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Industrial UAV-Based Unsupervised Domain
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Abstract—The defect diagnosis of modern infrastruc-
tures is crucial to public safety. In this work, we propose
an unsupervised domain adaptive crack recognition frame-
work. To fulfill the unsupervised domain adaptation (UDA)
task of cracks recognition in infrastructural inspections,
we propose a robust UDA learning strategy termed Crack-
DA to increase the generalization capacity of the model
in unseen test circumstances. More specifically, we first
propose leveraging the self-supervised depth information
to help the learning of semantics. And then using the edge
information to suppress nonedge background objects and
noises. We also use the data augmentation-based consis-
tency. More importantly, we use the disparity in depth to
evaluate the domain gap in semantics and explicitly con-
sider the domain gap in network optimization. A database
consisting of 11 298 crack images with detailed pixel-level
labels for network training in domain adaptations is es-
tablished. Extensive experiments on unmanned aerial ve-
hicle (UAV)-captured highway cracks and real-site UAV in-
spections of building cracks demonstrate the robustness
and effectiveness of the proposed domain adaptive crack
recognition approach.

Index Terms—3-D reconstructions, autonomous infras-
tructure inspections, crack detection and segmenta-
tion, domain adaptive learning, unmanned aerial vehicles
(UAVs).

I. INTRODUCTION

THE health condition monitoring of various infrastructures
is of great significance to public safety [1], [2], [3].

Regular inspections of infrastructural health conditions in an
autonomous way are vital to the subsequent repair and main-
tenance. From a technical perspective, inspections of infras-
tructures such as buildings and pavements require 3-D recon-
struction methods of inspected targets to construct an accurate
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3-D model, and defects recognition methods to realize the
automatic defects identification [4]. With the development of
robotics, autonomous systems such as unmanned aerial vehicles
(UAVs), and unmanned ground vehicles (UGVs) have great
potential to substitute humans to conduct cost-consuming and
labor-intensive inspections [3]. Also, the learning-based meth-
ods can be applied in a data-driven manner to fault diagnosis [5],
industrial anomaly detection [6], [7], and to accurately segment
and localize defects such as cracks in captured images by
autonomous UAV systems [8], [9], [10] in our applications of
infrastructure inspections.

When deployed into real applications, several major chal-
lenges hinder the deployment of current learning-based crack
recognition. First, an integrated autonomous system requires to
be developed to fulfill the inspection task without human in-
terventions. Specifically, advanced control and motion planning
systems should be established to make the UAV conduct inspec-
tion tasks autonomously, and 3-D reconstruction methods should
be developed to establish a 3-D model of the target infrastructure.
Second, high-quality pixel-level labels of the inspection target
are not always available. Therefore, we require the algorithm
to perform well on the unlabeled test data with great domain
adaptation capability. The third is the scarcity of 3-D structural
information. Structural information has been demonstrated to
be very useful in visual computing and recognition [11], [12].
However, the typical crack recognition methods [9], [10], [13],
[14] have not incorporated the geometric information such as
depth and edge into feature learning, which can not fully exploit
useful features apart from semantics to further increase the
discrimination capacity of the model. Finally, domain-invariant
relationships between the semantics and geometric depth have
not been explored to boost the performance in recognition of
defects without labels when encountered with domain shifts,
which limits the domain generalization capacity in real-site
crack inspections.

To tackle the challenges above, we propose a domain adap-
tive learning framework Crack-DA with applications to indus-
trial UAV-based crack inspections. Our proposed domain adap-
tive learning system can realize unsupervised domain adaptive
recognitions of the defects such as cracks. It has been proved
to be very effective for crack recognition in the unlabeled test
images with large domain gaps when conducting a real-site
building inspection. As depicted in Fig. 1, we have proposed
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Fig. 1. We have proposed our unsupervised domain adaptive crack
recognition framework highlighted by red font, termed Crack-DA. Inte-
grated with autonomous systems to collect data and 3-D reconstruction
system to build target 3-D model, our proposed framework can fulfill the
automatic infrastructural inspection.

our own unsupervised domain adaptive crack recognition frame-
work, termed Crack-DA, highlighted in red. Integrated with au-
tonomous systems to collect data and 3-D reconstruction system
to build target 3-D model, Crack-DA can fulfill the automatic
infrastructural inspection without human labor. The contribution
of our work is as follows:

1) We constructed a benchmark pixel-level crack segmenta-
tion database and open-sourced it for the community.

2) In addition, we propose a systematic framework termed
Crack-DA to tackle the UDA of the crack recognition.
The depth and edge information are fully exploited in
proposed optimization functions and fusion networks are
designed to fuse the depth with the semantic feature.

3) Furthermore, we propose using the disparity of depth esti-
mation to evaluate the domain gap between the source and
target domain. The estimated domain gap is formulated
into the network optimization.

