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Synergizing Low Rank Representation and Deep
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Abstract— Due to the critical role of pavement crack detection
for road maintenance and eventually ensuring safety, remarkable
efforts have been devoted to this research area, and such a
trend is further intensified for the coming unmanned vehicle era.
However, such crack detection task still remains unexpectedly
challenging in practice since the appearance of both cracks
and the background are diverse and complex in real scenarios.
In this work, we propose an automatic pavement crack detection
method via synergizing low rank representation (LRR) and
deep learning techniques. First, leveraging LRR which facilitates
anomaly detection without making any specific assumption,
we can easily discriminate most of the frames with cracks from
the long sequence with a consistent pavement base, followed by
a straightforward algorithm to localize the cracks. In order to
achieve the intelligence of detecting cracks with different pave-
ment basis under unconstrained imaging conditions, we resort to
deep learning techniques and propose a deep convolutional neural
network for crack detection leveraging on multi-level features and
atrous spatial pyramid pooling (ASPP). We train this network
based on the training data obtained in the previous stage in an
end-to-end manner. Extensive experiments on a wide range of
pavements demonstrate the high performance in terms of both
accuracy and automaticity. Moreover, the dataset generated by us
is much more extensive and challenging than public ones. We put
it online at https://gaozhinuswhu.com to benefit the community.

Index Terms— Pavement crack detection, low rank represen-
tation, deep learning.

I. INTRODUCTION

ROADS play an extremely important role in human activ-
ities and the governments have made tremendous efforts

to build high-quality road networks. Consequently, as an

Manuscript received 19 May 2022; revised 31 December 2022 and 26 March
2023; accepted 8 May 2023. Date of publication 24 May 2023; date of
current version 4 October 2023. This work was supported in part by the
National Natural Science Foundation of China Major Program under Grant
42192580 and Grant 42192583, in part by the Hubei Province Natural Science
Foundation under Grant 2021CFA088 and Grant 2020CFA003, and in part by
the Science and Technology Major Project under Grant 2021AAA010 and
Grant 2021AAA010-3. The Associate Editor for this article was M. Guo.
(Corresponding author: Zhi Gao.)

Zhi Gao and Xuhui Zhao are with the School of Remote Sensing and
Information Engineering, Wuhan University, Wuhan 430079, China, and
also with the Hubei Luojia Laboratory, Wuhan 430079, China (e-mail:
gaozhinus@gmail.com; zhaoxuhui@whu.edu.cn).

Min Cao is with Wuhan Guanggu Zoyon Science and Technology Company
Ltd., Wuhan 430223, China (e-mail: market@zoyon.com.cn).

Ziyao Li is with the School of Remote Sensing and Information Engineering,
Wuhan University, Wuhan 430079, China (e-mail: liziyao@whu.edu.cn).

Kangcheng Liu is with the School of Computer Science and Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
kangcheng.liu@ntu.edu.sg).

Ben M. Chen is with the Department of Mechanical and Automation
Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
bmchen@cuhk.edu.hk).

Digital Object Identifier 10.1109/TITS.2023.3275570

Fig. 1. The diverse appearances of roads with and without cracks. Row 1:
Different types of cracks. Row 2: Various road backgrounds. Both cracks and
background vary in appearance significantly, and may with much noise, dark
shadow, and inconsistent brightness, etc.

essential operation to evaluate the pavement condition for
maintenance purpose and eventually ensuring safety, pavement
crack detection has been attracting increasingly remarkable
efforts. In particular, such research has been fueled by the
booming unmanned vehicle techniques from two aspects: first,
the demand has been further heightened since the unmanned
vehicles always expect the road in good condition; second,
the prospect has been changed as the unmanned platforms can
eventually help to realize full automation of the tedious crack
detection tasks without any human intervention. However, such
crack detection task still remains unexpectedly challenging in
practice since the appearance of both cracks and the back-
ground are diverse and complex in real scenarios, as shown
in Fig. 1. Therefore, effective and robust crack detection with
less manual operation has been attracting increased attention
from both academic and industrial communities.

Generally, the available pavement crack detection methods
can be classified into two categories: 3D data (such as depth
map and point cloud) based and 2D image based (henceforth
3D-based and 2D-based respectively). The 3D-based methods
essentially perform crack detection relying on the 3D infor-
mation which can be obtained using various sensors, such as
LiDAR sensors [1], [2], [3], structured light emitters [4], [5],
[6], holographic detectors [7], and stereo cameras [8], [9],
[10]. In contrast, 2D-based methods mainly depend on visual
information (pixel intensity or features) that are captured with
linear or array cameras [11], [12]. Intuitively, the 3D-based
methods are more robust than the 2D-based ones, attributing
to the 3D information which is generally more stable than 2D
images, but at the expense of much higher cost and complexity
of the sensor setup. In Table I, we briefly summarize the pros
and cons of both 3D-based and 2D-based methods.
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TABLE I
DATA AND SENSING TECHNIQUES FOR CRACK DETECTION

In this work, intending to press maximal benefit from the
visual information, we focus on 2D image data and propose
an automatic pavement crack detection method via synergizing
low rank representation (LRR) and deep learning techniques.
At first glance, such a crack detection task seems to be simple
and can be accomplished using the extensions of popular
machine vision algorithms. However, it is unexpectedly chal-
lenging in practice due to the diversity and complexity of both
cracks and the background in terms of appearance. Fig. 1
shows some typical road surfaces with and without cracks,
and we further summarize general difficulties below:

• Both cracks and pavements vary significantly in appear-
ance, leading to challenges in a unified description.

• Cracks share similarities with pavements in color and
texture, rendering it difficult to be distinguished.

• The presence of various interference factors, such as ruts,
stains, and shadows makes the problem harder.

In past decades, researchers have extensively exploited
visual features to accomplish automatic pavement crack detec-
tion. Early efforts usually focused on low-level intensity rele-
vant features [13], [14], followed by thresholding algorithms
ranging from the classical one [15] to more complex ones [16].
With the development of image processing techniques, more
sophisticated methods which investigated the higher level
information or structural constraint had been proposed for such
tasks, including morphological operations [17], hand-crafted
filters [18], [19], local features [12], [20], domain transforma-
tions [21], [22], texture and saliency analysis [23], [24], [25].
Moreover, some work formulated the crack detection problem
from different theoretical frameworks and provided effective
solutions, such as minimal path optimization [26], [27], [28],
[29], [30], geometric analysis [31], [32], [33], contour track-
ing [34], classification [35], [36], [37], [38], [39], and super-
pixel segmentation [40], [41]. Despite claimed competitive
performances on specific datasets, these methods, however,
usually achieve unsatisfying results even fail in complex
situations due to their overly restrictive assumptions about the
crack or background, or both.

