ELAN 77.5% 47.8% 77.4% 45.9% 82.5% 57.2% 72.7% 40.2%
YOLOv7-x [61] E-ELAN 79.7% 53% 81.9% 52.8% 85.7% 64.1% 71.5% 41.9%
YOLOX-n [59] CSP-DarkNet 73.0% 39.5% 71.3% 37.3% 80.7% 48.2% 67.1% 32.9%
YOLOX-t [59] CSP-DarkNet 77.7% 49.2% 75.9% 48.0% 85.7% 60.2% 71.5% 39.5%
YOLOX-s [59] CSP-DarkNet 77.8% 50.2% 76.0% 48.5% 85.7% 60.7% 71.6% 41.3%
YOLOX-m [59] CSP-DarkNet 78.2% 52.2% 76.4% 51.4% 86.3% 62.2% 72.0% 43.0%
YOLOX-l [59] CSP-DarkNet 78.5% 52.6% 76.8% 52.1% 86.4% 62.6% 72.3% 43.2%
YOLOX-x [59] CSP-DarkNet 78.8% 53.4% 77.1% 52.2% 86.9% 64.1% 72.5% 43.9%
PP-YOLO [56] ResNet50-vd-dcn 76.4% 45.1% 75.7% 42.6% 84.3% 56.3% 69.2% 36.5%
PP-YOLOv2 [57] ResNet50-vd-dcn 77.3% 47.1% 77.8% 44.8% 84.6% 58.1% 69.5% 38.2%
PP-YOLOE-s [58] CSPRepResNet 64.6% 38.9% 64.6% 36.4% 78.6% 50.1% 50.5% 27.5%
PP-YOLOE-m [58] CSPRepResNet 74.2% 44.8% 73.9% 43.4% 84.5% 56.7% 64.3% 34.4%
PP-YOLOE-l [58] CSPRepResNet 75.4% 46.4% 76.7% 46.0% 85.6% 57.9% 63.8% 35.4%
PP-YOLOE+-s [58] CSPRepResNet 70.6% 44.0% 68.1% 40.4% 82.6% 56.1% 61.0% 35.6%
PP-YOLOE+-m [58] CSPRepResNet 78.8% 50.9% 79.2% 49.3% 85.2% 60.4% 72.1% 42.9%
PP-YOLOE+-l [58] CSPRepResNet 78.9% 51.0% 79.1% 49.9% 85.8% 61.7% 71.9% 41.4%
Faster R-CNN [49] MobileNetV2 45.6% 19.4% 38.5% 15.8% 60.6% 26.3% 30.5% 12.6%
Faster R-CNN [49] ResNet50 71.5% 43.3% 72.5% 42.3% 83.9% 54.2% 54.2% 29.3%

1 The best results in each evaluation metric column are in bold.
2 ↑ (↓) indicates that larger (smaller) values lead to better (worse) performance.

Fig. 9. Comparison of parameters for the state-of-the-art methods. The
YOLOv5-n [60] possesses the smallest number of parameters, and the YOLOX-x
[59] possesses the largest number of parameters.

B. Zhao et al.

Automation in Construction 163 (2024) 105405

10

smallest parameters while the YOLOX-x [59] takes the largest.

5.3.2. Categorized detection analysis
Table 2 also presents the test results for different defect categories to

further evaluate the detection ability of selected network models trained
on our CUBIT-Det dataset.

For crack, YOLOv6-l [26] has the strongest detection ability with an
APtest

0.5 and APtest
0.5:0.95 accuracy of 85.7% and 55.8%, respectively. For the

spalling category, YOLOv6-l [26] also has the strongest detection ability,
achieving an APtest

0.5 accuracy of 91.7% (the highest APtest
0.5 value of all

categories) and an APtest
0.5:0.95 accuracy of 67.5%. But for the moisture

category, YOLOv5-m [60] achieves the best performance under the
APtest

0.5 metric, followed by YOLOv5-x [60]. Under the APtest
0.5:0.95 metric,

YOLOv6-l [26] regains the top spot (44.3%) followed by YOLOX-x [59].
The classic two-stage model Faster R-CNN [49] is not well adapted to

our dataset. Faster R-CNN with a backbone of MobileNetV2 [63] ach-
ieves the lowest scores in each category, especially in the more difficult-
to-detect the moisture category, with a mAPtest

0.5 of only 30.5%. After
recasting the backbone with ResNet50 [9], the detection ability of Faster
R-CNN [49] in the three categories has greatly enhanced, especially for
the crack, which is increased from 38.5% to 72.5%.

5.3.3. Network attributes affecting defect detection
The inference time (latency) of the algorithm is another crucial in-

dicator for the practical implementation of real-time infrastructure in-
spections. Table 3 shows the latency of the selected deep learning
algorithm based on our CUBIT-Det dataset. Obviously, the inference
time required for single-stage object detection networks is significantly
less than that of two-stage object detection networks. The YOLOX-x [59]
model, which is the largest model in single-stage networks, takes the
longest inference time of 41.2 ms. However, the Faster R-CNN [49] with
a lightweight backbone (MobileNetV2 [63]) still needs 55 ms.

In the same algorithm network series, due to the continuous
expansion of the backbone network, the parameters and corresponding
inference time are constantly increased. However, different networks do

not follow this rule that fewer parameters mean shorter inference time.
For example, the YOLOv6-n [26] model only needs 2.2 ms to complete
the inference of one input image with resolution of 1024× 1024, but its
Params. is 4.63 M. (In deep learning, “Params.” refers to the number of
trainable parameters in a neural network model. The small “Params”
also represents the small storage space occupied by the trained model.
“GFLOPs” stands for “giga floating point operations per second”. It is a
measure of the computational complexity of a model, calculated as the
number of floating point operations, for short FLOPs, performed per
second, divided by one billion, which is to express the value in billions of
FLOPs per second. This metric is often used to estimate the computa-
tional cost or efficiency of running a given model on a particular hard-
ware platform) Contrarily, the Params. of YOLOX-n [59] model is only
2.24 M, but it takes 4.2 ms to complete the inference of one image with
resolution of 1024× 1024. Moreover, PP-YOLOv2 [57], which is not an
enlarged version of PP-YOLO [56] but an upgraded version with struc-
tural improvements to realize the feature extraction ability, takes 11.0
ms to complete the inference for one image, while PP-YOLO [56] needs
11.2 ms to finish inference.