4) It is demonstrated that Crack-DA can greatly improve
the model generalization capacity. Finally, real-site in-
spections of the highway pavement cracks, and build-
ing cracks demonstrate the robustness of the proposed
system. Crack-DA is deployed to real-site inspections
of cracks on pavements and buildings with good perfor-
mance.

II. RELATED WORK

Crack Recognition is a vehement research topic in last years.
For establishing crack datasets, many recent studies addressed
this issue by either manually collecting and labeling defect
images [15] or synthesizing defect images [16]. Fully supervised
learning-based methods have achieved great success in crack
classification [17] and segmentation [13] when the domain gap
between the training set and test set is not that large. Several
pioneer works have used deep-network-based methods for fault
identification [18], [19] and meta-learning-based methods for
multiple-target defects recognition [17]. However, in real appli-
cations, the domain gap is very large when deploying the trained
crack recognition model to the real-site target infrastructure to
be inspected. According to our experiments, the performance
of fully supervised crack recognition methods on the unseen
tested target without labels is limited. Although we can utilize

the autonomous UAVs to replace human power to conduct the
inspection and capture the images of the target infrastructure,
pixel-labeling for the images of the inspection target is time-
and-labor-consuming. Therefore, a domain adaptation method
that can leverage both labeled source domain data and unlabeled
target domain data to boost the target-domain recognition per-
formance is in great demand, and this makes our proposed work
meaningful compared with related works in crack recognition.
Also, the 3-D visions techniques have undergone tremendous
progresses in the past few decades [20], [21]. However, unlike
the 3-D data, which has small domain gaps in real circumstances,
the 2-D images may have small domain gaps.

Unsupervised Domain Adaptation (UDA) denotes the model
adaptation from the source domain with labels to the target
domain without labels [22], [23]. The target of UDA is to
eliminate the domain gap [24], [25], [26]. To achieve UDA,
several recent studies tackle this challenge via image translation
in the input space [27], adversarial learning in the feature space,
or self-training and consistency learning in output space [28],
[29], [30]. The first mainstream UDA approach is learning the
domain-invariant feature distributions, and the second is con-
ducting recursive self-training using highly confident network
predictions as pseudolabels. In our implementation, we also use
the self-training methods to continuously refine the pseudolabels
on the target domain. Some multitask learning frameworks have
been proposed recently, which apply a joint learning strategy
for the semantic segmentation with instance segmentation [31]
and boundary prediction [32]. However, these methods work
in a fullysupervised setting, where domain gaps do not exist.
It has been demonstrated that auxiliary visual representations
such as the depth and edge information have strong correlations
with the semantics of visual contents [33], [34], [35]. But the
relationship between low-level geometry such as the depth and
high-level semantics such as the pixel-level category has rarely
been explored in the UDA setting with large domain gaps. Also,
the exploration of UDA for specific defects recognition with
a large domain gap is still in its infancy but vital and in great
demand.

Autonomous Visual Systems for Inspections are of great sig-
nificance to building a smart city. Several UAV-based datasets
for generic object detection have been established, such as the
MOR-UAV [36] for moving object detection in capture videos.
The attention-based network for simultaneous object detection
and counting has been proposed for UAV captured images [37].
However, two major problems exist. The first is that there exists
no systematic framework for infrastructural inspections. The
second is that current proposed datasets or methods are not
specifically designed for unsupervised domain adaptive defects
recognition. Therefore, a systematic framework dealing well
with the domain gap for inspections with autonomous inspection
systems requires to be constructed.

III. METHODOLOGY

As shown in Fig. 2, we have proposed our own unsupervised
domain adaptive crack recognition framework, termed Crack-
DA, highlighted by red font. Integrated with autonomous sys-
tems to collect data and 3-D reconstruction system to build target
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Fig. 2. Structure of the proposed autonomous inspection system. Our
proposed domain adaptive crack recognition system is highlighted in
red.

Fig. 3. CUHK United College Wu Chung Library final 3-D reconstruc-
tion results based on RGB images and the final infrared 3-D reconstruc-
tion results based on infrared images.

Fig. 4. Final 3-D reconstruction results of the CUHK campus. We
randomly select two views for visualizations.

3-D model, our proposed framework can fulfill the automatic
infrastructural inspection without intensive human labor.

We build our 3-D reconstruction system based on the SOTAs
Open-MVG [38]. Apart from Open-MVG, the 3-D point clouds
semantic segmentation algorithms [11] have been integrated
for the building components segmentation. Our system sup-
ports versatile postprocessing functionalities. It can perform
mesh generation and denoising with our texture mapping and
denoising algorithms. Finally, we can render a structured 3-D
mesh model with fine details. UAV-based reconstruction result
examples of the CUHK library and campus are shown in Figs. 3
and 4. Our proposed reconstruction system can reconstruct a
perceptually very accurate 3-D model, supporting both the RGB
and infrared images as the input. The final detected defects
are easily registered to the 3-D model using the 2-D–3-D
correspondence.