In recent years, encouraged by the stunning performance
in many vision tasks, deep convolutional neural networks
(DCNN, generally also termed as deep learning) have been
applied for such crack detection task and reported fairly
promising results on the testing datasets. The task is generally

tackled from different views with various backbones, such
as the classification [42], [43], [44], [45], [46], the object
detection [47], [48], [49], [50], the segmentation [51], [52],
[53], [54], [55]. However, the data-driven nature of deep learn-
ing technologies hindered these DCNN-based methods from
more popular applications in practice for two major reasons:
first, it is difficult, tedious, and expensive to prepare enough
high-quality samples (both positive and negative) for training
to obtain expected performance, despite some efforts with
weakly-supervised learning [56]; second, as the generalization
is always a weakness and concern of DCNN-based methods,
existing methods cannot perform consistently well in practical
scenarios which are diverse, complex, and may have never
been seen in the training stage.

To overcome the aforementioned challenges and limita-
tions of both traditional methods and DCNN-based methods,
we propose an automatic pavement crack sample generation
and detection method that works effectively under a wide
variety of scenes encountered in practice via synergizing low
rank representation and deep learning techniques. LRR, well
known for self-expressing, can effectively detect anomaly from
a batch of data with few assumptions of the foreground
or background no matter how complex the pavement looks.
We can obtain both high-quality positive samples (pixel-level
labelled cracks with complex background) and negative sam-
ples (complex background without crack) with little require-
ment of parameters tuning. With enough training samples
and orchestrating organization, we formulate pavement crack
detection as semantic segmentation with DCNN. In particular,
we follow the encoder-decoder structure with dual feature
extractors (focusing on low-level feature and high-level seman-
tics) for robust description and atrous spatial pyramid pooling
(ASPP) for a wider receptive field. Extensive experiments
on a wide range of pavements demonstrate that our method
outperforms many state-of-the-art approaches in terms of both
accuracy and automaticity. Moreover, the generated dataset
is more extensive and challenging than the public ones,
we make it available at https://gaozhinuswhu.com to benefit
the community.

The remainder of this paper is organized as follows. We first
introduce the related works in Section II. Section III is devoted
to our pavement crack detection method via synergizing LRR
and deep learning techniques, and Section IV presents our
experiments and analysis. Finally, we conclude our work and
discuss valuable future directions in Section V.

II. RELATED WORKS

We here discuss 3D-based and 2D-based pavement crack
detection works according to the aforementioned taxonomy,
where the latter will be elaborated in detail.

A. 3D-Based Methods

LiDAR and structured light techniques are popularly
adopted to obtain the 3D information of the pavement.
3D-based methods generally exploit the difference between
cracks and pavements in the depth direction for crack detec-
tion. In some novel applications, the LiDAR sensor was

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 06,2023 at 01:46:35 UTC from IEEE Xplore.  Restrictions apply. 



10678 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

mounted on mobile robots [3] and UAVs [57] for road and
bridge damage detection, respectively. Generally, 3D-based
methods can be divided into traditional methods and learn-
ing methods. Traditional methods mainly leverage geometric
elevation and reflection intensity for crack detection with
various techniques, including spatial filtering [1], Gaussian
filtering [58] and iterative voting [59]. But these methods
usually require much computation and achieve poor accuracy
in some scenarios with a low signal-to-noise ratio (SNR).
While learning methods most adopt dimensionality reduction,
converting 3D point clouds to 2D images to reduce the
processing difficulty, such as CrackNet [60] and its vari-
ant [61]. This strategy discards elevation information and
reduces the resolution of point clouds by projecting multiple
points into one pixel. Typically, the performance heavily relies
on well-annotated training data, which is time-consuming,
high-cost, and labor-intensive. Therefore, some researchers try
to detect cracks with graph convolutional networks (GCN) and
train the network in a semi-supervised manner [62]. However,
the graph network heavily relies on the pattern of target data.
For the best expression of features, a new graph structure needs
to be redesigned for different cracks, resulting in declined
transfer ability and cannot be applied to various scenarios with
simple re-training. Moreover, 3D-based methods cannot detect
cracks that are subtle in 3D point clouds but salient in visual
images due to the limited resolution of discrete sampling.

As a summary, compared with vision cameras, the laser
scanners or radar, not only significantly increase the cost of
the system, also render it too complex to be operated and
maintained by non-professionals. Compared with 2D optical
images, 3D data is robust to some external interference, such
as illumination variation, resulting in a reduced difficulty for
crack detection in some scenes. But 3D data generally lack
visual texture that plays an important role in crack detection.
Therefore, we focus on 2D approaches in this paper.

B. 2D-Based Methods

For the rich information it contains, 2D optical image has
been extensively exploited for pavement crack detection. The
available 2D-based methods essentially exploited the intensity
and a wide range of techniques and their combinations have
been investigated for robust performance in complex scenes,
bringing difficulties in methodology taxonomy. We here briefly
breakdown these methods into the following categories accord-
ing to the main features and techniques adopted.

1) Pixel Intensity-Based Methods: Maybe, the simplest
strategy of crack detection is to perform thresholding on the
intensity, and researchers have proposed a variety of methods
for adaptive threshold estimation [13], [15], [36], [63]. Also
intuitively, the grayscale gradient has been exploited for crack
detection via edge detection [37] and contour tracking [34].
To further exploit the local information among neighbour-
ing pixels, a variety of methods based on morphological
operators [17], filters [18], [19], and local binary patterns
(LBPs) [12], [20] have been proposed for crack detection.
Despite numerous adopted methods, it is still hard to detect
cracks accurately with only intensity information in our

complex world due to intensity-similar interference, such as
dark ruts.

