
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 1, JANUARY 2023 553
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Abstract—This work presents FG-Net, a general deep learn-
ing framework for large-scale point cloud understanding without
voxelizations, which achieves accurate and real-time performance
with a single NVIDIA GTX 1080 8G GPU and an i7 CPU. First,
a novel noise and outlier filtering method is designed to facili-
tate the subsequent high-level understanding tasks. For effective
understanding purpose, we propose a novel plug-and-play mod-
ule consisting of correlated feature mining and deformable
convolution-based geometric-aware modeling, in which the local
feature relationships and point cloud geometric structures can be
fully extracted and exploited. For the efficiency issue, we put for-
ward a new composite inverse density sampling (IDS)-based and
learning-based operation and a feature pyramid-based residual
learning strategy to save the computational cost and memory con-
sumption, respectively. Compared with current methods which
are only validated on limited datasets, we have done extensive
experiments on eight real-world challenging benchmarks, which
demonstrates that our approaches outperform state-of-the-art
(SOTA) approaches in terms of accuracy, speed, and memory
efficiency. Moreover, weakly supervised transfer learning is also
conducted to demonstrate the generalization capacity of our
method.

Index Terms—3-D scene classification, 3-D semantic segmenta-
tion, large-scale point cloud understanding, scene understanding
in robotics, weakly supervised transfer learning.

I. INTRODUCTION

DUE TO the directness and robustness in obtaining 3-D
information, there has been an increasing proliferation of

light detection and ranging (LiDAR) sensors which have been
widely deployed on a variety of intelligent agents, such as
unmanned ground vehicles (UGVs), unmanned aerial vehicles
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(UAVs) to perform localization, obstacle detection, explo-
ration, etc. Consequently, efficient and effective large-scale
3-D LiDAR point cloud understanding is of great impor-
tance to facilitate machine perception, which bridges the gap
between 3-D points and any high-level information, struc-
tural or semantic, or both [1]–[3]. However, due to the
electrical and mechanical disturbances, and the reflectance
property of targets, the point clouds often suffer from noise
and outliers. Moreover, compared with the 2-D raster image,
the topological relationship between objects in 3-D point
clouds is much weakened, rendering the task of segmenta-
tion and understanding much more challenging. Therefore,
autonomous large-scale point cloud understanding remains an
open problem and requires urgent efforts to tackle the chal-
lenges, especially when both accuracy and efficiency are taken
into account.

Like any high-level task in 2-D image domain, such as
object detection, segmentation, or classification, the point
cloud understanding methods can also be classified into tra-
ditional category and deep learning-based methods. In the
traditional category, the representative histogram-based meth-
ods [6], [7] encode the k-nearest-neighbor (kNN) geomet-
ric features of a 3-D point via calculating its surround-
ing multidimensional average curvature for local geometric
variations descriptions. In signature-based [8] and transform-
based [2] methods, handcrafted feature descriptions of point
clouds have been proposed and exploited for semantic under-
standing. However, the performances of these methods are
merely demonstrated in well-controlled conditions with ideal
assumptions, such as noise-free and homogeneous environ-
ments [2]. On the other hand, deep learning-based point cloud
processing methods have been proposed with promising results
in recent years. The mainstream point cloud understanding
methods can be roughly divided into three categories: 1) pro-
jection based; 2) voxel based; and 3) direct point based.
Representative works of each category will be discussed in
Section II, while limitations of these methods are summarized
here: first, the sampling operation of all these methods has high
computational cost and memory consumption. For instance,
the widely applied farthest point sampling (FPS) [9], [10]
takes more than 1000 s to subsample 105 points to about
103 points. Furthermore, their subsequent perception networks
usually rely on the expensive operations, such as voxeliza-
tions [11], [12] or graph construction [13]. Second, nearly
all existing methods are designed for small-scale point clouds
without considering noise and outliers which are inevitable
in practice. Moreover, the large-scale point clouds typically
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Fig. 1. Semantic segmentation results of our method compared with the
SOTA method FKA-Conv [4] on S3DIS [5]. The top row shows the overall
segmentation performance by our method. The bottom two rows show the
detailed comparisons of segmentation performance highlighted by red circles.
Our method achieves real-time segmentation performance of 0.052 s per 105

points, which is better and faster than the SOTA method FKA-Conv.

suffer from great class imbalance in semantic categories, and
points obtained by LiDAR in complex dynamic environments
are often irregular, orderless, and have distant distributed
semantic information. For example, in autonomous driving
scenarios, typical objects exhibit diverse geometric shapes with
varying object sizes (e.g., cyclists and persons) or have distri-
bution across a long spatial range in a nonuniform way (e.g.,
road, buildings, and vegetations). However, to the best of our
knowledge, the existing methods can hardly capture complex
geometries or latent feature correlations in large-scale point
clouds effectively.