A. Database Construction

We construct a comprehensive crack segmentation database
consisting of 11 298 450× 450 cracks images with detailed
pixel-level labels.1 The database contains cracks from various
structures, including pavements, bridges, and buildings. In the
formulation of domain adaptive crack recognition, we regard the
proposed database as the source dataset with label and transfer
the model to the pavement-crack and MaWan-crack unlabeled
test set for crack recognition with proposed Crack-DA.

B. Unsupervised Domain Adaptive Crack Recognition

Take the building inspection as an example, after we have
set up our database, it is still difficult to directly apply those
data to practical infrastructural inspections. Because cracks from
various infrastructures have intrinsically different patterns in
geometric structures and background materials, directly test-
ing trained models on target infrastructures with domain gaps
inevitably causes a performance decrease. In this work, we
propose a novel UDA framework termed Crack-DA to overcome
the difficulties in crack recognition. Optimization functions and
fusion networks are proposed for UDA.

1) Problem Definition: The target of UDA is transferring
models trained on the source-domain labeled data to the target-
domain unlabeled data, which matches our target of transfer-
ring models trained from the self-established database with
labels to the target scenarios in inspections without labels.
Provided the source domain images XS in our self-established
database with their corresponding labels LS, and the target
domain crack images XT captured by UAV without labels,
the goal of the unsupervised domain adaptive crack segmen-
tation is to learn a robust model Aseg that gives precise
crack segmentation prediction in the target domain for in-
spected infrastructures. Denote the source domain images as
XS = {(xS

1 , l
S
1 ,d

S
1 ), (x

S
2 , l

S
2 ,d

S
2 ), . . ., (x

S
M , lSM ,dS

M )}, where
xS
i denotes the ith training image, lSi denotes the ith cor-

responding label for semantic segmentation, and dS
i de-

notes the pseudoground truth in the auxiliary depth esti-
mation task. Denote the target domain images as XT =
{(xT

1 ,d
T
1 ), (x

T
2 ,d

T
2 ), . . ., (x

T
M ,dT

M )}, where xT
j denotes the

jth real-scene test image. dT
j denotes the corresponding pseudo

label in the auxiliary depth estimation task.
For depth estimation, we use the off-the-shelf depth trans-

former [39] trained on KITTI [40], [41] to obtain the pseu-
dodepth estimation ground truth on both the source and target
dataset. The auxiliary depth information helps the network es-
timate the domain gap between the source and target domain,
which facilitates optimizations in domain transfer.

2) Main Contributions: To tackle the great challenge that
large domain gaps exist for the UDA in our applications, in this
work, we propose effective network modules to improve the
domain adaptation capacity. First, we propose using auxiliary
geometric information from the depth estimation to achieve
depth awareness. Second, we propose using an off-the-shelf edge

1https://github.com/KangchengLiu/Crack-Detection-and-Segmentation-
Dataset-for-UAV-InspectionOur Self-Established Database
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Fig. 5. Our proposed network framework Crack-DA for unsupervised domain adaptive crack segmentation. Our framework takes advantage of
both depth and edge information for a more robust and accurate domain adaptive feature learning.

detector [42] to achieve edge awareness in the task of semantic
segmentation. Third, we propose using the data augmentation
approach to achieve consistencies in the feature learning and
improve the robustness of the network prediction under vari-
ous input data transformations. Finally, to improve the model
adaptability to the target task, we propose using the disparity
in depth prediction to evaluate the domain gap between the
source and target domain. Then the domain gap is considered and
formulated into the network’s optimization functions to refine
the semantic prediction of crack segmentation.

3) Crack-DA Network Architecture With Depth and Edge
Awareness: As shown in Fig. 5, we propose a network with
depth and edge awareness to achieve domain adaptive crack
segmentation. The network consists of the following sequential
steps to do semantic segmentation: 1) We obtain crack images of
both source databases with pixel-level labels and target buildings
captured by the UAV without labels. 2) We perform the data
augmentation with wavelet transform [43] and inverted color and
do Canny-based [42] edge detection for both the source domain
images and the target domain images. 3) We use the shared
semantic segmentation backbone encoder network to obtain the
embedding depth feature and semantics feature, respectively. 4)
We propose a transformer-based network for the relationship
mining and fusing of depths and semantics. And we propose
specifically designed optimization functions to achieve depth
and edge awareness in learning. 5) Finally, we obtain the final
segmentation and depth predictions. 6) Also, we apply selective
search [44] based nonmaximum suppression (NMS) on the
segmentation results to obtain the final crack detection results.