2) Feature-Based Methods: In addition, to further exploit
the visual information in a larger scale or a higher level,
methods based on texture and saliency analysis have been
proposed. In [23] and [24], a unified framework was pro-
posed including estimating textural patterns of underlying
backgrounds, obtaining the local variation, and isolating
crack pixels. In [25] and [64], the saliency estimation and
local statistical characteristics analysis were cooperated for
crack detection. Besides, based on the results of key point
detection, some researchers formulate crack detection as an
optimization problem of minimal path selection in a graph.
In particular, different metrics such as predefined length [26],
depth [30] and thickness [27] have been proposed within
such frameworks. Some works are further developed with
geometric topological analysis of cracks [31], [32], [33]. Also
naturally, the hand-crafted feature descriptors are fed into
various classifiers for crack detection [38], [39], following
traditional machine learning frameworks. Meanwhile, some
methods divide images into irregular non-overlapping regions
with superpixel segmentation [40], [41].

Moreover, based on the basic observation that the high
frequency components of the image usually correspond to the
cracks, methods based on frequency analysis have been pro-
posed. Typically, wavelet transform has been well studied to
decompose the original image into different frequency bands,
followed by noise suppression and morphological operations
on the high frequency content for crack detection [21], [22].
With the various appearance of cracks in different scenes, it is
hard to find a general description and distinguish all types of
cracks using limited data. Therefore, many methods only work
in target scenarios with satisfying accuracy.

3) Deep Learning Methods: Similar to the trends in various
vision tasks, many DCNN-based methods have been proposed
for crack detection. In [42], [43], and [45], the crack detection
was formulated as a classification task, therein sophisticated
techniques including multi-scale feature extraction [46] and
naive Bayes fusion scheme [44] have been investigated to
improve the resulting performance. Despite various techniques
adopted, the core idea is to express cracks with distinguish-
able features and then classify images or patches. Generally,
it works in some simple scenarios, but cannot achieve good
performance in complex scenes with confusing objects. Also,
some methods detect cracks with patch-level rather than pixel-
level, leading to coarse results. From the view of semantic
segmentation, a hierarchical segmentation network [52] has
been proposed based on SegNet [51]. Compared with clas-
sification, these methods exploit more latent and semantic
information in the image and usually achieves better per-
formance (pixel-level mask). However, with more complex
network structures, more labelled samples are required for
training, which is a predicament in crack detection due to
limited public datasets and various scenarios. Despite some
works are also proposed to reduce the dependence on training
data with weakly-supervised [56], semi-supervised [65], even
unsupervised strategy [66], they can be regarded as compro-
mise to this dilemma when no enough data available, since
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Fig. 2. LRR decomposes the (a) pavement image sequence into (b) low rank
images and (c) sparse images. Cracks are highlighted in (c) sparse images
and can be easily processed for pixel-wise masks.

fully-supervised learning is usually better than aforementioned
strategies. Furthermore, some methods [47], [48], [49], [50]
detect cracks with bounding box results from the perspective
of object detection, following the famous one-stage object
detection network YoLo series work. Cracks are regarded
as objects and detected with some classical object detection
networks or their variants. Compared with the aforementioned
methods, these methods usually lead to the accuracy decline
with a bounding box rather than pixel-wise mask. Typically,
all these data-driven methods rely on large training samples for
robust performance. However, few public datasets cover a wide
range of scenes, leading to a limited generalization. Besides
the pavement crack detection, other networks are proposed for
structural health and damage monitoring [53], [67], [68], [69],
[70], where STRNet [55] especially achieves state-of-the-art
performance in that field.

From traditional methods to deep learning methods, many
researchers have made great efforts and achieved some com-
pelling results. However, due to the aforementioned natures
of cracks and backgrounds, it is still a challenge to achieve
robust and accurate crack detection. Many existing methods
are only suitable for special scenarios or limited applications.
We think the root of this problem lies in strong priori and
hypotheses about data and inadequate exploitation of valuable
latent information in an image. This problem can be potentially
solved by low rank method [71], which decomposes a matrix
into low rank and sparse parts with a theoretical convergence
guarantee. Therefore, we introduce LRR to crack detection
for the self-representation of image data. Then, we design a
DCNN from the view of semantic segmentation and train this
network with the generated dataset from LRR. To our best
knowledge, there is no similar work at present.

III. OUR ALGORITHM

We propose a novel method for crack detection leveraging
LRR and DCNN, the whole scheme is shown in Fig. 3.
This section is dedicated to the details of our algorithm,
including the subsections of the LRR formulation for crack
detection, post-processing and sample preparation, DCNN for
crack detection, and implementation details.

A. LRR Formulation for Crack Detection

Rank is one of the most fundamental characteristics of a
matrix and can be leveraged for exploiting essential informa-
tion. Many researchers achieve amazing results in different
fields, such as moving object detection [72] and traffic analy-
sis [73]. In the inspection of pavement, we usually get many

image sequences collected by cameras mounted on a vehicle,
which contain rich tempo-spatial information. As Aristotle
says in Metaphysics: The whole is greater than the sum of
the parts. We take the whole sequence as input and explore
the latent information hidden in the sequence, which is of great
value for crack detection. Images with cracks usually account
for part of the sequence, meanwhile, cracks generally occupy
a small area in the image. It naturally occurs to us to introduce
LRR into crack detection as shown in Fig. 2. We regard cracks
in images as sparse anomalies and formulate the detection
task as an LRR problem with few hypotheses. Suppose we
have n images I1, I2, · · · , In in a sequence, w and h are
the width and height of images respectively. For each image,
we concatenate all columns to generate a one-dimensional
vector (here we note this operation as vec()) then stack all
vectors to compose a hyper-dimensional matrix D (w × h
for rows, n for columns). With the aforementioned properties
of cracks in inspection image sequences, D should have
a potential low rank property, which we formulate as the
superposition of a low rank matrix L and a sparse matrix
S, as Eq. 1.

D = [vec(I1)|vec(I2)| · · · |vec(In)] = L + S (1)

If cracks are crisply split from the background, the rank
of L can be optimized with objective function Eq. 2.

min
L ,S

∥L∥∗+λ∥S∥1 subject to D = L + S, (2)

where the nuclear norm is applied to enforce the low rank
constraint, the ℓ1-norm is used to approximate non-zero items
in the sparse part. Here, λ is a value to balance the decom-
position. The main challenge in efficiently solving Eq. 2 is
coping with the constraint D = L + S. We adopt the inexact
augmented Lagrange multiplier (ALM) method [74], where
the augmented Lagrangian function is defined in Eq. 3:

Lµ(L, S, 3)
.
= ∥L∥∗ + λ∥S∥1 + ⟨3, L + S − D⟩

+
µ

2
∥L + S − D∥

2
F , (3)

where 3 is the Lagrange multiplier, µ is a positive scalar, ∥·∥F
is the Frobenius norm. We solve the problem by repeatedly
setting and updating 3, as written in Eq. 4:

(Lk+1, Sk+1) = arg min
L,S

Lµ(L, S, 3k) (4)

For convenience, we let Sτ [x] : R → R denote the
shrinkage operator for variant x with a constant τ , as written
in Eq. 5.