Combined with the mAP results in Table 2, we visualize the latency
versus mAP in Fig. 10. For all series of algorithms, as the model size
increases, the inference speed will decrease while the detection capa-
bility will improve. However, there is a bottleneck in detection capa-
bility, which means that simply enlarging the model to realize the
enhancement of detection performance cannot always be effective. By
magnifying the top-left corner of Fig. 10, it becomes clearer that, on our
CUBIT-Det dataset, YOLOv6 [26] series networks demonstrate a fabu-
lous trade-off between accuracy and latency. The YOLOv6-l [26] algo-
rithm with the strongest detection ability can infer an image in 15.9 ms.
Compared with the other largest model of each series, YOLOv6-l [26]
takes the least time. The reason is that the number of parameters of
YOLOv6-l [26] is relatively small, and its backbone is a structurally
reparameterized network, which saves a lot of inference time.

5.3.4. Label attributes affecting defect detection
In addition to the influence of different network models on the

detection of infrastructure defects, we also experiment with the effect of
data labels on the detection. Taking the crack category which is the most
defect type in our CUBIT-Det dataset as an example, we classify cracks
and labeled different cracks into three categories: “Linear”, “Branch”,
and “Web” given their varied shape, style, and thickness. “Linear” usu-
ally refers to a single crack with no branch. “Branch” refers to a crack
with a bifurcation, like a tree branch. “Web” refers that the cracks can be

Table 3
The inference speed test on CUBIT-Det.

Model Params.
(M)

GFLOPs Input
size

Latency (ms)
↓

YOLOv5-n [60] 1.76 4.10 1024 1.8
YOLOv5-s [60] 7.18 15.80 1024 3.3
YOLOv5-m [60] 20.86 47.90 1024 7.1
YOLOv5-l [60] 46.12 107.70 1024 12.5
YOLOv5-x [60] 86.19 203.80 1024 24.6
YOLOv6-n [26] 4.63 29.03 1024 2.2
YOLOv6-s [26] 18.50 115.64 1024 5.3
YOLOv6-m [26] 37.90 225.55 1024 9.8
YOLOv6-l [26] 65.05 396.57 1024 15.9
YOLOv7-t [61] 6.01 13.00 1024 5.4
YOLOv7 [61] 36.49 61.94 1024 8.4
YOLOv7-x [61] 70.79 188.00 1024 17.9
YOLOX-n [59] 2.24 17.75 1024 4.4
YOLOX-t [59] 5.06 39.00 1024 5.8
YOLOX-s [59] 8.94 68.51 1024 7.6
YOLOX-m [59] 25.30 73.80 1024 13.7
YOLOX-l [59] 54.20 155.60 1024 20.3
YOLOX-x [59] 99.10 281.90 1024 41.2
PP-YOLO [56] 48.99 136.43 1024 11.2
PP-YOLOv2 [57] 56.91 146.50 1024 11.0
PP-YOLOE-s [57] 8.02 20.73 1024 9.4
PP-YOLOE-m [57] 24.63 62.93 1024 11.2
PP-YOLOE-l [57] 55.82 142.13 1024 11.3
PP-YOLOE+-s [57] 8.02 20.73 1024 8.1
PP-YOLOE+-m [57] 24.63 62.93 1024 8.9
PP-YOLOE+-l [57] 55.82 142.13 1024 10.4
Faster R-CNN (MBNv2)

[49]
19.36 44.93 1024 55.0

Faster R-CNN (Res50)
[49]

42.62 477.24 1024 76.9

Fig. 10. Trade-off performance of different models about latency versus mAP
trained on CUBIT-Det. The further the point is toward the top-left corner, the
stronger the detection capability and the shorter the inference time. YOLOv6
[26] series (green dash line) are able to complete inference with relatively little
time, but them maintain the highest accuracy.

B. Zhao et al.

Automation in Construction 163 (2024) 105405

11

formed into rings, and the rings are close together to form a spiderweb-
like structure. The visualization samples of 3-classes cracks are shown in
Fig. 11.

However, we later hypothesize that such annotations might impact
the model’s inference speed, leading to detection errors. Furthermore,
certain types of cracks, particularly “Branch” and “Web”, can be chal-
lenging to identify. This complexity could potentially confuse annota-
tors during the labeling process, resulting in inaccurate annotations.
Such inaccuracies might also confuse the model, thereby reducing its
detection accuracy. Therefore, we select 1000 images containing only
cracks from the CUBIT-Det dataset for as precise annotation as possible.
We test these images using the lightest models among the three powerful
series algorithms - YOLOv5 [60], YOLOv6 [26], and YOLOv7 [61]. The
hardware environment for training remains the same as mentioned in
Section 5.1, and we still experiment without any pre-trained weights,
training from scratch for 200 epochs. After training, we deploy these
three models on an onboard computer (NVIDIA Xavier NX) of our UAV.

In the quantitative analysis presented in Table 4, the YOLOv5-n [60],
YOLOv6-n [26], and YOLOv7-t [61] models demonstrate that the 1-class
labeling approach significantly boosts their detection capabilities. This
method not only simplifies the identification of cracks but also mini-
mizes the potential for model confusion. Notably, in the YOLOv6-n [26]
model, the detection accuracy, as measured by the (m)APtest

0.5 metric,
shows an almost 20-percentage-point disparity favoring the 1-class la-
beling over the 3-classes labeling approach, underscoring the profound
impact of annotation methods on model accuracy. Another critical
metric, inference time (measured by the latency), also shows differences
based on labeling approaches. Typically, models encounter faster
decision-making processes when dealing with cracks labeled under a
single category compared to those with three categories. However, the
use of smaller models in these experiments means that the variance in
inference time is relatively minimal. 3 classes labeling takes, on average,
2 ms longer in inference time compared to 1 class labeling, but this is not
a greatly small gap in the inference time according to Table 3.