Transformer-Based Depth and Semantics Feature Fusion
Network: To capture the correlations between the depth and
semantics, we elaborately design the feature fusion network
to fuse the depth feature with the semantic feature. And the
attentional transformer (A-T) is used to model the relationship
between the semantic features and the depth features. Specifi-
cally, after feeding the input images to the shared encoder, we
can obtain the backbone feature fb ∈ R512×1. Then we apply
two-layers depth perceptrons (MLPs) and semantics MLPs,

respectively, to obtain the depth feature f dep and semantics
feature f sem. For the two-layers MLPs, the weight matrix of
the first layer is Wa ∈ R512×256, and the weight matrix of the
second layer is Wb ∈ R256×128. Then, we can obtain the depth
feature f dep ∈ R128×1 and semantic feature f sem ∈ R128×1,
respectively. Last, we apply four A-Ts with different weight
matricesW1,W2,W3,W4 to obtain both the fused depth feature
f dep

fuse and the fused semantic feature f sem
fuse in an adaptive manner

f dep
fuse = W1f

dep +W2f
sem (1)

f sem
fuse = W3f

dep +W4f
sem. (2)

The proposed attentional transformer has three prominent mer-
its. First, the A-T can automatically select and enhance the
closely related depth and semantics features, and the irrele-
vant features are suppressed. Second, the complementary in-
formation of depth and semantics are implicitly modeled and
learned by the A-T. Third, the A-T is also used to capture the
feature relationships between the source and the target domain.
For example, the crack patterns are shared in the source and
the target domain. Finding correlations and common features
between domains can facilitate the learning of general feature
representations for crack patterns. According to our ablation
studies, the proposed attentional transformer for feature-fusion
is significant to the overall recognition performance.

Optimization Functions for Robust Network Predictions: To
ensure the decision boundary of the network lies in low-density
regions and improve the robustness of the network prediction
under input transformations, we propose optimization functions
to encourage high similarity levels between the predictions for
the two augmented input images. As shown in Fig. 5, denote
the two augmented images as xAug

1 and xAug
2 , they are fed into

the shared encoder to obtain the semantic features. Then, the
semantic features are fed into the shared semantic decoders to
obtain the semantic segmentation prediction confidence vectors
p1,j and p2,j , where j is the pixel index in the image. Then, the
highest confidence vectors in p1,j and p2,j are regarded as one-
hot pseudo label vectors y1,j and y2,j . Denote B as the whole
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training set of input images, we formulate the data augmentation
loss LAug

LAug =
1

‖B‖
∑
xi∈B

1

Np

Np∑
j=1

(DivJS(p2,j‖y1,j)

+DivJS(p1,j‖y2,j)). (3)

Np = w × h is the number of pixels within the input images. w
and h denote the width and height of the input images. Jensen–
Shannon (JS) divergence is used to encourage the consistency
between the two augmented network predictions.

Optimization Functions With Edge and Depth Awareness:
To exploit the edge and the depth information to facilitate the
domain adaptation, we have proposed depth-aware optimiza-
tion functions and also used the edge information to guide
the optimization of the segmentation network to find accurate
nonedge regions. From the principle of the image-based crack
segmentation and our observations, the crack can merely appear
at the pixels with great directional change in the RGB images.
These pixels also have a large gradient in the neighborhood.
Therefore, we propose an edge-aware optimization function
to encourage the network to have correct predictions at the
background noncrack pixels with a small gradient. We first use
the Canny edge detector [42] to obtain the edge map. The edge
map gives a great indication of the noncrack pixels. To be more
specific, if the edge value is lower than a certain small value γ
in the Canny edge detector (γ = 0.2% in our case), we regard
the pixels as the noncrack pixels. Denote the noncrack pixels as
yn, we encourage network predictions to classify these pixels as
noncracks to suppress the noise and noncrack patterns. Denote
the network predictions at the noncrack pixels as pn, and the
number of the non-crack pixels as Nnc, we formulated our
segmentation optimization function Ledge as follows:

Ledge =
1

‖B‖
∑
xi∈B

1

Nnc

Nnc∑
n=1

‖pn − yn‖2. (4)

By the constraints of the proposed L2-based optimization func-
tion, auxiliary edge supervisions are added to suppress back-
ground noises and to help noncrack pixels to be precisely seg-
mented.

As no depth ground truth is provided, first, we acquire
the pseudo ground truth depth as self-supervision from the
transformer-based depth estimator [39]. To realize the depth
awareness, we use the Berhu loss [45]. The Berhu loss LBerhu is
formulated as follows:

LBerhu(z) =

{
‖z‖ ‖z‖ ≤ a
z2+a2

2a ‖z‖ > a.
(5)

The Berhu loss resembles L1 loss when the norm of input z
is less than a, while it resembles L2 loss when the norm of
input z is larger than a. And a is the depth threshold set to 1

5 of
the maximum depth difference in the pseudoground truth depth
map. Finally, both the source and target dataset can be used to
learn the depth from the pseudolabels, which improves the 3-D
geometric depth awareness within diverse 2-D scenes. The total

optimization function for the depth estimationLdep is formulated
as the sum of the loss for the source dataset LS

dep and the loss for
the target dataset LT

dep

Ldep = LS
dep + LT

dep =
1

‖B‖
∑
xi∈B

1

Np

Np∑
i=1

(LBerhu(‖dS
pred,i − dS

i ‖)+LBerhu(‖dT
pred,i − dT

i )‖).