Sτ [x] = sgn(x) max(|x | − τ, 0) (5)

Then we extend it to matrices and denote the singular
value thresholding operator Dτ (D) = USτ (6)V ∗, where
D = U6V ∗ is any singular value decomposition, which
is typically the major computational burden of LRR for the
hyper-dimensional matrix and can be optimized in both algo-
rithm and implementation. Thus, we get a practical strategy
as written in Eq. 6. We first minimize Lµ with respect to L
(fixing S), then minimize Lµ with respect to S (fixing L), and
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Fig. 3. Diagram of our framework for pavement crack detection, which mainly involves low rank representation and deep learning. We first process input
images (orange part) and conduct low rank analysis (green part) to obtain sparse images, following the simple post-processing with grayscale and geometry
clues for binary masks (blue part). Then, we train our network on automatically generated samples from LRR (yellow and pink parts). Finally, the trained
network process new images and output masks as shown in gray arrows (pink and gray parts).

Algorithm 1 LRR for Crack Detection via Inexact ALM
1: Initialize: S0 = 30 = 0, µ > 0.

2: While not converged do
3: Compute Lk+1 = D1/µ(D − Sk − µ−13k);

4: Compute Sk+1 = Sλ/µ(D − Lk+1 − µ−13k);

5: Compute 3k+1 = 3k + µ(Lk+1 + Sk+1 − D);

6: end while
7: Output: Lk; Sk .

finally update the Lagrange multiplier matrix 3 based on the
residual L + S − D. We summarize it in Algorithm 1. arg min

S
Lµ(L, S, 3) = Sλ/µ(D − L − µ−13)

arg min
L
Lµ(L, S, 3) = D1/µ(D − S − µ−13)

(6)

By iterative optimization, we can effectively eliminate com-
plex backgrounds in the pavement (such as uneven lighting)
and detect cracks efficiently, where the object function con-
verged to the global optimal and does not change significantly
if you continue conduct LRR on output sparse images. Note
that for LRR, simple post-processing is required for sparse
images to produce the final binary mask, as many entries
in S may contain vanishingly small values. For a more
comprehensive introduction to low rank theories, readers can
refer to the book [75] and our previous work [73].

B. Post-Processing and Sample Preparation

We obtain binary pixel-wise masks by post-processing on
sparse images from LRR with two stages: grayscale thresh-
olding and geometry verification as shown in Fig. 4. The
former generates initial binary masks and the latter further
verifies crack candidates with geometric properties. Then,
we categorize masks and generate our crack dataset.

1) Grayscale Thresholding: We design a four-step proce-
dure including grayscale reassignment, grayscale stretching,
adaptive binarization, and noise removal as shown in Fig. 4.
In grayscale reassignment, we first calculate the histogram of
the sparse image and find the mode grayscale Gm . Then we
reassign the grayscale of each pixel by comparing its original
grayscale Gori and mode grayscale Gm with Eq. 7.

Gre =

{
Gori Gori < Gm

Gm Gori ⩾ Gm
(7)

With reassignment, we suppress noisy pixels brighter than
Gm and conduct stretching for higher contrast. We adopt linear
percent stretching due to its robustness toward extreme values.
Specifically, we trim extreme values from both ends of the
histogram with two percentage and stretch pixels inside the
range, retaining the idea that most information can be carried
in the range of 2σ according to Gaussian distribution.

After grayscale reassignment and stretching, we get
enhanced sparse images that are very similar to binary masks.
Then we conduct binarization accompanied by noise filtering.
For strip cracks, we adopt simple thresholding and median
filtering. For string cracks, we propose a sophisticated strategy
with dual binarization and bit-wise operation due to fragile
visual features. With loose and strict thresholding, we get
masks with and without noises, respectively. Then we conduct
bit-wise intersection on strict masks and loose masks, where
details are preserved and noises are filtered effectively.

2) Geometry Verification: From the view of geometry, strip
and string cracks share similarities in appearance, therefore
we propose a hierarchical strategy for judgment based on
weighted voting of multiple features. We first search contours
and extract skeletons on masks as shown in the black line and
white dotted line in Fig. 5, respectively. Then we sample n
points (P1, P2, . . . , Pn , blue points in Fig. 5) on the skeleton
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Fig. 4. Flowchart of simple post-processing for LRR, including stage 1 and stage 2, where we get binary masks from sparse images (gray blocks). We first
conduct grayscale adjustment (dark blue blocks) and initial thresholding for different cracks (pale blue blocks). Then, we calculate the selected geometry
indicators (green blocks) and judge crack candidates with the length and weighted scores (orange blocks).

Fig. 5. Illustration of geometry verification and the appearance are exagger-
ated to some extent. We think the candidates A and C are not crack due to
their large width and variance. We regard candidate B as a crack due to its
enough length, small width, and variance.

with fixed intervals and construct a complete graph. We find
the minimal spanning tree with Kruskal algorithm and regard
the route connecting all nodes with minimum total length as
the optimal path (pale blue line in Fig. 5). Each segment can
be regarded as a local linear fit to the skeleton in such a multi-
segment polyline. Then we find the perpendicular bisector
li (i = 1, 2, · · · , n − 1) for each segment (yellow line in
Fig. 5) and calculate the distance (read line in Fig. 5) between
intersection points (yellow points in Fig. 5), and let it represent
the width wi of this segment. For a crack candidate with n
sample points on a skeleton, we calculate its total length IL ,
crack width IW , and width variance IV as Eq. 8.


IL =

n−1∑
i=1

√
(Pi+1 − Pi )2

IW = median(wi ), i = 1, 2, · · · , n − 1

IV =

∑n−1
i=1 (wi − wm)2

n − 1

(8)

where median() indicates the median width of the skele-
ton, and wm =

1
n−1

∑n−1
i=1 wi represents the mean width.