To overcome the aforementioned challenges, we propose
a general deep learning framework, called FG-Net, for large-
scale point cloud understanding. We leverage deformable con-
volution for modeling the geometric structure, and pointwise
attentional aggregation (AG) for mining the correlated features
among point clouds. It should be noted that the deformable
convolutional modeling can effectively adapt to the local
geometry of objects by deformed kernels that dynamically
adapt to diverse local geometries, while the correlated fea-
ture mining can capture the distributed contextual information
in spatial locations and semantic features adaptively across
a long spatial range. The modules in our network can be
implemented with simple pointwise matrix multiplication and
add operations, which can be easily parallelized by GPU for
acceleration. As shown in Fig. 1, our method outperforms
state-of-the-art (SOTA) ones in terms of both accuracy and
efficiency, rendering it achievable to realize real-time percep-
tion performance on the large-scale point clouds. In summary,
our work makes the following contributions.

1) We propose pointwise correlated feature mining and
geometric-aware modeling module for large-scale point
cloud understanding. Furthermore, we interpret the
effectiveness of our network by visualizing the

complementary features captured by our network
modules.

2) We propose a feature pyramid-based residual learning
architecture to leverage patterns at different resolutions
in a memory-efficient way. Extensive experiments on
real-world challenging benchmarks demonstrated that
our approaches outperform SOTA ones in terms of
accuracy and efficiency.

3) We propose a novel fast noise and outliers removal
method and a points down-sampling strategy for large-
scale point clouds, which simultaneously enhances the
performance and improve the efficiency of semantic
understanding tasks in the large-scale real-world scenes.

II. RELATED WORKS

Advanced deep learning techniques for images have
been investigated extensively, and resulted in stunning
performance [14]–[19]. Naturally, learning techniques have
been exploited for point cloud processing and understand-
ing, and the published works can be roughly categorized
into voxel-based, projection-based, and point-based methods.
The voxel-based and projection-based methods transform point
clouds into different representations while the point-based
methods process point clouds directly. These methods are
mainly designed and tested on the relative small-scale point
clouds of less than 105 points with block partitioning. Directly
extending them to deal with large-scale point clouds will
result in prohibitively expensive computational costs. Here,
we discuss these methods thoroughly of their advantages and
shortcoming, and the rationale that motivates our proposed
framework.

A. Voxel-Based and Projection-Based Methods for Point
Cloud Understanding

The most recent and typical voxel-based methods are
SparseConv [11] and Minkowski CNN [12]. The voxel-based
methods use 3-D convolutions which are intuitive exten-
sions of 2-D counterparts. However, the computation cost and
memory consumption of the voxel-based models increase cubi-
cally with the resolution of input point clouds. By contrast, the
geometric information loss will be significant if we decrease
the resolution of voxelization. Hence, it is quite hard to achieve
real-time performance while considering the balance between
accuracy and computational cost. The projection is also used to
project point clouds into range images [20], [21] or multiview
images [22], [23], to facilitate the use of 2-D CNNs. However,
such projection inevitably leads to the loss of geometrical
information. In practice of dealing with large-scale point
clouds, the drawbacks of voxel-based and projection-based
methods become more prohibitive.

B. Point-Based Methods for Point Cloud Understanding

The pointNet [24] is the pioneering work that extracts
the pointwise feature directly using shared multilayer percep-
tron (MLP). The pointNet++ [9] extracts the local features
using pointNet and considers local geometric relationships
with the hierarchical grouping and abstraction as well as the
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Fig. 2. Overall system framework of proposed FG-Net, and the proposed
core module FG-Conv (shown in bright yellow) can be integrated into FG-Net
with feature pyramid-based multiresolution residual learning.

multiscale and resolution grouping. More point-based methods
[13], [25], [26] have been proposed recently with complicated
network design to aggregate local features. However, all these
methods are not able to model intrinsic geometric structures
of points or to capture the nonlocal distributed contextual cor-
relations in spatial locations and semantic features effectively.
There are also a series of new explorations on how to imple-
ment convolution on point clouds. The methods [27]–[29]
focus on how to learn kernels which can better capture the
local geometry of points. However, the proposed convolu-
tional kernels are too time consuming to be directly applied to
deep neural networks for large-scale point cloud understand-
ing [30]–[32]. Motivated by the challenges above, we proposed
a novel lightweight point-based method to consider distributed
long-range dependencies and learn kernels to capture the local
structures of point clouds.