(6)

Domain Gap Estimation by Depth: To consider the domain
gap between the source and target dataset, we utilize the differ-
ence in depth estimation to evaluate the domain gap between the
source and target dataset in semantic segmentation. To be more
specific, as shown in Fig. 5, let a real-site tested image feature
f dep

fuse captured for the inspected target as input, we calculate
the depth prediction for the test images using source depth
decoder Ds and target depth decoder Dt, respectively. Then,
we obtain the predicted depth map from the source decoder and
the predicted depth map from the target decoder. Because the
depth and semantics are inherently and implicitly correlated,
the semantic domain gap Gsem between the source and target
dataset can be relatively precisely estimated by the prediction
inconsistency in depth estimation. The domain gap weight u that
uses the domain gap to estimate the confidence of the pseudo
label at the target dataset domain is proposed

Gsem = ‖Ds(f
dep
fuse)−Dt(f

dep
fuse)‖

u = exp

(
−Gsem

bmax

)
(7)

where bmax is the maximum depth difference in the pseu-
doground truth depth map of the target dataset. And the weight
u ∈ (0, 1]. For a bigger domain gap, we will assign smaller
weights to the segmentation loss function to reduce the con-
fidence level of the semantic pseudolabels in optimizations and
vice versa. In this way, the domain gaps are considered, which
guide the network optimization.

Overall Optimization Functions: As shown in Fig. 5, after
applying attentional transformers to obtain the fused depth fea-
ture f dep

fuse and the fused semantic feature f sem
fuse , we input f sem

fuse
to the shared semantic decoder to obtain the final segmentation
prediction [46]. Also, we use two independent depth decoders
that are trained with the source depth loss LS

dep and the target
depth loss LT

dep, respectively. Denote the segmentation losses
for the source and target dataset as LS

Seg and LT
Seg, respectively,

we choose to use the focal loss [47] to tackle the great class
imbalance for the crack segmentation task

LSeg = − 1

‖B‖
∑
xi∈B

1

Np

Np∑
i=1

w(1− hgt
i )

α
log(hi)

+ w(hgt
i )αlog(1− hi) (8)

where hi represents the binary predicted crack map and hgt
i

denotes the ground truth (in LS
Seg) or pseudoground truth (in
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Fig. 6. Complete UAV-based real-site building cracks recognition qualitative results at MaWan, Hong Kong. The results without and with our
proposed crack-DA are shown in blue and red, respectively.

LT
Seg) crack map. We set the weight w = 1 in the segmentation

loss LS
Seg for the source dataset, and w = u in the segmentation

loss LT
Seg for the target dataset. We select α= 2 according to the

original approach. Np is the total number of pixels. Because the
label in the target domain is not available for UDA, we use the
self-training [48] approach which only believes the confident
network prediction to be the pseudolabel with a confidence
threshold σ. In summary, the total optimization function Ltotal

for the Crack-DA training in an end-to-end manner to fulfill the
UDA is formulated as

Ltotal = LAug + LEdge + LDep + LS
Seg + LT

Seg. (9)

IV. EXPERIMENTAL RESULTS

A. Experiments of UDA From Our Self-Established
Dataset to Real-Site Building Crack Inspections at
MaWan, Hong Kong

To demonstrate the effectiveness of Crack-DA, we directly
test it at MaWan, Hong Kong for the UAV-based inspections of
cracks on old buildings.

Experimental Settings: We did experiments on our self-
established dataset and transferred it to the MaWan old build-
ings’ images captured by UAVs with the proposed Crack-DA.
The confidence thresholdσ is set to 0.8. The images in the source
domain labeled dataset are in the resolution of 450× 450. For
the labeled data, we have used the whole source pixel-level
labeled dataset consisting of 11 298 images for training. For
the unlabeled target-domain data, we have used the 100 test
set images with the resolution of 6000× 4000 during the UAV
building inspections at MaWan for testing.

Our proposed UDA framework Crack-DA is implemented
with the deep learning framework Pytorch. We train our network
with a single RTX 2070 GPU for 580 epochs with the Adam
optimizer, utilizing a learning rate of 10−4, which is multiplied
by 0.1 per 60 epochs. Training takes approximately 16 h for
DeepCrack [13] with Crack-DA. Note that all our proposed
optimization function designs are merely required in the training
stage and do not affect the efficiency. All our experimental results
are three-time average.