The qualitative comparisons of 1-class labeling versus 3-classes la-
beling for crack detection, as depicted in Fig. 12, further elucidate these
findings. Models trained with a single-category crack annotation
approach exhibit a lower propensity for missing crack detections, more
precise and confident bounding box delineations, and a reduced ten-
dency for redundant detection of individual cracks, compared to their
counterparts trained with a multi-category annotation approach.

Based on the numerical metrics and actual detection results, it can be
concluded that labeling cracks into one category has more advantages
than subdividing cracks into three categories. It may be attributed to the

fact that more categories can lead to more neuron nodes in the last
classification layer of deep neural network model, which requires more
time to infer. However, the subdivision of cracks into more categories
may be helpful for the subsequent crack grade assessment and other
related work.

Fig. 11. Samples of three different crack labels. “Linear” refers to a single
crack; “Branch” is like a branch on a tree but forms a circle; “Web” refers to
forming multiple rings and gathering together.

Table 4
The crack detection results about different annotation methods.

Label type Model Input size (m)APtest
0.5 Latency (ms)

1-class Labeling YOLOv5-n [60] 1024 44.6% 19.1
3-classes Labeling YOLOv5-n [60] 1024 33.2% 22.0
1-class Labeling YOLOv6-n [26] 1024 53.6% 21.8
3-classes Labeling YOLOv6-n [26] 1024 34.3% 24.5
1-class Labeling YOLOv7-t [61] 1024 43.8% 24.7
3-classes Labeling YOLOv7-t [61] 1024 30.9% 26.8

Fig. 12. Comparison of crack prediction results under 3-classes labeling and 1-
class labeling. The left column shows the crack detection results under 3-classes
labeling and the right column shows the results under 1-class labeling. The
better detection results are demonstrated by the 1-class crack labeling method.

B. Zhao et al.

Automation in Construction 163 (2024) 105405

12

5.3.5. Transferability of the CUBIT-Det dataset
In addition to the analyses previously discussed about CUBIT-Det, an

effective approach to validate the newly proposed dataset involves
directly assessing models trained on it using similar open-source data-
sets. Following an extensive review and analysis of datasets akin to our
CUBIT-Det dataset, as detailed in Table 1, we select the SUT-Crack [33]
dataset as the testing ground. Then, We conduct the zero-shot tests by
using YOLOv5 [60], YOLOv6 [26], and YOLOv7 [61] models that have
consistently shown superior detection performance on our dataset.

The decision to select the SUT-Crack dataset [33] for evaluation is
based on its high-resolution data, which aligns with the quality of our
CUBIT-Det dataset. And its labeling methodology, with a significant
focus on “crack”, closely resembles ours. Moreover, a more challenging
aspect is that the SUT-Crack [33] contains numerous images with
shadows caused by varying angles of light exposure. While other data-
sets referenced in our study, such as RDD [27–30] and CODEBRIM [46],
differ significantly in terms of image scenarios, resolution, and the
granularity of defect labels (ranging from overly detailed to excessively
broad), they lack dedicated test sets. These datasets are primarily
designed for training purposes and are not optimized for comprehensive
testing. Given that there are no open-source datasets specifically tailored
to building exterior surface defects, and considering the trailblazing role
of our CUBIT-Det in providing an extensive range of building defect
data, finding a perfectly compatible open-source test dataset is chal-
lenging. Therefore, taking all these factors into account, the SUT-Crack
dataset [33] stands out as the most suitable option for our transferability
testing, effectively demonstrating the adaptability and robustness of our
dataset.

We conduct the zero-shot experiments under the same hardware
environment as mentioned in Section 5.1, and the quantitative test re-
sults are demonstrated in Table 5. It is evident that models trained on
our CUBIT-det dataset demonstrate considerable scalability, which also
attests to the notable transferability of our dataset. Although our models
are not trained on this SUT-Crack [33] dataset and are directly subjected
to zero-shot testing, the performance on larger models of YOLOv5 [60],
YOLOv6 [26] and YOLOv7 [61] are still quite favorable. Particularly
noteworthy is the YOLOv6-l [26] model, which not only performed
exceptionally well on our dataset but also continued to excel in this
transferability test. It achieved an AP0.5 of 89.6%, nearing 90%, and an
AP0.5:0.95 of 58.2%. This performance surpasses that on the test set of
CUBIT-Det, validating both the transferability of our dataset and the
scalability of models trained on it.

In Fig. 13, we demonstrate the qualitative detection results of SUT-
Crack [33] from YOLOv6-l [26] trained on our CUBIT-Det. Despite the
challenges posed by varied shadow and lighting conditions in the SUT-
Crack [33] dataset and no more any other training, the YOLOv6-l [26]
model, which is trained on our CUBIT-Det dataset, consistently exhibits
exceptional performance in this zero-shot test. It accurately identifies
and delineates almost every crack in its entirety, showcasing its robust
detection capabilities.

6. Real-world experiment

To further verify the feasibility of our CUBIT-Det dataset, a real-
world infrastructure inspection is conducted on an industrial building

in Fo Tan, Sha Tin District, New Territories in Hong Kong. YOLOv6-l
[26] is chosen because of its particularly good performance for crack
detection, and the fact that the target building is relatively new, nearly
without apparent spalling and moisture defects.

Three drones are used to ensure a high-efficiency and complete and
coverage of the building façades and an exhaustive detection of cracks.
The left part of Fig. 14 illustrates that the automated multi-UAVs system
is utilized to capture the images of this industrial building equipped with
our energy-saving path planning algorithm. At the same time, the
detection model, YOLOv6-l [26], pre-trained based on our CUBIT-Det
dataset, has a great detection performance, with almost no false detec-
tion and a low miss detection rate, accurately locating and detecting
small defects.