C. Efficient Large-Scale Point Cloud Understanding

It is till recently that more attention has been paid to efficient
large-scale point cloud understanding. Previously, block parti-
tioning [9], [24], [33] was utilized to divide large-scale point
clouds into 1 m × 1 m sub-blocks before fed to networks.
However, such an operation of partition is time-consuming
and damages the spatial geometric contextual information
among the objects of large-scale scene. Although several
attempts [34], [35] have been made on large-scale point cloud
segmentation, there are still some major problems existing:
first, the FPS utilized by most of the previous methods require
large computational cost which increases quadratically [1] with
respect to number of input points N. Second, block partition-
ing causes that large-scale point cloud semantics cannot be
inferred within one scan, which limits the volume of point
clouds that can be processed. Some methods [34], [36] also
try to combine voxelwise features with pointwise features to
improve the performance. Analogous to the super-pixel con-
ception for images, the super-point [13] method in point clouds
is also introduced to apply graph convolutions on large-scale
points. But due to the high computational cost of voxeliza-
tion or graph construction, it can hardly achieve real-time
performance.

III. PROPOSED METHODOLOGY

In this section, a fast deep learning method leveraging
correlated feature mining and geometric-aware modeling is
proposed for large-scale point cloud understanding. As illus-
trated in Fig. 2, our FG-Net takes raw point clouds of a
large-scale complex scene as input and gives the predictions

of object classification and semantic segmentation simultane-
ously. The details are given as follows.

A. Proposed Network Architecture for Large-Scale Point
Cloud Understanding

We design the network module FG-Conv to capture the fea-
ture correlations and model the local geometry of point clouds
simultaneously. Leveraging feature pyramid-based residual
learning, FG-Conv can be integrated any point-based network
as the core module for large-scale point cloud understand-
ing. As shown in Fig. 3, the core network module FG-Conv
includes three components: 1) pointwise-correlated feature
mining (PFM); 2) geometric convolutional modeling (GCM);
and 3) AG, which are detailed as follows.

1) Pointwise Correlated Features Mining: The point clouds
after filtering are represented as x-y-z coordinates with fea-
tures. The features can consist of raw RGB, surface normal
information, intensity of point clouds, and even learned latent
features. In fact, our method supports any kind of 3-D Data
even if only 3-D coordinate can be obtained including RGB-D
data, because it only requires the position information while
others are optional. Denote the full input point clouds as the
matrix P ∈ R

N×(3+f in), where N is the number of points
and f in is the dimension of input features, respectively. The
ith vector in P can be denoted as pi = (xi, fi)

T, where
xi ∈ R

3, fi ∈ R
f in

, i = 1, 2, 3, . . . , N. For the point pi,
denote the kth point vector in the spherical neighborhood
Br = {s ∈ R

3, ‖s − xi‖ ≤ r} as pk = (xk, fk)
T, xk ∈ R

3, fk ∈
R

f in
, k = 1, 2, 3, . . . , K, in which r is the radius of the neigh-

borhood. The similarity score gk which is the inner product of
pk and pi is calculated as

gk = pT
kpi

‖pk‖‖pi‖
. (1)

It gives a good evaluation of the similarity of neighbor-
ing points in spatial locations and features. For each of the
K neighboring points, gk can be calculated and they consti-
tute a similarity score vector rk ∈ R

K, k = 1, 2, 3, . . . , K.
However, the similarity scores are not relevant to any specific
task such as classification or segmentation. Thus, the atten-
tional technique is introduced to make the new similarity score
zk adaptive to a specific task by training of deep networks

zk = σ(w1rk), zk ∈ R
K (2)

where w1 ∈ R
K×K is the weight matrix to be learned. σ is

the softmax function to normalize the attentional weights. All
pk constitute the matrix Pk = (p1, p2, p3, . . . , pk)

T, Pk ∈
R

K×(3+f in). Then, each element of zk is multiplied with each
row of Pk through element-to-row multiplication to obtain
the augmented attentional feature matrix P′

k ∈ R
K×(3+f in).

From now on, the augmented feature (e.g., P′
k) which encodes

both geometry and feature correlations are called feature for
the sake of brevity. Next, P′

k is concatenated with their cor-
responding input feature Pk to obtain the enhanced feature
F1

k ∈ R
K×f mid

(f mid = 6 + 2f in). In this way, the local contex-
tual relationship can be captured, and the similarity of features
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Fig. 3. Detailed illustration of our proposed novel pointwise-correlated feature and GCM module (FG-Conv Module). The deformable convolution operation
is illustrated at the right bottom corner. The query point is denoted as xi and the kth neighbor point denoted as xk , and the output vector of point convolution
is the dot product of point features and kernel weights. The feature vector is summed in AG. On the right side of the dash line is detailed illustration of the
global attentive module that functions as “Global feature Extraction” in Fig. 4. The feature representations Min and Mout in this module are corresponding
to Fig. 4(b).

is enhanced adaptively and selectively by the attentive weight-
ing in a learnable way. The similar feature elements in latent
space are enhanced while distinct ones are attenuated.