Experimental Results: The qualitative experimental results for
the MaWan building cracks are shown in Fig. 6. From column
(a), we can see that our proposed method can provide an explicit
edge map, which can clearly reveal the noncrack pixels. From
columns (b) and (c), it can be seen that the domain gaps exist
and the target decoder can offer more accurate depths and the
patterns of cracks are effectively learned. In column (e), we
show the original images captured for the building surface at
MaWan by UAVs. While the data augmentation results with
wavelet transform and inverted color are shown in column (d).
It can be seen that the original image can be transformed into
a different representation to enrich the training samples. We
visualize the semantic segmentation results of previous SOTAs
crack segmentation network DeepCrack [13] without domain
adaptation as shown in the column (g) of Fig. 6. And the final
segmentation predictions of DeepCrack [13] with our proposed
Crack-DA are shown in column (i), which are far more accurate
compared with the counterpart without domain adaptation. The
various noncrack noises or objects in the background including
bricks and grasses are successfully suppressed and eliminated.
We also visualize the network activation map provided by our
proposed optimization functions in column (h). It can be seen
that our proposed network modules clearly help to find the
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TABLE I
COMPARISON OF UDA SEGMENTATION RESULTS BETWEEN VARIOUS STATE-OF-THE-ART METHODS

salient crack patterns, which are well aligned with ground truth
in column (f). Column (j) shows the NMS based object detection
results from our proposed approach, which are perceptually pre-
cise. It demonstrates the superior performance of our proposed
Crack-DA in the UDA for the crack recognition.

Our proposed Crack-DA can be integrated seamlessly into
various network backbones and boost the segmentation per-
formance. As shown in Table I, we have also done exper-
iments by integrating the proposed Crack-DA with various
network backbones including Crack-Net [9], DeepCrack [13],
DeepLabV3 [8], PSPNet [49], ASPP-Net [50], and Seg-
Former [51] to test the performance of the proposed domain
adaptation approach. The evaluation metrics follow the previous
work [10] in pixel-level crack segmentation. It can be seen that
our proposed Crack-DA boosts the segmentation performances
on the target dataset by a large margin of about or more than
30% mean intersection over union (MIoU), which demonstrates
its great effectiveness in increasing the domain generalization
capacity. We directly do inference on the UAV onboard NVIDIA
Xavier GPU to test the efficiency. We use the inference time
of 6000× 4000 images for MaWan-cracks and 512× 512 for
highway-cracks to evaluate the computational cost. It shows that
for various network backbones, Crack-DA merely results in a
marginal increase in the computational cost of less than 10%,
which demonstrates that Crack-DA achieves great segmentation
performance with satisfactory network efficiency. This can be
explained by the fact that our proposed network optimization
function is merely required in the training of the backbone
network with Crack-DA. Once the training is finished, network
weights are fixed in testing, and computations in proposed
losses are not needed. Also, our proposed A-T is effective
and light-weighted, only resulting in a marginal increment in
computational costs for various network backbones.

Depth Estimation: We choose the off-the-shelf depth trans-
former [39] trained on KITTI [40], [41] to obtain depth pseudo
labels. The training details on the KITTI dataset follow the
original implementation [39]. As shown in Fig. 7, the depth
transformer can offer great performance on the unseen test set in
the autonomous driving scenarios with an accurate estimation of
the geometric depth information. The depth estimation results by

Fig. 7. Network prediction results of the depth estimation by trained
models on the test set of KITTI Benchmark. Darker means deeper.

the source dataset depth decoder and target dataset decoder are
shown in columns (b) and (c) of Fig. 6. It can be seen qualitatively
that the depth estimated by the source decoder is less accurate
than the target decoder and a large domain gap exists. Also, the
cracks can be seen apparently and explicitly in column (c) for the
target domain, proving that the model learns the crack patterns
effectively in the depth estimation. For the results of the source
domain in column (b), the crack patterns are clear although the
depth is not accurate. It indicates that our designed A-T-based
feature fusion network is important and the crack semantics and
the depths are strongly coupled and correlated.

B. Experiments of UDA From Our Self-Established
Dataset to the Highway Crack Dataset

We also did experiments of the UDA from our self-
established dataset to the UAV-captured highway pavement
crack dataset [53].

Experimental Settings: The experiment settings are the same
as the test with MaWan crack. For the unlabeled set, we have used
the 900 target-domain images with the resolutions of 512× 512
in the UAV-captured highway pavement crack dataset [53] for
the testing of domain adaptive segmentation.