In total, 1016 images are detected according to different wall sur-
faces, and some detected results have been shown in the right part of
Fig. 14, including 129 for northeast façade, 200 for southeast façade,
393 for northwest façade, and 294 for southwest façade. Of the 1016
exterior wall images, our model detects 1095 cracks. Most of these de-
fects belong to light, the detailed information is presented in Table 6.
The Precision and Recall of this inspection task is 97.8% and 85.7%,
respectively. The results are endorsed by the company of this industrial
building. In addition to the visual inspection results in the images, the
defect information (Table 7) also includes the defect class (1, 2, 3
represent crack, spalling, moisture), relative position (coordinates of the
center point of the prediction box, with the upper left corner of the
detected image as coordinate origin), dimension (width and height of
the prediction box), and the confidence score of the detected defects. All
these defect data information will be used in the subsequent workflow,
for instance, within a GIS (Geographic information system) platform, the
detected defects are registered onto a point cloud entity model recon-
structed by our developed learning-based algorithm [64], utilizing both

Table 5
The test results on SUT-Crack [33] dataset.

Model Input size Precision Recall APtest
0.5 APtest

0.5:0.95

YOLOv5-m [60] 1024 57.9% 68.7% 59.9% 25.4%
YOLOv5-l [60] 1024 63.7% 73.9% 68.4% 33.8%
YOLOv5-x [60] 1024 72.3% 74.4% 71.6% 37.9%
YOLOv6-m [26] 1024 76.0% 82.8% 80.7% 48.4%
YOLOv6-l [26] 1024 82.7% 85.8% 89.6% 58.2%
YOLOv7 [61] 1024 70.8% 72.4% 66.2% 31.5%
YOLOv7-x [61] 1024 76.8% 69.4% 74.0% 41.8%

Fig. 13. The validation about the transferability of CUBIT-Det dataset. (a)
Original images with groud-truth labels from SUT-Crack [33]; (b) Detection
results from YOLOv6-l trained based on CUBIT-Det. Despite the interference
caused by shadow and light exposure in the data, YOLOv6-l [26] trained on our
CUBIT-Det dataset manage to figure out the cracks in zero-shot task.

B. Zhao et al.

Automation in Construction 163 (2024) 105405

13

global and relative positional information. This real-site detection re-
sults of this industrial building inspection task demonstrate that the deep
learning models trained on our CUBIT-Det can be easily transferred to
real-world applications.

7. Conclusions and discussion

This paper presents a multi-scenario, high-resolution, and sufficient
dataset named CUBIT-Det, which is collected by our self-developed

Fig. 14. Visualization of this real-world building inspection task. On the left, three of our UAVs (framed by the red ellipse) with path planning algorithm have
cooperated to inspect the building. On the right, each of the four columns shows the results of the façade in one direction of this building.

Table 6
The distribution of cracks per direction in the target building.

Direction Light Mild Moderate Critical Sum

Southeast 315 0 1 5 321
Southwest 291 9 9 26 335
Northeast 211 0 5 13 229
Northwest 189 0 3 18 210

B. Zhao et al.

Automation in Construction 163 (2024) 105405

14

automated unmanned system, for infrastructure inspections, especially
in building applications. And we have evaluated nearly 30 state-of-the-
art real-time deep-learning object detection algorithms based on our
dataset to further verify its reliability. The detection performance of
each model is comprehensively compared regarding the accuracy and
the inference speed metrics, while the effect of different labeling ap-
proaches on the detection performance is also analyzed. In the selected
models, YOLOv6 series demonstrate the best trade-off in latency versus
mAP. Among them, YOLOv6-l performs the best, which can reach 82.9%
and 55.9% under the two indicators mAPtest

0.5 and mAPtest
0.5:0.95, respec-

tively. And YOLOv6-l only takes 15.9 ms to complete the inference of
one 1024 × 1024 input image. More importantly, to validate the feasi-
bility and expansibility of our CUBIT-Det, we conduct a real-world
experiment on an industrial building in Hong Kong by using the
model trained on our dataset, and excellent inspection results have been
achieved.

Firstly, while we introduce a dataset centered on diverse infra-
structure defects, especially for building façade, marking it as a pio-
neering collection, its volume of samples still remains suboptimal. The
richness and diversity of a dataset, particularly in quantity, play a
crucial role in ensuring the robustness and generalizability of a trained
model. And, an insufficiently large dataset may lead to an overfitted
model and reduced performance on unseen or real-world data. There-
fore, in our future work, we aim to further optimize our unmanned
system platforms to fully leverage its capabilities for collecting more
data, thus expanding our dataset. We specifically intend to utilize drone
platforms to gather data on exterior building surface defects, a chal-
lenging and underrepresented scenario in existing infrastructure data-
sets. Then, in the process of expanding the dataset, it is imperative to
include images captured under various lighting conditions (such as
daytime and nighttime) and different weather scenarios (overcast, rainy,
and snowy conditions) to enhance the diversity of the dataset. Addi-
tionally, there should be an effort to incorporate a broader range of
defect types, with particular attention paid to less common defect cat-
egories. These diverse data inputs will enable the trained models to
become more robust and versatile, allowing for their application in a
wider array of detection scenarios.

Furthermore, even though we rigorously test across nearly 30 object
detection networks, emphasizing the extensive nature of our experi-
ments, relying solely on existing algorithmic frameworks might not
unveil the full potential of our dataset. The absence of a network tailored
to infrastructure defect detection might inadvertently lead to the over-
look of certain domain-specific defect types.

Lastly, but of utmost importance, in order to enhance the scalability
and application scope of our dataset, it is crucial to extend beyond
merely bounding box level annotations and incorporate pixel level
segmentation masks as labels. Segmentation labels, being more gran-
ular, focus exclusively on the defect itself and better mitigate the in-
fluence of background noise. The addition of segmentation labels will
render our dataset more comprehensive. Models trained on our dataset,
augmented with these detailed annotations, will be equipped to handle a
variety of task requirements, thus offering a more robust foundation for
community.