2) Geometric Convolutional Modeling: After the PFM, the
local correlated features can be largely captured, but the geo-
metric structure of points cannot be sufficiently modeled.
Inspired by the great success of deformable convolution in
the image recognition [37], we extend deformable convolu-
tions from image to point clouds to model the irregular and
unordered 3-D structures. Similar to 2-D deformable convo-
lutions, the deformable 3-D kernels in Euclidean space are a
set of learnable points that conform to the local structures of
point clouds, thus, the dominant local geometric shapes of the
points can be activated by the corresponding kernels in the
neighborhood. Note that kernel deformations can adapt to the
local geometry of points in a learnable way by elaborately
designed optimization functions. As shown in the right bot-
tom of Fig. 3, like convolutional neural networks in image
processing, the convolution on points is defined as

F2
k(pk, pi ) =

∑

pk∈Br

K ( pk, pi) pk. (3)

The core problem is that point clouds are unstructured and
unordered, which makes it difficult for point convolutional
kernel function K(pk, pi) to learn representative local geomet-
ric patterns. We design the correlation function to measure the
correspondence between kernel points and local geometry. To
be more specific, the closer the kernel points to the input point,
the higher the correlation value should be assigned. Denote the
difference between xk and xi as �xk = xk−xi. The Ns pseudo
kernel points Si ⊂ Br centered at So (So = xi) are designed
so as to imitate the convolutional kernels in image processing,
(i = 1, 2, 3, . . . , Ns). The relative coordinates of pseudo kernel
points Si and the center point So are given as: �si = Si − So.
The correlation function can be learned in an end-to-end way,
which is formulated as

C(�si,�xk) = 1

‖Ns‖exp

(
−‖�si − �xk‖2

mλ2

)
(4)

where Ns is the number of kernel points, m is a constant, and λ

is the parameter determining the influence distance of kernel

points. Then, the kernel function is given as the sum of all
relations with learnable weights as shown in the following:

K
(
pk, pi

) =
Ns∑

n=1

C(�si,�xk) Wker (5)

where Wker ∈ R
(3+f in)×f mid

is the weight matrix of MLP lay-
ers, and 3+f in and f mid are input and output channel numbers,
respectively. The C(�si,�xk) is the kernel assembling func-
tions that should be learned based on the distance between
the kernel positions and point positions, that is, ‖�si −�xk‖.
Different from the linear correlation function proposed in the
KPConv [28] which may not be optimal in evaluating the
weight of assembling, we have further tested the assembling
function design of the square assembling function, Gaussian
assembling function, and the designed learnable assembling
functions with learnable weights. During the optimization pro-
cess, the kernel points are forced to adapt to the dominant
structures in the local point clouds. Finally, the feature after
deformable convolution F2

k ∈ R
K×f mid

(f mid = 6 + 2f in)

can be obtained. In this way, the local geometric struc-
tures are well captured and the dominant structural features
are enhanced.

3) Attentional Aggregation: The attention mechanism is
utilized to leverage the feature level and geometric level pat-
terns without large information loss. As shown in Fig. 3,
the integrated neighboring features can be represented as
Fi ∈ R

K×f int
(f int = 2f mid). Then, the attentive score for aggre-

gation is defined as w2 ∈ R
K , which will adaptively learn the

importance of each feature. The weighted attentional feature
f a ∈ R

f int
can be given as

f a = σ
(

w2 f i
)
. (6)

The summed feature can be given as: f h = ∑K
i=1 f i, f h ∈

R
f int

. Then, the elementwise multiplication between f a and f h

is utilized to obtain the learned feature f c = f a � f h. The
final features f b is the sum of original feature and learned
feature: f b = f h + f c. We apply the MLP layer to control the
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Fig. 4. (a) Detailed RLB design of our proposed FG-Net, in which we show
the original inefficient RLB and our designed RLB, respectively. (b) Proposed
feature pyramid residual learning network. Ncls and Nseg stand for the number
of classes in classification of the presence of objects or not, and the number
of classes in semantic segmentation, respectively.

dimension of the output vector flexibly and give the mean-
ingful aggregated feature f out ∈ R

f out
containing both local

correlated features and enhanced local geometry.
4) Feature Pyramid Hierarchical Residual Architecture:

The Resnet [38]-based architecture has achieved great suc-
cess in image recognition. Motivated by the residual learning
paradigm, we proposed a general deep network that is spe-
cially designed for classification and semantic segmentation
of large-scale point clouds. To the best of our knowledge,
until recently, there are several methods [39], [40] starting
to use residual learning for point cloud recognition, but their
attempts are limited to small-scale point clouds. Thus, the
fitting capacity of residual architecture cannot be fully demon-
strated. We propose a feature pyramid-based multiscale fusion
strategy for adaptively aggregating features from different
layers of the network. Leveraging a deep residual structure,
memory-efficient deep networks can be built.