Experimental Results: We have shown the qualitative crack
segmentation experimental results in Fig. 8. The segmentation of
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Fig. 8. Qualitative comparisons of w/ and w/o the proposed Crack-DA
for the domain adaptive highway pavement crack segmentation.

the UAV-captured pavement cracks is a tough task because of the
dark lighting conditions and complex background objects with
occlusions and shadows as shown in the first column of Fig. 8,
causing a great domain gap in recognitions. The DeepCrack [13]
and Seg-Former [51] are the previous fully supervised SOTAs
method for crack segmentation and general segmentation. It
can be seen that when the domain gap is large between the
source and the target domain, previous SOTAs can not handle the
complex backgrounds such as shadows and the road handrails.
They deal poorly with the low-light conditions and give many
false predictions when encountered with edges or various noises
in the background, as shown in Fig. 8. The results with our
proposed Crack-DA are shown in the fourth and sixth columns,
respectively. It can be demonstrated that our proposed Crack-DA
has a great boost on the segmentation performance. The intact
crack patterns are successfully captured with explicit details.
And the noncrack background is successfully suppressed. The
cracks segmented become more distinctive with fine-grained
details. It can be explained by the fact that our proposed edge
and depth aware domain adaptive learning strategy can exploit
the depth and edge information to suppress the background non-
crack patterns and explicitly extract the detailed crack patterns.
The quantitative results with and without Crack-DA are shown
in Table I. With Crack-DA, the segmentation performance can
be largely enhanced for various network architectures.

C. Discussions About Industrial Applications

1) Typical Challenging Cases: In real industrial applica-
tions of UAV-based infrastructural inspections of MaWan build-
ings, the current SOTAs learning-based approaches such as
DeepCrack [13] will fail in two main circumstances. As shown
in Fig. 9, the first circumstance is when faced with complex
background noises or objects, such as the air conditioners, the
grasses, the windows, and planks, etc. The second circumstance
is when faced with high local contrasts in the local gradient of
pixels. The current deep learning-based approaches including
the DeepCrack [13] and SegFormer [51] have poor performance
in such cases for the fact that these methods can not well
capture the geometric depth features and suppress the noncrack
background noises within images.

Fig. 9. Industrial inspection cases where the prevailing approach
DeepCrack [13] will fail and our proposed Crack-DA can tackle the chal-
lenging circumstances well with excellent performance and robustness.

However, our approach Crack-DA can handle those prob-
lems well owe to our two proposed modules to improve the
domain adaptation capacity of the network. The first module
is our proposed optimization functions with edge and depth
awareness. As shown from our experimental results in Figs. 6
and 9, cracks can be seen very apparently from both the edge
and depth maps. The current crack recognition method have
long overlooked the important edge and depth information in
crack recognition. The edge shows explicitly, where the cracks
can possibly emerge. And the geometric depth changes reveal
cracks in 3-D structures. From principle, cracks can merely
appear at the pixels that have a large gradient in the neigh-
borhood. Our design edge-aware loss encourages the network
to predict pixels with a small local gradient as noncracks to
suppress the noise and noncrack patterns. According to our
ablation studies in the next subsection, both the depth-aware
loss LDep and the edge-aware loss LEdge have significant boost
in the crack recognition performance in the real-world industrial
circumstances of MaWan building inspections and pavement
inspections.

The second module is our proposed domain gap estimation by
depth. By using the differences in self-supervised depth predic-
tions to estimate the domain gap and formulate the domain shift
into the network optimizations, the influence of domain shift to
the segmentation performance can be significantly eased accord-
ing to our experiments. The depth and semantic are inherently
coupled and we have explicitly modeled their correlations by our
proposed transformer-based feature fusion network. Therefore,
the high value of discrepancy in depth estimation implies a great
domain shift across domains. Accordingly, we should assign a
small weight u in the domain adaptive semantic segmentation
loss LSeg. According to our ablation experimental results in
the next section, our proposed domain gap estimation by depth
module has a prominent boost on the real-world recognition
performance.
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Fig. 10. Influence of thresholds on the edge detection.

2) Key Parameters of Crack-DA: According to our sub-
stantial experiments conducted in the above two sections, some
key parameters should be set properly to achieve satisfactory
performance in domain adaptations. In the following, we discuss
the influences of key parameters in each module of our proposed
UDA framework.

Edge Detection: First and foremost, weights in edge detec-
tors should be set carefully because the quality of the edge
map is very significant to suppress the background noises and
the noncrack patterns. According to our experimental results
shown in Fig. 9, if the Canny [42] edge detector is adopted,
we should set the edge segmentation threshold τ in the ap-
propriate range to guarantee the edge is explicitly extracted
and the background noises are effectively eliminated. Also, as
is explicitly and apparently shown in our experimental results
in Fig. 10, a too large threshold in edge detection resulted in
vague edge patterns, and a too small threshold resulted in severe
background noises retained. Both the blurred edge patterns and
the retained background noises will have detrimental effects
on the final edge-guided optimization functions. Therefore, a
modest threshold τ ∈ [0.4, 0.6] should be set to guarantee a
high-quality edge map.

Segmentation Loss LSeg: The use of focal loss implies we
should assign larger weights to the minority crack pixels, and
assign small weights to the majority of noncrack pixels. We
set the hyperparameter α in the focal loss. According to our
experiments, the robustness can be guaranteed if set α in the
range 2–5. A too large α resulted in over-fitting of the network
to the hard-to-classified minority class, which is the crack in our
circumstance. And a too small α resulted in the convergence
of the network in the early training stages, which often means
the optimization was stuck into the local minimum. Note that
the setting of α is very significant in the training network in
the industrial applications, because the defects or anomalies in
industrial applications are often the minority classes that are hard
to be classified and the weights in the focal loss should be set in
the proper range as indicated (α ∈ [2, 5]).