We believe a sufficient length is a prerequisite for further
judgment and qualify a candidate if its IL is longer than
the given threshold TL . Then we score this candidate with
the following geometry indicators: (a) IW ; (b) IV ; (c) IA - the
aspect ratio of the minimum enclosing rectangle, reflecting
the general shape of crack; (d) IR - the area ratio of the
crack region and minimum enclosing rectangle, suggesting
the similarity to a rectangle; (e) ID - ratio of the square of the
crack perimeter to its area, expressing the similarity to a circle.
IA, IR , ID are calculated with certain geometry properties

Fig. 6. We eliminate interference effectively while keeping cracks as shown
in red rectangles. (a) Images. (b) Ground truth. (c) Initial masks without
geometric filtering. (d) Final masks after filtering.

as Eq. 9.

IA =
WR

HR
, IR =

SC

SR
, ID =

P2
C

SC
, (9)

where WR , HR , SR are the width, height, and area of the
minimum enclosing rectangle; PC , SC are the perimeter and
area of the crack candidate region. The overall judgment score
JS is calculated with selected indicators as Eq. 10.

JS = αI(IW ≤ TW ) + βI(IV ≤ TV ) + γ I(IA ≥ TA)

+ δI(IR ≤ TR) + εI(ID ≥ TD), (10)

where α, β, γ , δ, ε are weighting coefficients and TW , TV , TA,
TR , TD are thresholds for corresponding indicators. I(·) is the
indicator function. Finally, we get the score JS and regard the
candidate as a crack if it is larger than the given threshold TS .
Fig. 6 shows some examples of geometry filtering.

3) Sample Preparation: Compared with manual labeling,
we obtain extensive pixel-wise crack masks (positive sam-
ples) and non-crack masks (negative samples) automatically
from LRR, which significantly improves the efficiency and
achieves dataset generation without or little manual interven-
tion. Moreover, compared with common organization strate-
gies adopted in current public crack datasets, we follow
practices in famous autonomous driving dataset KITTI [76],
and the well-known simultaneous localization and mapping
(SLAM) dataset EuRoC [77]. We make several improvements
for better application, where the most notable one is that
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Fig. 7. Our DCNN for crack detection. We extract multi-level features in Encoder, while leveraging on ASPP for better receptive field and contextual
information. Then we concatenate the low-level and high-level feature maps for Decoder, and output predicted binary masks.

TABLE II
PROPERTIES IN METADATA FILE FOR BRIEF DESCRIPTION

OF IMAGES AND CRACKS IN OUR PEARL DATASET

we organize samples in a flexible and scalable manner of
“image + metadata”. Each sample in our dataset has a raw
image (stored in JPEG format), a pixel-level mask (stored in
lossless PNG format), and a metadata file (stored in XML
format). In the metadata file, we record various properties for
a fast grasp of major information, including the number of
cracks, difficulty, crack type, and bounding box range, as listed
in Table II. We also develop graphical toolkits with common
functions for better use of our dataset. For example, we can
easily filter and reorganize the samples according to recorded
property of difficulty levels.

C. DCNN for Crack Detection

We believe that it is of great benefit to regard crack detection
as semantic segmentation rather than object detection or other
tasks. First, semantic segmentation methods achieve the high-
est accuracy with pixel-wise masks while only bounding boxes
could be given by object detection methods. Second, cracks
vary in grayscale, shape, and size, it is hard and unfeasible

to define them as certain objects with a similar appearance.
With quickly advancing in computer vision, semantic seg-
mentation based on deep learning has achieved rapid develop-
ment and performs robustly on various datasets. DeepLabV3+

model [78] is the latest improved version of the DeepLab
series of networks leveraging contextual information. Inspired
by them, we adopt the skip-connection and propose an end-to-
end neural network with ASPP for pavement crack detection.
We extract and concatenate low and high-level features to
exploit the deep pattern of cracks and the background, rather
than with simple structures adopted in many existing works.
Moreover, we adopt atrous convolution with different scales
for better perception without losing image details. The network
follows encoder-decoder structure, as shown in Fig. 7.

In the Encoder part, we use both low-level and high-level
feature extractors due to the complexity and diversity of the
pavement and cracks. The low-level feature extractor retains a
large amount of global information including the road back-
ground information and grayscale patterns which are critical
for crack detection. Therefore, we choose ResNet50 [79] as
the backbone structure of the first two convolution layers.
Meanwhile, to preserve a sufficient amount of initial global
information, we concatenate output feature maps from the
first and second convolution layers. Then this feature map
passes through an 1 × 1 convolution with 64 channels,
which has the same size as the high-level feature map. The
high-level feature extractor mainly exploits deep patterns of
cracks and understands semantics in images through its deeper
structure. The complete five convolution layers in ResNet50
are adopted, each of which contains a different number of
bottleneck blocks. Similar to the SDDNet [53], we adopt
atrous convolution with a dilation rate of two in the fifth layer
for a wider receptive field along with different scales rather
than common image pyramid construction due to the loss of
tiny cracks during resampling. Then the ASPP module takes
the feature maps extracted from the first five convolution layers
and aggregates multi-scale contextual information. For details
of the ASPP module, see [80]. We use 3 × 3 kernels but
with different atrous rates to capture different size features.
The ASPP module has four branches with rates of 1, 6, 12,
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18 and one pooling layer. These five feature maps in ASPP are
then concatenated into one feature map with 256 channels and
pass through an 1 × 1 convolution layer before upsampling
to the same size as the feature map from low-level.

In the Decoder part, we achieve end-to-end pixel-level
semantic segmentation by fusing the high-level and low-level
feature maps from Encoder part. A 3 × 3 convolutional dimen-
sionality reduction calculation is performed on the connected
feature map three times to obtain a new feature map with
256 channels. The obtained feature map is passed through
an 1 × 1 convolution layer to reduce dimension to two. Then
the obtained features are upsampled to the same size as the
input image. After that, a softmax normalization is performed
on the upsampled feature map for pseudoprobabilities of the
crack class. Finally, we classify each pixel in the image and
get the final prediction result for crack detection.

With these structures, our network has a strong ability of
crack description and generalization in various samples. Extent
experiments on images from different fields such as industrial
manufacturing further demonstrates the good performance of
proposed neural network, as shown in Fig. 10.