As shown in Fig. 4, the encoder–decoder-based network
structure can be utilized to obtain point clouds at multiple
resolutions. In image processing, the networks are supposed
to extract large feature maps for small objects and small fea-
ture maps for big objects [41], [42]. It should be noted that
scale variation in images will not exist in 3-D point clouds.
Different from images in which the scale of objects will vary
with the distance, the scale of point clouds will keep constant.
Hence, the deconvolution by interpolation must be conducted
to recover the points to the original resolution. As shown in
Fig. 4(a), in the residual learning block (RLB), denote the
input dimension and output dimension of RLB as Din and
Dout, respectively. Unlike some deep architectures which are
memory consuming, we reduce the feature dimension in the
original RLB to Dout/M (M = 8 is utilized in our frame-
work) by 1×1 convolution before feeding them into FG-Conv
module, which reduce the parameters by 9.6 times. The accu-
racy for classification and segmentation can also be maintained
through residual learning, which will be given in experiments.
Another 1×1 convolution will be applied to recover the feature
dimension. At the block connecting two stages, 1 × 1 convo-
lution should be applied in skip link for increasing the feature
dimensions. Then, the global feature extraction in Section
III-A5 will be conducted to obtain the latent global features

Mout from Min, which can be directly utilized for classifica-
tion predictions. The point clouds are all upsampled after the
h (h = 5 in our case) convolutional blocks. Unlike previous
methods which directly used the upsampled features for seg-
mentation, we propose to fuse the predictions at different
resolutions and use the supervised loss to guide the training
process. It turned out the hierarchical structure will give better
results for pointwise large-scale point cloud segmentation.

5) Point Cloud Global Feature Extraction: The global and
long-range dependencies in point clouds should also be cap-
tured before doing upsampling and giving the pointwise
predictions. Due to the limited receptive field of the neural
layer mentioned above, the global contextual semantic pat-
terns cannot be fully obtained. We leverage the self-attentional
module shown in the right side of the dash line in Fig. 3 to
selectively enhance the closely relevant elements in the global
feature Min. After the global relationship mining by this mod-
ule, both the local and global relationships in features and
geometry will be captured adaptively. Then, the feature repre-
sentation with combined local or nonlocal semantic contextual
correlations will be adaptively obtained to facilitate the sub-
sequent recognition task. Given the original local feature map
Fout = Min ∈ R

Ni×L, (Ni = (N/625), L = 256 in our case)
as shown in Figs. 3 and 4, the 1 × 1 convolution with weight
WG ∈ L×Cmid (Cmid = 1 in our case) is used to transform the
feature map into latent representations M1 and M2 for further
obtaining the similarity of each two elements in Fout. After
M1 and M2 are obtained, the dot product between them can
be conducted to obtain the relevant score matrix MA ∈ R

Ni×Ni

which is given as

MA = M1MT
2 . (7)

Each element my,z in MA gives the relevance score between
the representation M1 and M2. Then, the softmax is applied
to normalize the latent attentional scores to obtain the final
self-relation weights Sy,z ∈ R

Ni×Ni
of the latent representation

Min. Each element sy,z of Sy,z can be represented as

sy,z = exp(my,z)
∑Ni

y=1
∑Ni

z=1 exp(my,z)
. (8)

The attention weights sy,z reveal the correlations among all
local and global features. The more related distributed feature
relationships, even in the nonlocal region, can be effectively
captured, and larger attention weights are assigned in sy,z to
enhances their similar semantic contexts. Finally, the attention
scores are applied to all elements in Min to produce the global
attentional vector Mg

Mg = Sy, zMin. (9)

The global attentional vector will provide higher weights to
activate correlated significant features, and will provide lower
weights to suppress the irrelevant less important features. The
consolidated feature Mout is the sum of Mg and Min, which
is given as: Mout = Mg + Min.

Ultimately, the global contextual representation Mg is fused
with the local aggregated representation Min for a compre-
hensive encoding of local and global correlated features. The
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predictions of classification can be directly obtained from the
aggregated latent features Mout and the segmentation results
can also be learned by up-sampling. As shown in our abla-
tion studies, the point cloud global feature correlations have a
boost on the segmentation performance because the nonlocal
long range correlations of point clouds can be effectively cap-
tured. Finally, the global attentive function serves as a good
module for global correlation mining. It is also complements
with the pointwise-correlated feature mining.

6) Optimization Function Formulation and Data
Augmentation: As mentioned in Section III-A2, denote the
relative coordinates of kernel points as si, i = 1, 2, . . . , Ns

and the learned deformation as �si. The losses utilized for
the deformable convolution are designed as

Lfit(�si) =
Ns∑

i=1

min�si

(‖�xk − (si + �si)‖
mσ 2

)2

(10)

which is utilized to match the kernel positions with local
geometries of point clouds

Lrep(�si) = min�si

Ns∑

i=1

Ns∑

j=1

1∥∥si + �si − sj − �sj
∥∥ (11)

which is the repulsive loss utilized to keep distance between
different kernels

Latt(�si) = min�si

Ns∑

i=1

‖si + �si‖2 (12)

which is to keep the kernel points from diverging and make
them inside the query ball. The kernel loss will be the sum of
above three losses. That is, Lker(�si) = Lfit(�si)+Lrep1(�si)+
Lrep2(�si). As shown in Fig. 4, the losses at different stages
of the network are also summed, which can be formulated as
the cross-entropy loss denoted as L1