Self-Supervised Depth Loss Ldep: For our proposed self-
supervised depth loss Ldep, we have a hyperparameter a is the
depth threshold set to 1

5 of the maximum depth difference in the
pseudoground truth depth map. A too large ( 12 of the maximum
difference) or too small a ( 1

20 of the maximum difference) will
result in inappropriate penalization in depth prediction, which
will slightly influence the final segmentation performance. How-
ever, according to our tests for the MaWan building cracks, this
will merely result in the performance drop in MIoU of less
than 0.2%, and thus negligible. In other words, our proposed
self-supervised depth loss Ldep is robust to the changing of
hyperparameters within an acceptable range.

In summary, setting appropriate key parameters is very sig-
nificant to the robust network performance in challenging real-
world industrial circumstances. Therefore, we have included
above-illustrated key parameters to facilitate the hyperparam-
eter settings in future industrial applications for the research
community.

D. Ablation Studies of the Proposed Crack-DA

1) Ablations:
a) Without specific optimization function terms or

weights: We have also done ablation experiments for different
network modules. We have ablated the network modules in
all settings listed as follows: 1) Remove the LAug for data
augmentation. 2) Removing LEdge, which means that we remove
the guidance from the edge detection. 3) Removing LDep, which
means that we remove the guidance from the depth estimation. 4)
Removing the domain adaptation weight u in LT

Seg for the target
dataset, which means that we do not consider the domain gap
in the training of the target dataset. 5) Keeping all the network
modules.

b) Without the A-T-based feature fusion network:
We substitute the A-T-based feature fusion network in Fig. 5
with four MLPs without attention between the depth feature and
semantic feature. Also, we replace the proposed A-T with the
SOTAs swin-transformer [54] to test the performance.

2) Results: The results are shown in Table II. For MaWan
building cracks, it can be seen that if dropping the data augmenta-
tion lossLAug, the MIoU will drop by 3.9%, which demonstrates
the effectiveness of proposed data augmentation strategies to
enrich and boost the training samples. Also, without the edge-
aware loss term LEdge, the segmentation MIoU on the target
dataset will drop significantly by 5.3%. It demonstrates that edge
information is of great significance to help the network precisely
locate the nonedge regions and eliminate the background noises.
In addition, when without the depth aware loss term LDep, the
MIoU drops by a large margin of 6.9%, which demonstrates that
learning the geometric depth information of visual objects, es-
pecially cracks in the image, is of great significance to inferring
the semantics. Finally, when tested without the weight u in LT

Seg,
the segmentation MIoU drops most by 13.5%. It demonstrates
that considering the domain gap in network training is important
to boost the performance on the target test set. It also implies that
the domain gap can be successfully estimated by the geometric
depth estimation difference, which validates our hypothesis
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TABLE II
ABLATION STUDY ON UDA TASKS OF HIGHWAY AND MAWAN BUILDING CRACKS

that semantics and geometric depth are closely related. For the
ablations in the network structure, we can see that the attentional
transformer (A-T) is also important to network performance. Not
considering the relationship between depth and semantics will
result in a large MIoU drop of 7.1%. However, when replacing
the attentional transformer proposed with the current SOTAs
Swin-Transformer [54], the network performance will maintain
at the same level (↑0.3%). It demonstrates that a simple network
structure of matrices with weight is enough in our case to model
the relations between depth and semantics. It to some extent
implies that the relationship between depth and semantics is
easy to be learned with a proposed simple A-T. In summary,
it is demonstrated that all the proposed optimization function
terms and network components in the proposed Crack-DA are
significant to the UDA performance.

V. CONCLUSION

In this work, we have proposed a systematic framework
to solve UAV-based industrial unsupervised domain adaptive
crack inspections. First, we have systematically designed the
autonomous UAV to conduct the inspection task and devel-
oped related 3-D reconstruction algorithms for the target in-
frastructure. We have then developed a Crack-DA framework
for the domain adaptive crack segmentation and the subsequent
detection, which achieves depth and edge awareness with our
proposed fusion network structures and optimization functions.
Extensive experimental results demonstrate that our proposed
Crack-DA performance in domain adaptation with labels only
from our self-established crack segmentation database. To the
best of our knowledge, our proposed method is the first attempt
that achieves satisfactory performance in domain adaptive real-
site industrial crack recognitions without any manual labeling
for the inspected target. In conclusion, we have proposed the
Crack-DA for domain adaptive crack recognitions with great
effectiveness and robustness. Our proposed frameworks are of
great significance to the development of the smart city with
autonomous systems to perform domain adaptive inspections
of infrastructural cracks.
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