In summary, this research provides a foundational work and in-
dicates future directions for more efficiency infrastructure defect

detection, despite space for further refinement and exploration. Future
endeavors should focus on not only augmenting the volume, diversity
and richness of dataset but also specializing a more lightweight but
accurate algorithm tailored for the real-world infrastructure inspection
tasks.

CRediT authorship contribution statement

Benyun Zhao: Conceptualization, Investigation, Formal analysis,
Writing – original draft. Xunkuai Zhou: Conceptualization, Investiga-
tion, Methodology, Formal analysis, Writing – original draft. Guidong
Yang: Investigation, Formal analysis, Writing – original draft. Junjie
Wen: Investigation, Formal analysis, Writing – original draft. Jihan
Zhang: Investigation, Formal analysis, Writing – original draft. Jia Dou:
Investigation, Formal analysis, Writing – original draft. Guang Li:
Investigation, Formal analysis, Writing – original draft. Xi Chen:
Conceptualization, Resources, Supervision, Writing – review & editing,
Project administration. Ben M. Chen: Conceptualization, Funding
acquisition, Resources, Supervision, Writing – review & editing, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in the paper.

Data availability

Data will be made available on request.

Acknowledgements

This work is supported by the InnoHK of the Government of the Hong
Kong Special Administrative Region via the Hong Kong Centre for Lo-
gistics Robotics (HKCLR).

References

[1] Ali Akbar Shirzadi Javid, Parviz Ghoddousi, Gholamreza Ghodrati Amiri,
Khalil Donyadideh, A new photogrammetry method to study the relationship
between thixotropy and bond strength of multi-layers casting of self-consolidating
concrete, Constr. Build. Mater. 204 (2019) 530–540, https://doi.org/10.1016/j.
conbuildmat.2019.01.204.

[2] Junzhi Zhang, Jin Huang, Chuanqing Fu, Le Huang, Hailong Ye, Characterization
of steel reinforcement corrosion in concrete using 3d laser scanning techniques,
Constr. Build. Mater. 270 (2021) 121402, https://doi.org/10.1016/j.
conbuildmat.2020.121402.

[3] Wei Jiang, Youjun Xie, Jianxian Wu, Guangcheng Long, Influence of age on the
detection of defects at the bonding interface in the crts iii slab ballastless track
structure via the impact-echo method, Constr. Build. Mater. 265 (2020) 120787,
https://doi.org/10.1016/j.conbuildmat.2020.120787.

[4] Haifeng Li, Nansha Li, Renbiao Wu, Huaichao Wang, Zhongcheng Gui,
Dezhen Song, Gpr-rcnn: an algorithm of subsurface defect detection for airport
runway based on gpr, IEEE Robot. Autom. Lett. 6 (2) (2021) 3001–3008, https://
doi.org/10.1109/LRA.2021.3062599.

[5] Khashayar Asadi, Akshay Kalkunte Suresh, Alper Ender, Siddhesh Gotad,
Suraj Maniyar, Smit Anand, Mojtaba Noghabaei, Kevin Han, Edgar Lobaton,
Tianfu Wu, An integrated ugv-uav system for construction site data collection,
Autom. Constr. 112 (2020) 103068, https://doi.org/10.1016/j.
autcon.2019.103068.

[6] Qingxiang Li, Guidong Yang, Chuanxiang Gao, Yijun Huang, Jihan Zhang,
Dongyue Huang, Benyun Zhao, Xi Chen, Ben M. Chen, Single drone-based 3d
reconstruction approach to improve public engagement in conservation of heritage
buildings: a case of hakka tulou, J. Build. Eng. (2024) 108954, https://doi.org/
10.1016/j.jobe.2024.108954.

[7] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, Imagenet classification with
deep convolutional neural networks, Commun. ACM 60 (6) (2017) 84–90, https://
doi.org/10.1145/3065386.

[8] Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-
Scale Image Recognition, arXiv, 2014, https://doi.org/10.48550/arXiv.1409.1556.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for
image recognition, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (June 2016),
https://doi.org/10.1109/CVPR.2016.90.

Table 7
The example of output information from one detected image.

Defect
class

Horizontal
position

Vertical
position

Box
width

Box
height

Confidence
coefficient

1 0.938375 0.731833 0.010250 0.012000 0.217123
1 0.754062 0.992583 0.116625 0.013833 0.237203
1 0.679397 0.774417 0.033875 0.025833 0.533062
1 0.793875 0.618500 0.028500 0.016333 0.610724
1 0.790625 0.819833 0.030750 0.018333 0.676300
1 0.936188 0.171500 0.127125 0.343000 0.809036

B. Zhao et al.

https://doi.org/10.1016/j.conbuildmat.2019.01.204
https://doi.org/10.1016/j.conbuildmat.2019.01.204
https://doi.org/10.1016/j.conbuildmat.2020.121402
https://doi.org/10.1016/j.conbuildmat.2020.121402
https://doi.org/10.1016/j.conbuildmat.2020.120787
https://doi.org/10.1109/LRA.2021.3062599
https://doi.org/10.1109/LRA.2021.3062599
https://doi.org/10.1016/j.autcon.2019.103068
https://doi.org/10.1016/j.autcon.2019.103068
https://doi.org/10.1016/j.jobe.2024.108954
https://doi.org/10.1016/j.jobe.2024.108954
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2016.90

Automation in Construction 163 (2024) 105405

15

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby, An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale, arXiv, 2020, https://
doi.org/10.48550/arXiv.2010.11929.

[11] Navneet Dalal, Bill Triggs, Histograms of oriented gradients for human detection,
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (July 2005), https://doi.org/
10.1109/CVPR.2005.177.

[12] Pedro Felzenszwalb, David McAllester, Deva Ramanan, A discriminatively trained,
multiscale, deformable part model, Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(June 2008), https://doi.org/10.1109/CVPR.2008.4587597.

[13] Jun Kang Chow, Kuan-fu Liu, Pin Siang Tan, Zhaoyu Su, Jimmy Wu, Zhaofeng Li,
Yu-Hsing Wang, Automated defect inspection of concrete structures, Autom.
Constr. 132 (2021) 103959, https://doi.org/10.1016/j.autcon.2021.103959.