L1(W) =
N∑

n=1

H∑

h=1

α(h)ŷilog
(

Pseg

(
p(h)

i , W
))

+ β ŷfuse
i log

(
Pseg

(
p(fused)

i , W
))

. (13)

α(h) denotes the weight at stage h of the residual network,
W denotes the weight of the entire network, p(h)

i denotes the
upsampled point clouds at stage h, p(fused)

i denotes the fused
point clouds, and ŷi and ŷfuse

i denote the segmentation ground
truth of points at different stages and fused points, respectively.
Pseg denotes the segmentation prediction of the networks. We
also propose to use the contextual loss shown in Fig. 4 to
predict the presence of objects or not in the scene to consider
semantic contexts of the scene, which can be given as

L2(W) = −
I∑

i=1

ŷpre
i log

(
Pcls

(
pi, W

))
(14)

where ŷpre
i indicates whether the object presents in the scene

or not and Pcls is the classification prediction. This loss
equally considers all the semantic categories appearing in
the scene. The total loss of the network is: Lc(W,�si) =
L1(W) + L2(W) + Lker(�si). The kernel positions and

Fig. 5. Proposed multithread CPU parallel computation for point cloud
streams. The noise and outliers filtering is done on CPU while sampling and
deep network processing are done on GPU. Si stands for ith CPU processing
stream, pcj stands for the jth point cloud batch in a single CPU stream.

network parameters are jointly optimized in an end-to-end
manner.

B. Noise and Outliers Filtering

The noise and outliers can be removed very effectively with
a speed of 0.61s per million (106) points due to the Octree-
based fast nearest-neighbor search, similar to the implemen-
tation of [43]. It should be noted that the noise and outliers
filtering is only utilized during the training of the network.
When testing, we directly test the methods on the testing set
of each benchmark. Our simple but effective method can be
utilized to remove noise and outliers of points while enhancing
the performance of point cloud understanding in the mean-
while. The implementation details for acceleration of our
framework is introduced in Section III-C.

C. Implementation Details for Acceleration of Our
Framework

1) IGSAM for Fast Learning-Based Sampling: The sam-
pling methods play a very significant role in processing point
clouds by convolutional neural networks. To tackle the large
computational overhead when processing millions of point
clouds, we propose efficient sampling methods IGSAM to
achieve fast and effective point cloud understanding. We
design a novel learning-based gumbel softmax sampling (GSS)
which adaptively selects the significant points based on
optimization objectives. By integrating it with inverse density
sampling (IDS), points can be sampled efficiently with den-
sity awareness while the important features for point cloud
understanding is maintained.

2) Acceleration by Multithread Parallel Computation on
CPU: The noise and outliers filtering is implemented on
CPU while deep network computations are implemented on
GPU. The CPU is a Intel Core i7-8700T Processor with
frequency of 2.40 GHz. It has six cores and 12 threads and
we have used full six cores for computation. It should be
noted that we have reused the radius-based ball query in both
point cloud filtering and network operations for accelerations.
As shown in Fig. 5, we have preloaded the next stream of
points to CPU before the network computation on GPU is
finished for acceleration. The multithread data loading and
computation on CPU is utilized to accelerate the Octree-based

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 24,2022 at 08:35:56 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: FG-Net: FAST AND ACCURATE FRAMEWORK 559

TABLE I
COMPARISON OF SEGMENTATION ON S3DIS (S3) AND SHAPENETPART

(SP) WITH (W/) AND WITHOUT (W/O) FILTERING

TABLE II
COMPARISONS OF DIVERSE ASSEMBLING FUNCTION ON

SEGMENTATION PERFORMANCE

query process, which reduces idle periods notably in subse-
quent computations both on CPU and GPU, as also shown in
Fig. 5.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To demonstrate the effectiveness of our method, we have
experimented extensively on eight large-scale point cloud
understanding benchmarks. We implemented the network in
Tensorflow and optimized it with Adam optimizer and initial
learning rate of 1e−4. The batch size equals 4 during training
and equals 8 during validation and testing for all tested bench-
marks. Also, the point clouds are randomly rotated around
each axis x, y, z with an angle φ ∈ [0, 2π ]. The scaling is also
applied along x, y, z axis with a scalar μ ∈ [0.85, 1.15] for
data augmentation. The network is trained and tested in paral-
lel with 5 × 105 point clouds in each stream. The experiments
are conducted on Nvidia GTX 1080 with 8-GB memory.