D. Implementation Detail

1) LRR for Crack Detection: Both low rank analysis and
post-processing are implemented with C++ language in a
modular way, leveraging on OpenCV and Eigen libraries for
image processing and matrix operation. Moreover, we manage
parameters with configuration files and package the program
as a dynamic link library (DLL) on the Windows platform.
We calculate the parameter λ in Eq. 2 as suggested [71]:

λ = 1/
√

max(n1, n2), (11)

where n1, n2 are the dimension of a matrix respectively. For
practical problems, it is often possible to improve perfor-
mance by choosing λ according to prior knowledge about the
problem. Here we adopt the weight calculated by Eq. 11 for
strip cracks and set 0.04 as empirical for string cracks. For
SVD operations in inexact ALM method, we perform partial
SVD [81] for a smaller memory cost rather than the full SVD.

In post-processing, the geometric thresholds are fairly loose
and can be re-calculated according to various applications,
since they are only for the sample generation before the
training stage and have little effect on the final results from the
proposed network. Specifically, we set TL = 100, TW = 30
(string crack) or 100 (strip crack), TV = 5 with the resolution
of 1mm/pixel in our dataset. For the remaining thresholds,
we take the given TL , TW and TV into Eq. 9 to estimate
their values. For the weighting coefficients, we set α = 0.3,
β = 0.3, γ = 0.1, δ = 0.1, ε = 0.2.

2) Training for DCNN: We use grayscale patches of size
512 × 512 as inputs and augment training samples in our
dataset with random strategies (flipping and grayscale stretch-
ing). After that, We have 112,478 samples (56,810 positive
samples and 55,668 negative samples respectively) for train-
ing. Moreover, we adopt the Adam optimizer and follow the
mini-batch strategy with a batch size of 8 for better learning.
Finally, we train the neural network 150,000 times on the
NVIDIA Titan RTX GPU for about twenty hours.

TABLE III
PUBLIC PAVEMENT CRACK DATASETS WITH IMAGE NUMBER,

RESOLUTION, AND ANNOTATION INFORMATION

IV. EXPERIMENTS AND ANALYSIS

We now apply the proposed method and compare it with
representative traditional and learning methods on various
datasets including public ones and ours. Extensive experiments
demonstrate that our method significantly outperforms repre-
sentative approaches and works effectively on a wide range of
complex scenarios. We believe that such results could be very
valuable to users, especially to the traffic management sectors.

A. Experiments Settings

1) Evaluation Datasets: We collect representative crack
datasets as follows and summarize them in Table III.
We include the image number, the image size (width ×

height) and corresponding Megapixel (MP), the annotation
level (pixel, block or bounding box), and the sample for a
fast grasp.

CrackTree (D-CT) [28] includes 206 pavement images
involving some hard scenes such as shadows and low contrast.
It has pixel-wise annotation but without crack width.

CrackIT (D-CI) [36] contains 56 images with a resolution
of 1mm/pixel. Ground truth of crack is labeled in blocks
(75 × 75 pixel) and provided with the CrackIT toolbox.

CrackForest (D-CF) [37] is composed of 118 images taken
in Beijing, China with hand-labeled ground truth contours. The
dataset is split into 60%/40% for training and testing.

AELLT (D-ALT) [27] combines Aigle-RN, ESAR, LCMS,
LRIS, and Tempest2 due to few pavement images (38, 15, 5,
3, 5 images with pixel-wise annotation) in each dataset.

GAPsV2 (D-GAP2) [45] includes 2,468 images, covering
pavement distress such as cracks, potholes, and inlaid patches.
All distress is enclosed by a bounding box as ground truth.
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TABLE IV
METRICS FOR CRACK DETECTION IN IMAGE-LEVEL CLASSIFICATION

AND PIXEL-LEVEL SEGMENTATION

CRACK500 (D-CK500) [46] collects 500 images with
pixel-wise annotation in Temple University using cell phones,
and is divided into training, validation, and testing subsets.

Our Dataset involves 14,812 pavement images captured
by professional inspection vehicles in China and we call it
PEARL (PixEl Annotated cRack from LRR). The dataset
is divided into training, validation, and testing subsets with
around 60%, 10%, and 30% percentages. We provide both
pixel-wise and bounding box annotations for each sample.

2) Evaluation Metrics: We consider that complete crack
detection involves two aspects: image-level classification and
pixel-level segmentation, where the former indicates whether
an image contains cracks and the latter describes the pixel-
wise range. To achieve a unified quantitative evaluation for
both levels in a coarse-to-fine manner, we define the TP (true
positive), FP (false positive), TN (true negative), and FN (false
negative) for these two aspects in Table IV, respectively. Then,
we calculate Precision, Recall and F-Score using Eq. 12,
which are widely adopted in aforementioned works.

Pr =
T P

T P + F P
Re =

T P
T P + F N

Fscore = (1 + ω2) ·
Precision · Recall

ω2 · (Precision + Recall)
,

(12)

where ω is a weight adjusting between Precision and Recall,
and we calculate F1 score by setting ω = 1. Moreover, for
better evaluation of pixel-wise segmentation, we adopt the
mIoU metric [55]. It should be noticed that CrackIT and
GAPsV2 do not have pixel-level annotation, therefore we
convert estimated binary masks to corresponding block-wise
masks and bounding boxes for a fair evaluation. More-
over, we divide large test samples into several blocks with
512 × 512 pixels for our method, then merge them for the
same size as the input original images before final evaluation.

3) Compared Methods: Since few open-source methods
exists in the field of crack detection, we chose two repre-
sentative traditional methods and one deep learning method
as following. We also compare with other methods evaluated
on public datasets. Moreover, we replace the backbone of our
proposed network with classic structures including FCN, FPN,
U-Net, Inception and ResNet for ablation studies.

TABLE V
COMPARISON OF IMAGE-LEVEL CLASSIFICATION (F1 SCORE),

BEST RESULTS ARE MARKED IN BOLD

CrackIT (M-CI) [36] is a comprehensive set of image
processing algorithms for the detection and characterization
of pavement distresses, which is implemented in Matlab.

CrackForest (M-CF) [37] characterizes cracks and discerns
them from noises based on random structured forests method.
It involves training and detection stages.

FPHBN (M-FPN) [46] integrates multi-level features with
feature pyramid and hierarchical boosting network for crack
detection, which is implemented in Caffe framework.