[14] Qiuchen Zhu, Quang Phuc Ha, A bidirectional self-rectifying network with
bayesian modeling for vision-based crack detection, IEEE Trans. Industr. Inform.
19 (3) (2022) 3017–3028, https://doi.org/10.1109/TII.2022.3172995.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, Li Fei-Fei, Imagenet: a large-
scale hierarchical image database, Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(June 2009), https://doi.org/10.1109/CVPR.2009.5206848.

[16] S.M. Mark Everingham, Ali Eslami, Luc Van Gool, Christopher K.I. Williams,
John Winn, Andrew Zisserman, The pascal visual object classes challenge: a
retrospective, Int. J. Comput. Vis. 111 (2015) 98–136, https://doi.org/10.1007/
s11263-014-0733-5.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, C. Lawrence Zitnick, Microsoft coco: common objects
in context, Proc. Eur. Conf. Comput. Vis. (September 2014), https://doi.org/
10.1007/978-3-319-10602-1_48.

[18] Guidong Yang, Kangcheng Liu, Jihan Zhang, Benyun Zhao, Zuoquan Zhao,
Xi Chen, Ben M. Chen, Datasets and processing methods for boosting visual
inspection of civil infrastructure: a comprehensive review and algorithm
comparison for crack classification, segmentation, and detection, Constr. Build.
Mater. 356 (2022) 129226, https://doi.org/10.1016/j.conbuildmat.2022.129226.

[19] Markus Eisenbach, Ronny Stricker, Daniel Seichter, Karl Amende, Klaus Debes,
Maximilian Sesselmann, Dirk Ebersbach, Ulrike Stoeckert, Horst-Michael Gross,
How to get pavement distress detection ready for deep learning? A systematic
approach, Proc. Int. Joint Conf. Neural Netw. (May 2017), https://doi.org/
10.1109/IJCNN.2017.7966101.

[20] Ronny Stricker, Markus Eisenbach, Maximilian Sesselmann, Klaus Debes, Horst-
Michael Gross, Improving visual road condition assessment by extensive
experiments on the extended gaps dataset, Proc. Int. Joint Conf. Neural Netw. (July
2019), https://doi.org/10.1109/IJCNN.2019.8852257.

[21] Mateusz Żarski, Bartosz Wójcik, Jarosław Adam Miszczak, Krakn: transfer learning
framework and dataset for infrastructure thin crack detection, SoftwareX 16 (2021)
100893, https://doi.org/10.1016/j.softx.2021.100893.

[22] Fan Yang, Lei Zhang, Sijia Yu, Danil Prokhorov, Xue Mei, Haibin Ling, Feature
pyramid and hierarchical boosting network for pavement crack detection, IEEE
Trans. Intell. Transp. Syst. 21 (4) (2020) 1525–1535, https://doi.org/10.1109/
TITS.2019.2910595.

[23] Qipei Mei, Mustafa Gül, Md Riasat Azim, Densely connected deep neural network
considering connectivity of pixels for automatic crack detection, Autom. Constr.
110 (2020) 103018, https://doi.org/10.1016/j.autcon.2019.103018.

[24] Ç.F. Özgenel, A. Gönenç Sorguç, Performance comparison of pretrained
convolutional neural networks on crack detection in buildings, in: Proceedings of
the International Symposium on Automation and Robotics in Construction, July
2018, https://doi.org/10.22260/ISARC2018/0094.

[25] Yongsheng Bai, Bing Zha, Halil Sezen, Alper Yilmaz, Deep cascaded neural
networks for automatic detection of structural damage and cracks from images, in:
International Society for Photogrammetry and Remote Sensing Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2-2020,
2020, pp. 411–417, https://doi.org/10.5194/isprs-annals-V-2-2020-411-2020,
2020.

[26] Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng Cheng, Bo Zhang, Zaidan Ke,
Xiaoming Xu, Xiangxiang Chu, Yolov6 v3. 0: A Full-Scale Reloading, arXiv, 2023,
https://doi.org/10.48550/arXiv.2301.05586.

[27] Hiroya Maeda, Yoshihide Sekimoto, Toshikazu Seto, Takehiro Kashiyama,
Hiroshi Omata, Road damage detection using deep neural networks with images
captured through a smartphone, Comput. Aided Civ. Inf. Eng. 33 (12) (2018)
1127–1141, https://doi.org/10.1111/mice.12387.

[28] Hiroya Maeda, Takehiro Kashiyama, Yoshihide Sekimoto, Toshikazu Seto,
Hiroshi Omata, Generative adversarial network for road damage detection,
Comput. Aided Civ. Inf. Eng. 36 (1) (2021) 47–60, https://doi.org/10.1111/
mice.12561.

[29] Deeksha Arya, Hiroya Maeda, Sanjay Kumar Ghosh, Durga Toshniwal,
Yoshihide Sekimoto, Rdd2020: an annotated image dataset for automatic road
damage detection using deep learning, Data Brief 36 (2021) 107133, https://doi.
org/10.1016/j.dib.2021.107133.

[30] Deeksha Arya, Hiroya Maeda, Sanjay Kumar Ghosh, Durga Toshniwal,
Yoshihide Sekimoto, Rdd2022: A Multi-National Image Dataset for Automatic Road
Damage Detection, arXiv, 2022, https://doi.org/10.48550/arXiv.2209.08538.

[31] Hamed Majidifard, Peng Jin, Yaw Adu-Gyamfi, William G. Buttlar, Pavement
image datasets: a new benchmark dataset to classify and densify pavement
distresses, Transp. Res. Rec. 2674 (2) (2020) 328–339, https://doi.org/10.1177/
0361198120907283.

[32] Murad Al Qurishee, Weidong Wu, Babatunde Atolagbe, Joseph Owino,
Ignatius Fomunung, Mbakisya Onyango, Creating a dataset to boost civil

engineering deep learning research and application, Engineering 12 (3) (2020)
151–165, https://doi.org/10.4236/eng.2020.123013.