B. Experiments of Filtering and Sampling Methods, and
With Diverse Assembling Functions

1) Noise and Outliers Filtering and Comparisons of
Diverse Assembling Functions: We have tested the influence
of proposed noise and outliers filtering on the semantic seg-
mentation performance of S3DIS. The noise outlier filtering
is only utilized in training. During testing, we directly use
the trained model to do inference on point clouds with noise.
Noted that we utilize 6-fold cross-validation on S3DIS to guar-
antee the generality and robustness. The noise filtering results
with mean intersection over unions (mIOUs) are shown in
Table I, it demonstrates that filtering has a boost on seg-
mentation performance for diverse point cloud understanding
methods. After removing unrelated isolated noise points, the
meaningful semantics of point clouds is retained, and it boosts
the performance of segmentation. As shown in Table II, the
assembling function containing learnable weights has the best
performance on most of the public real-scene benchmarks.

Fig. 6. Comparison of (a) computational cost and (b) memory consumption
of different sampling methods.

Fig. 7. Detailed comparisons of FG-Net with SOTA methods RandLA-Net
and KPConv on S3DIS, the comparisons are highlighted in the blue circles.

2) Point Cloud Sampling Methods: To compare the effi-
ciency our proposed IGSAM with different sampling methods,
we have experimented their GPU memory usage and process-
ing time on a single GTX 1080 GPU with 8-GB memory.
The sampling methods include random sampling (RS), rein-
forcement learning-based sampling (RLS) [46], GSS [47],
IDS, FPS, and generative network (GS) [48]-based Sampling.
The point clouds are divided into batches consisting of
102, 103, 104, 105, 106, and 107 points, respectively, then the
batches of points are downsampled five times which imitates
the downsampling in our network shown in Fig. 4. The total
time and memory consumption of sampling methods on dif-
ferent numbers of points are illustrated in Fig. 6. It can be
demonstrated that RS has the fastest processing speed with
the smallest memory consumption. However, RS will result in
a stochastic loss in meaningful information, which will give
unsatisfactory segmentation results. As shown in Table III,
mIOUs will drop significantly from 70.8% to 66.8% if RS
is adopted. It should also be noted that GSS is not suitable for
more than 106 points because the GPU memory will increase
greatly with the number of points. Hence, we only use GSS in
the last layer of the network when the number of points is less
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Fig. 8. Detailed Comparisons of FG-Net with SOTA methods RandLA-Net, Deformable KPConv, and FKA-Conv on large-scale point cloud segmentation
benchmarks Semantic3D (left), and SemanticKITTI (right) with zoom-in results shown below. The ground truth for the Semantic3D test set is not publicly
available. The different scenes are separated by dash lines. The comparisons are highlighted by circles.

TABLE III
COMPARISON OF SEGMENTATION PERFORMANCE ON

S3DIS WITH DIVERSE SAMPLING METHODS

than 105. Leveraging IDS with adaptability to the local density
of points, our IGSAM achieve the best performance among
different sampling methods with only a marginal increase
of computational cost compared with RS. The segmentation
mIOUs using different sampling methods are also shown in
Table III. It can be concluded that our sampling methods
give the best performance among all sampling methods on the
S3DIS benchmark with mIOUs of 70.8%, which demonstrates
the effectiveness of our proposed sampling strategy.

C. Experiments of Large-Scale Scene Understanding

We have experimented our method extensively on nearly
all existing large-scale point cloud understanding benchmarks,
including ModelNet40 [52], ShapeNet-Part [53], PartNet [54],
S3DIS [5], NPM3D [49], Semantic3D [55], Semantic-KITTI
[50], and Scannet [56]. The outdoor datasets, such as NPM3D,
Semantic3D, and Semantic-KITTI are mainly captured by
LiDAR sensors, while the indoor datasets, such as S3DIS and

Scannet are mainly obtained by RGB-D cameras and trans-
formed into the representation of point clouds. The detailed
comparisons of our method with current SOTA point cloud
understanding methods in speed, accuracy, and memory are
shown in Table IV. The qualitative experiments of large-scale
real-world scene parsing are shown in Figs. 7, and 8, respec-
tively. The mIOUs of 77.2%, 70.8%, 81.9%, and 58.2% are
attained on Semantic3D [55], S3DIS [5], NPM3D [49] and
challenging fine-grained part segmentation benchmark PartNet
[54], respectively, with real-time performance of 18.6 Hz per
LiDAR scan with 5 × 105 points, which outperforms SOTA
methods in terms of accuracy, speed, and memory efficiency.
As shown in Table IV, we achieve the best or the second best
performance on public benchmarks with the least network run-
ning time, which demonstrates superior effectiveness, running
speed, and memory efficiency of our proposed method. The
transfer learning results shown in Fig. 9 also demonstrates
our networks learn the underlying latent model of feature
representations that generalizes well across new scenes.