Methods on public datasets. Some researchers adopt
minimal path selection (M-MPS) [27] for crack detection and
evaluate on Aigle-RN dataset. While some propose a neural
network (M-GAP) [45] and test on GAPsV2 dataset.

B. Results and Analysis

1) Evaluation for Image-Level Classification: Since com-
pared methods do not have an explicit strategy for the image-
level classification, we regard an image as non-crack if its
mask is pure blank or with fewer crack pixels than the given
threshold. Image-level classification results are summarized in
Table V. Compared methods generally achieve high F1 scores
besides on our dataset. Method M-CI and M-CF even achieve
100% F1 score on D-CF and D-CT datasets, respectively.
However, on our dataset, the F1 score of traditional methods
(M-CI and M-CF) decreases to 57.56% approximately. The
reason is that we have hard samples with low intensity or
strong noises, which brings challenges for these methods
leveraging on statistical histograms or hand-crafted features.
Take M-CI as an example, the TP, FP, TN, FN are 1277,
1833, 877, 122 on our test dataset. Many noise pixels are
categorized as “crack”, and the whole image is regarded as a
“crack image”, resulting in an increase of FP and significant
degradation in classification performance. For the deep learn-
ing method M-FPN, it generally achieves a better F1 score
than traditional methods due to the stronger ability in crack
feature description. However, it is still not satisfying on our
dataset with diverse samples due to the weak generalization led
by a simple network structure. As a comparison, our method
achieves excellent performance on all test datasets despite that
we only train the network on our dataset. We even achieve
100% F1 scores on D-CT, D-CI, D-CF and D-CK500 datasets.
The reason is that our dataset contains rich scenes and samples
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TABLE VI
COMPARISON OF PIXEL-LEVEL SEGMENTATION PERFORMANCE (MIOU AND F1 SCORE), BEST RESULTS ARE MARKED

IN BOLD. ONLY F1 SCORES OF M-MPS AND M-GAP ARE PROVIDED IN [27], [45]

of different difficulties. Besides that, the well-designed low-
level and high-level structure enables the network to grasp
crack features from different aspects. The performance of the
proposed network on our dataset is slightly lower than other
datasets due to very hard samples. Generally, the classification
performance focuses on the whole image level rather than the
pixel level results. It reflects the robustness toward external
interferences such as dark ruts or stains. It is worth noting that
if a method tends to identify noise as cracks, the performance
may be good on datasets with only crack images.

2) Evaluation for Pixel-Level Segmentation: Segmentation
results (both mIoU and F1 Score) of compared methods are
summarized in Table VI. The performance of compared meth-
ods varies on different datasets, while our network achieves
the best segmentation performance on all test datasets. For
traditional methods M-CI and M-CF, the performance is
unstable and is fluctuated by test data significantly. They
achieve good performance on certain datasets but fail on
unfamiliar or hard samples. For example, M-CI achieves the
76.39% mIoU and 88.11% F1 score on D-CI while 28.27%
mIoU and 29.41% F1 score on D-CK500. M-CF achieves the
68.53% mIoU and 85.72% F1 score on D-CF while 31.18%
mIoU and 34.98% F1 score on D-GAP2. These results further
suggests that methods based on hand-crafted features perform
well on datasets similar to target scenes. However, in hard
or complex scenes it usually fails due to the limited ability
of crack feature extraction. For deep learning method M-
FPN, it has a significant improvement on D-GAP2 and D-
CK500 dataset compared with traditional methods (M-CI and
M-CF), which confirms the better feature extraction ability.
However, on datasets that have a large difference in appearance
with D-CK500 (such as D-ALT), the mIoU and F1 score
falls dramatically to 27.32% and 38.55%, respectively, due
to incomplete learning of crack features. Moreover, M-FPN
outputs the probability map that needs to be further processed
and is not accurate enough for pixel-wise segmentation eval-
uation, resulting in a fairly low performance on all datasets.
For M-MPS and M-GAP methods, we cannot test them on
collected datasets due to unavailable source code, where we
mark “−” in Table. VI. For M-MPS, they test their method
on 38 images from the Aigle-RN dataset, where they get
a precision of around 72.04% and recall of 64.24% [27].
Therefore, we calculate the corresponding F1 score of 67.92%

for the approximation of M-MPS on D-ALT. For M-GAP, they
achieve the best performance with the ResNet34 backbone.
The network is trained for 80 epochs on the 50K subset of
GAPsV2 dataset with a patch size of 160 × 160 [45]. For the
proposed method, we achieve 93.66% mIoU and 97.75% F1
score, evaluated with generated binary masks in our PEARL
dataset. On other datasets, we also achieve the best segmenta-
tion performance. Compared with other methods, our method
performs stably on all datasets with good generalization, which
is the result of diverse training samples in our dataset and the
well-designed network structure. Segmentation results of crack
and non-crack samples in various datasets are shown in Fig. 8.

3) Ablation Study and Further Analysis: To further analyze
the performance, we conduct the following experiments.

a) Ablation on LRR: We compare classification and
segmentation results generated by LRR in the first stage
as summarized in Table VII. The binarization step is first
replaced with classic Otsu (LRR-BinOtsu) and compared with
our method (LRR-BinOurs), where both of them are without
geometry verification. LRR-BinOurs surpasses LRR-BinOtsu
by a large margin especially in pixel-level segmentation due
to the robustness to many speckle noise, suggesting its superi-
ority for pavement images. Then we enhance LRR-BinOtsu
with Hough Transform [82], [83] to give simple geometry
constraints (LRR-Ot.Ho.) and obtain better results, which
demonstrate the necessarity of geometry verification. Finally,
we propose tailored binarization and geometry verification
for pavement cracks (LRR-FullOurs), and conduct experi-
ments. With more precise and rigid filtering for interference,
LRR-FullOurs performs better than LRR-Ot.Ho., which is
the result of suitable integration of grayscale and geometry
constraints. The outperformance of LRR in automatic crack
sample generation compared with other traditional methods is
demonstrated in accuracy, efficiency, and generalization with
experimental results. First, we achieve the best performance
(86.59% F1 score for image-level classification, 81.21% mIoU
and 82.35% F1 score for pixel-level segmentation) on collected
sequential images compared with two traditional methods (M-
CI and M-CF), which is of great importance for reducing
the labor cost and workload in practice. Second, we achieve
higher FPS (0.871) on our dataset without GPU compared
with M-CI and M-CF (Table IX), which is benefit from the
fast theoretical convergence, the batch-processing manner, and
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Fig. 8. Comparison of different methods on crack and non-crack samples from various datasets. Our method (M-Ours) performs best on all test datasets with
the highest classification and segmentation performance (mIoU and F1 score), while M-CF and M-FPN are with much noise. The ground truth annotation of
D-CI is not in pixel level but with blocks of 75 × 75 pixels.