[33] Mohammadreza Sabouri, Alireza Sepidbar, Sut-crack: a comprehensive dataset for
pavement crack detection across all methods, Data Brief 51 (2023) 109642,
https://doi.org/10.1016/j.dib.2023.109642.

[34] Martin Mundt, Sagnik Majumder, Sreenivas Murali, Panagiotis Panetsos,
Visvanathan Ramesh, Meta-learning convolutional neural architectures for multi-
target concrete defect classification with the concrete defect bridge image dataset,
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (June 2019), https://doi.org/
10.1109/CVPR.2019.01145.

[35] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative adversarial nets, Proc.
Adv. Neural Inf. Process. Syst. (December 2014), https://doi.org/10.1145/
3422622.

[36] Lulu Tian, Zidong Wang, Weibo Liu, Yuhua Cheng, Fuad E. Alsaadi, Xiaohui Liu,
A new Gan-based approach to data augmentation and image segmentation for
crack detection in thermal imaging tests, Cogn. Comput. (2021) 1263–1273,
https://doi.org/10.1007/s12559-021-09922-w.

[37] Boqiang Xu, Chao Liu, Pavement crack detection algorithm based on generative
adversarial network and convolutional neural network under small samples,
Measurement (2022) 111219, https://doi.org/10.1016/j.
measurement.2022.111219.

[38] Alec Radford, Luke Metz, Soumith Chintala, Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks, arXiv, 2015, https://
doi.org/10.48550/arXiv.1511.06434.

[39] Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen, Progressive Growing of
Gans for Improved Quality, Stability, and Variation, arXiv, 2017, https://doi.org/
10.48550/arXiv.1710.10196.

[40] Qipei Mei, Mustafa Gül, A cost effective solution for pavement crack inspection
using cameras and deep neural networks, Constr. Build. Mater. 256 (2020) 119397,
https://doi.org/10.1016/j.conbuildmat.2020.119397.

[41] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, Alexander C. Berg, Ssd: single shot multibox detector, Proc. Eur.
Conf. Comput. Vis. (October 2016), https://doi.org/10.1007/978-3-319-46448-0_
2.

[42] Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, Aurelien Lucchi,
Batch Normalization Provably Avoids Ranks Collapse for Randomly Initialised
Deep Networks, arXiv, 2020, https://doi.org/10.48550/arXiv.2003.01652.

[43] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, Hartwig Adam, Mobilenets: Efficient
Convolutional Neural Networks for Mobile Vision Applications, arXiv, 2017,
https://doi.org/10.48550/arXiv.1704.04861.

[44] Joseph Redmon, Ali Farhadi, Yolo9000: better, faster, stronger, Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (July 2017), https://doi.org/10.1109/
CVPR.2017.690.

[45] Ross Girshick, Fast r-cnn, Proc. IEEE Int. Conf. Comput. Vis. (December 2015),
https://doi.org/10.1109/ICCV.2015.169.

[46] Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar, Designing Neural
Network Architectures using Reinforcement Learning, arXiv, 2016, https://doi.
org/10.48550/arXiv.1611.02167.

[47] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, Jeff Dean, Efficient Neural
Architecture Search via Parameters Sharing, arXiv, 2018, https://doi.org/
10.48550/arXiv.1802.03268.

[48] Wei Zhou, Yunfei Zhan, Hancheng Zhang, Lei Zhao, Chen Wang, Road defect
detection from on-board cameras with scarce and cross-domain data, Autom.
Constr. 144 (2022) 104628, https://doi.org/10.1016/j.autcon.2022.104628.

[49] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster r-cnn: towards real-time
object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach.
Intell. 39 (6) (2017) 1137–1149, https://doi.org/10.1109/TPAMI.2016.2577031.

[50] Qi Fan, Wei Zhuo, Chi-Keung Tang, Yu-Wing Tai, Few-shot object detection with
attention-rpn and multi-relation detector, Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (June 2020), https://doi.org/10.1109/CVPR42600.2020.00407.

[51] Hongwen Dong, Kechen Song, Qi Wang, Yunhui Yan, Peng Jiang, Deep metric
learning-based for multi-target few-shot pavement distress classification, IEEE
Trans. Industr. Inform. 18 (3) (2021) 1801–1810, https://doi.org/10.1109/
TII.2021.3090036.

[52] Tarek Rakha, Alice Gorodetsky, Review of unmanned aerial system (uas)
applications in the built environment: towards automated building inspection
procedures using drones, Autom. Constr. 93 (2018) 252–264, https://doi.org/
10.1016/j.autcon.2018.05.002.

[53] Christian Eschmann, Timo Wundsam, Web-based georeferenced 3d inspection and
monitoring of bridges with unmanned aircraft systems, J. Surv. Eng. 143 (3) (2017)
04017003, https://doi.org/10.1061/(ASCE)SU.1943-5428.0000221.

[54] Tixiao Shan, Brendan Englot, Lego-loam: lightweight and ground-optimized lidar
odometry and mapping on variable terrain, Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (October 2018), https://doi.org/10.1109/IROS.2018.8594299.

[55] Tixiao Shan, Jinkun Wang, Brendan Englot, Kevin Doherty, Bayesian generalized
kernel inference for terrain traversability mapping, Proc. Conf. Robot Learn.
(October 2018). PMLR 87:829-838, https://proceedings.mlr.press/v87/shan18a.
html.

[56] Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang, Qingqing Dang,
Yuan Gao, Hui Shen, Jianguo Ren, Shumin Han, Errui Ding, Shilei Wen, Pp-yolo:
An Effective and Efficient Implementation of Object Detector, arXiv, 2020, https://
doi.org/10.48550/arXiv.2007.12099.