D. Visualization of the Network Modules

1) Visualization of the Deformable Convolutional Kernels:
To better demonstrate the geometry adaptive capacity of the
deformable convolutions, the deformable kernel are visualized
in Fig. 10. It can be seen that kernel points are adaptively
deformed to capture different geometric structures in the
original point clouds. Hence, in the test phase, the specific
geometric structures in the unseen scene will be effectively
captured and described by deformable kernels. In this way,
we can model the geometry of the scene in a learnable
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TABLE IV
COMPARISONS OF CLASSIFICATION OR SEGMENTATION PERFORMANCE, RUNNING TIME, AND CONSUMED MEMORY OF OUR METHOD WITH

SOTA METHODS ON DIFFERENT LARGE-SCALE UNDERSTANDING BENCHMARKS. THE RED AND BLUE COLORS REPRESENT THE BEST,
THE SECOND-BEST RESULTS, RESPECTIVELY. RESULTS ARE RETRIEVED FROM ONLINE BENCHMARKS

AT JUNE 15, 2021, OR FROM ORIGINAL PAPERS OF SOTA METHODS

Fig. 9. Transfer learning results between S3DIS and Scannet. Please zoom
in for details.

way to better enhance structural awareness in per-point-based
processing.

2) Visualization of the Learned Features: In order to better
demonstrate the geometry adaptive capacity of the deformable
convolutions, the deformable kernel are visualized in Fig. 10.
It can be seen that the kernel points are adaptively deformed
to capture different kinds of geometric structure in the original
point clouds. Therefore, in the test phase, the specific geometry
structures in the unseen scene will be effectively captured and
described by the deformable kernels.

3) Visualization of the Nonlocal Activation: Fig. 10
demonstrates that the nonlocal module captures the long-
range dependencies of the same semantic category, such as
chairs or bookcases. The contexts even far from each other
can be nicely modeled and captured. It can also be observed
that the nonlocal activation also provide rough results of
segmentation prediction of the category of the query point,
which is advantageous for further semantic segmentation
tasks.

E. Efficiency and Online Performance

We have done runtime comparisons of our method com-
pared with SOTA on the entire sequence of large-scale real-
scene benchmark Semantic-KITTI [50]. The sequences are
captured and fed into the networks at 25 Hz. The PaiSeg [57]
is a recently developed method. Our method can reach 16.89,
19.53, 19.31, and 18.69 Hz for LIDAR scan 02, 04, 05, and 09,
respectively. Compared with RSSP [1] and RandlaNet [35],
the speed increase by 274% and 38.5% while the memory

Fig. 10. Visualization of the deformable convolutional kernel, complemen-
tary features captured by two core network modules, and nonlocal activation.
For deformable convolutions, left shows the original kernels, right shows the
deformed kernels. The activation scores of pointwise correlation mining are
shown on the left while the activation scores of deformable convolution based
modeling are on the right. For nonlocal activations, left shows the segmen-
tation predictions and right shows the nonlocal activations. (The background
is indicated in blue and the query point is indicated in yellow, the red points
are given large attentional weights.) Zoom in for details.

consumption reduce by 46.5% and 8.6%, respectively, which is
a prominent progress in running speed and memory efficiency.

F. Ablation Study of Network Modules

Our designed network modules can be easily integrated
seamlessly to existing point cloud backbones. Ablation studies
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TABLE V
SEGMENTATION PERFORMANCE OF ABLATED NETWORK ON S3DIS

are also done to validate the effectiveness and necessity of
our designed modules. As shown in Table V, core modules
are removed from our network, respectively, and the mIOUs
of 6-fold cross-validation on S3DIS benchmark is recorded.
From the results, removing GCM results in 11% performance
drop because learning the intrinsic geometric shape contexts
of point clouds is vital for the recognition. On the other hand,
removing global and local correlated feature mining results in
5.6% and 7.3% drop in mIOUs, which demonstrates both the
local and long-range feature relationship capturing are also
essential to the segmentation task. Not using the AG will
also decline the performance for not retaining some mean-
ingful features. Furthermore, the 5-stage (h = 5) network is
the best choice because shallow networks have a poor fitting
ability, while deeper networks will result in oversampling of
point clouds, which will all deteriorate the performance. We
also tested M = 1 in the RLB, however the segmentation
performance does not increase. Therefore, M = 8 is used for
memory efficiency.

V. CONCLUSION

In this work, we have proposed a general solution FG-Net
to large-scale point cloud understanding with real-time speed
and SOTA performance. The filtering and sampling meth-
ods are specially designed to improve the efficiency of
large-scale point cloud processing, and they will boost the
scene parsing performance. The designed network can effec-
tively model point cloud structures and find the feature
correlations across a long spatial range. Leveraging feature
pyramid-based residual learning, hierarchical features at dif-
ferent resolutions can be fused in a memory efficient way.
Extensive experiments on challenging real-world complex
circumstances demonstrated that our approach outperforms
SOTA methods in terms of performance, speed, and memory
efficiency.
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