Fig. 9. Comparison of the proposed LRR and neural network on our PEARL dataset. M-LRR achieves satisfying performance, while the neural network
(M-Ours) performs better. Moreover, the network has a more stable performance on samples of different difficulty levels.

the acceleration of computation. Third, we achieve better
generalization to various images compared with traditional
methods due to the weak assumption of LRR on data.

b) Ablation on DCNN: To verify the influence of dif-
ferent depth and perception field, we replace the backbone of
the proposed network with FCN, FPN, UNet, InceptionV3,
ResNet101, ResNet152, ResNet200, and ResNet50, which are
widely adopted in semantic segmentation and crack detec-
tion [46]. According to experimental results, the network
with ResNet50 (Ours-Res50) performs best in test pave-
ment images. Specifically, we find that the deeper network
(ResNet50-200) usually performs better compared with simple

structures, such as FCN, FPN and UNet. But the low-level
features that are potential for crack detection may get lost
during the very deep convolution, resulting the degradation
of performance. From the view of perception field, structures
with wider field typically prevent the loss of details and lead
to a better accuracy. Therefore, we select the ResNet50 as
our backbone and enhance with ASPP, which achieves the
best performance in both image-level classification and pixel-
level labelling. In addition, we further analyze the perfor-
mance of our network on samples of different difficulties, and
re-calculate classification and segmentation results, as shown
in Table VIII, some visual results are shown in Fig. 9.
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TABLE VII
DIFFERENT ABLATION STUDY RESULTS OF OUR LRR AND NEURAL

NETWORK ON THE PROPOSED PEARL DATASET

TABLE VIII
CLASSIFICATION AND SEGMENTATION OF OUR NETWORK

ON VARIOUS DIFFICULTY LEVELS IN OUR DATASET

For both classification and segmentation, the general perfor-
mance slightly decreases along with the increase in sample
difficulty. For example, the mIoU and F1 score of segmenta-
tion only decreases 4.74% and 0.41% from easy to hard level,
respectively, which proves the strong ability of our network.
Generally, LRR achieves 86.59% F1 score for classification,
81.21% mIoU and 82.35% F1 score for segmentation, which
are good enough for many applications. Meanwhile, deep
learning method achieves better performance due to more
distinguishable features learned by the well-designed network.
We find that despite satisfying results of LRR, it fails in some
hard samples, resulting in a lower mIoU and F1 score than
the proposed network.

c) Analysis on efficiency: We evaluate the computational
efficiency of each method (a detailed description of test
datasets can be found in Table III), as summarized in Table IX.
All test methods are in original resolution as Table III shows.
For the proposed network, we divide each test sample into
blocks with 512 × 512 pixels and sum the processing time
of all blocks to calculate the FPS of this sample. The
test computer is equipped with an Intel i9-9900k CPU and
NVIDIA Titan RTX GPU. To ensure the accuracy of the
evaluation, we run each method three times and calculate
the mean time. It can be seen that both M-CI and M-CF
are very slow because they only use CPU for computation
and without any acceleration techniques. In contrast, M-FPN
is much faster than them due to the GPU implementation
based on the Caffe framework. Despite only using CPU in

TABLE IX
COMPARISON OF COMPUTATIONAL EFFICIENCY (UNIT: IMAGE/SECOND).

BEST RESULTS ARE MARKED IN BOLD

Fig. 10. Predicted crack masks of our DCNN in different scenarios and
applications that varies significantly in color and appearance.

our LRR, we optimize the algorithm as much as possible
with approximation and parallel computation, resulting in a
comparable or even better performance compared with GPU
methods. Furthermore, our network uses GPU and parallel
computation, which further releases the computation burden
with highest efficiency. Moreover, we calculate the cost time
T ime1M for processing one million pixels (1MP) of compared
methods, as summarized in Table IX.

V. CONCLUSION AND PERSPECTIVES

In this paper, we propose a novel two-stage pavement crack
detection and automatic sample generation method leveraging
LRR and DCNN. In the first stage, we exploit latent clues
that are valuable for crack detection in images with LRR.
We get positive and negative crack samples with pixel-wise
annotation after straightforward post-processing. In the second
stage, we propose a DCNN and train with generated samples.
Compared with LRR, DCNN has a better performance in hard
samples. Extensive experiments are conducted to evaluate the
performance of our method. We achieve image-level classi-
fication with the 98.20% F1 score and pixel-level segmen-
tation with the 93.66% mIoU and 97.75% F1 score on our
dataset. Despite we only train the network on our dataset,
the compelling results on other datasets demonstrate the gen-
eralizability and superiority of our DCNN. Besides, we test
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our DCNN on images from various scenarios and fields, such
as industrial and electronic manufacturing, forestry, as shown
in Fig. 10. The great performance further prove the great
potential of our network in many applications. Last, to our
best knowledge, our automatically generated dataset PEARL
is currently the largest pavement crack dataset with pixel-wise
annotation and multiple properties, which will be published to
boost the community for both research and engineering.

There are also some limitations of this work. Currently, the
weighting parameter for low rank and sparse parts is crucial
for LRR performance and is currently determined by Eq. 11.
However, it may not achieve the best performance or even
poor results in very complex scenes. Despite the loose and
easily-calculated thresholds for LRR post-processing, we still
aim to achieve a fully threshold-free LRR for crack detec-
tion with better automatic strategies. Consequently, following
directions exist after this work. First, we will corporate with
engineering stakeholders closely to improve the robustness
of procedures in the framework toward a full-automatic and
operational level in practice. Second, the performance and
efficiency of LRR depend on the weighting parameter and
batch size to a certain extent. Determining how to select the
optimal configuration for pavement crack detection accurately
and automatically is an open problem. Third, despite cracks
taking a majority of pavement distress, there are still other
types such as potholes, applied patches. Determining how to
achieve accurate detection and automatic sample generation of
multi-type distress based on the proposed method is another
valuable direction, which is important for autonomous driving
and other fields.
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