[57] Xin Huang, Xinxin Wang, Wenyu Lv, Xiaying Bai, Xiang Long, Kaipeng Deng,
Qingqing Dang, Shumin Han, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma,

B. Zhao et al.

https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2008.4587597
https://doi.org/10.1016/j.autcon.2021.103959
https://doi.org/10.1109/TII.2022.3172995
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1016/j.conbuildmat.2022.129226
https://doi.org/10.1109/IJCNN.2017.7966101
https://doi.org/10.1109/IJCNN.2017.7966101
https://doi.org/10.1109/IJCNN.2019.8852257
https://doi.org/10.1016/j.softx.2021.100893
https://doi.org/10.1109/TITS.2019.2910595
https://doi.org/10.1109/TITS.2019.2910595
https://doi.org/10.1016/j.autcon.2019.103018
https://doi.org/10.22260/ISARC2018/0094
https://doi.org/10.5194/isprs-annals-V-2-2020-411-2020
https://doi.org/10.48550/arXiv.2301.05586
https://doi.org/10.1111/mice.12387
https://doi.org/10.1111/mice.12561
https://doi.org/10.1111/mice.12561
https://doi.org/10.1016/j.dib.2021.107133
https://doi.org/10.1016/j.dib.2021.107133
https://doi.org/10.48550/arXiv.2209.08538
https://doi.org/10.1177/0361198120907283
https://doi.org/10.1177/0361198120907283
https://doi.org/10.4236/eng.2020.123013
https://doi.org/10.1016/j.dib.2023.109642
https://doi.org/10.1109/CVPR.2019.01145
https://doi.org/10.1109/CVPR.2019.01145
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://doi.org/10.1007/s12559-021-09922-w
https://doi.org/10.1016/j.measurement.2022.111219
https://doi.org/10.1016/j.measurement.2022.111219
https://doi.org/10.48550/arXiv.1511.06434
https://doi.org/10.48550/arXiv.1511.06434
https://doi.org/10.48550/arXiv.1710.10196
https://doi.org/10.48550/arXiv.1710.10196
https://doi.org/10.1016/j.conbuildmat.2020.119397
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.48550/arXiv.2003.01652
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.48550/arXiv.1611.02167
https://doi.org/10.48550/arXiv.1611.02167
https://doi.org/10.48550/arXiv.1802.03268
https://doi.org/10.48550/arXiv.1802.03268
https://doi.org/10.1016/j.autcon.2022.104628
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR42600.2020.00407
https://doi.org/10.1109/TII.2021.3090036
https://doi.org/10.1109/TII.2021.3090036
https://doi.org/10.1016/j.autcon.2018.05.002
https://doi.org/10.1016/j.autcon.2018.05.002
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000221
https://doi.org/10.1109/IROS.2018.8594299
https://proceedings.mlr.press/v87/shan18a.html
https://proceedings.mlr.press/v87/shan18a.html
https://doi.org/10.48550/arXiv.2007.12099
https://doi.org/10.48550/arXiv.2007.12099

Automation in Construction 163 (2024) 105405

16

Yoshie Osamu, Pp-yolov2: A Practical Object Detector, arXiv, 2021, https://doi.
org/10.48550/arXiv.2104.10419.

[58] Shangliang Xu, Xinxin Wang, Wenyu Lv, Qinyao Chang, Cheng Cui, Kaipeng Deng,
Guanzhong Wang, Qingqing Dang, Shengyu Wei, Yuning Du, Baohua Lai, Pp-yoloe:
An Evolved Version of Yolo, arXiv, 2022, https://doi.org/10.48550/
arXiv.2203.16250.

[59] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, Yolox: Exceeding Yolo
Series in 2021, arXiv, 2021, https://doi.org/10.48550/arXiv.2107.08430.

[60] Glenn Jocher, YOLOv5 by Ultralytics, 2020, p. 5.
[61] Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao, Yolov7: trainable

bag-of-freebies sets new state-of-the-art for real-time object detectors, Proc. IEEE/

CVF Conf. Comput. Vis. Pattern Recognit. (June 2023), https://doi.org/10.1109/
CVPR52729.2023.00721.

[62] Jan Hosang, Rodrigo Benenson, Bernt Schiele, Learning non-maximum
suppression, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (July 2017), https://
doi.org/10.1109/CVPR.2017.685.

[63] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-
Chieh Chen, Mobilenetv2: inverted residuals and linear bottlenecks, Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (June 2018), https://doi.org/10.1109/
CVPR.2018.00474.

[64] Guidong Yang, Xunkuai Zhou, Chuanxiang Gao, Xi Chen, Ben M. Chen, Learnable
cost metric-based multi-view stereo for point cloud reconstruction, IEEE Trans. Ind.
Electron. (2023) 1–10, https://doi.org/10.1109/TIE.2023.3337697.

B. Zhao et al.

https://doi.org/10.48550/arXiv.2104.10419
https://doi.org/10.48550/arXiv.2104.10419
https://doi.org/10.48550/arXiv.2203.16250
https://doi.org/10.48550/arXiv.2203.16250
https://doi.org/10.48550/arXiv.2107.08430
http://refhub.elsevier.com/S0926-5805(24)00141-9/rf0300
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/CVPR.2017.685
https://doi.org/10.1109/CVPR.2017.685
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/TIE.2023.3337697

	High-resolution infrastructure defect detection dataset sourced by unmanned systems and validated with deep learning
	1 Introduction
	2 Literature review
	2.1 Infrastructure defect detection dataset
	2.2 Data augmentation of defect dataset
	2.3 Defect detection approaches

	3 Methodology of dataset establishment
	3.1 Defect category selection
	3.2 Data collection
	3.2.1 Building
	3.2.2 Pavement
	3.2.3 Bridge

	3.3 Data cleaning
	3.4 Data annotation

	4 Statistics of CUBIT-Det
	4.1 Overall analysis
	4.2 Defect targets position distribution
	4.3 Comparison with other datasets

	5 Evaluation experiments of CUBIT-Det
	5.1 Experimental setup
	5.2 Evaluation metric
	5.3 Benchmarking experiment and analysis
	5.3.1 Overall analysis
	5.3.2 Categorized detection analysis
	5.3.3 Network attributes affecting defect detection
	5.3.4 Label attributes affecting defect detection
	5.3.5 Transferability of the CUBIT-Det dataset

	6 Real-world experiment
	7 Conclusions and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

