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A B S T R A C T

Traditional indoor facility inspections on pipelines and boilers are conducted manually and can be logistically
challenging, labor-intensive, costly, and dangerous for the inspectors. With the maturity of unmanned
technology, the unmanned aerial vehicle (UAV) is becoming a promising alternative to the problematic manual
inspection. However, due to the lack of GPS signal indoor, the localization of UAVs is a big challenge
to achieve fully autonomous inspection. Moreover, the narrow and complex indoor environment makes it
difficult to guarantee flight safety. This paper presents a UAV-based explore-then-exploit system to tackle
these problems for autonomous indoor facility data collection and scene reconstruction. The proposed system
consists of a hardware description and integration of two UAVs, a two-step simultaneous localization and
mapping (SLAM) method for UAV localization and 3D environmental mapping, a safety-guaranteed coverage
path planning algorithm for inspection and data collection, as well as an obstacle-aware trajectory generation
method. The proposed system is examined in GPS-denied and cluttered indoor environment and 3D scene
reconstruction is conducted. The quantitative analysis shows that the positioning accuracy is centimeter-
level and the reconstruction error is within 3 cm. The performance analysis demonstrates the robustness and
feasibility of our system in reconstructing and inspecting complex indoor environments for high-efficiency and
low-cost facility management.
1. Introduction

The pace of urban renewal is accelerating in various cities around
the world, given the fact that the current conditions of old buildings and
infrastructures cannot be ignored. Regular inspections and repair works
are conducive and indispensable for urban safety. Especially for civil
infrastructure facility management, such as boiler interiors, air ducts,
and pipelines, frequent inspection and fault detection are significant
for preventing accidents and minimizing economic losses. Traditionally,
these inspections require operators to work in hazardous environments
that are difficult and risky to access. Besides, most of these facilities
have complex configurations or large surface areas, which increase the
time and labor cost of manual defect detection.

To save labor costs for facility management, reduce the time and
risk of inspections, and improve the accuracy of facility defect and fault
detection, more and more researchers tend to incorporate unmanned
aerial/ground vehicles (UAV/UGV) into automatic inspection data col-
lection. Especially, in recent years, UAVs and UGVs are gradually
replacing manual inspection due to the breakthrough of unmanned
technology. Many research works are focusing on using UAVs and
UGVs in inspections and monitoring, including tunnel inspection [1],
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bridge inspection [2,3], construction change detection [4], and boiler
inspection [5,6]. For UAV applications, because of the limitation of the
localization system, most works are conducted outdoors with good GPS
signals [7–10]. In Tan et al. [11], the authors proposed an automatic
data collection system, based on building models, a path optimization
process is executed to collect the data by UAVs following the gener-
ated viewpoints. However, BIM models may not be available in many
real applications, which means this method cannot be deployed in an
unknown environment. To make UAVs usable in indoor scenarios, Hu
et al. [12] proposed a UAV-UGV collaborative system for indoor data
collection. The data from the UGV can be used by the UAV to navigate
in cluttered environments. However, UGV can only move in a 2D plane,
which means the constructed map is a 2D map or an incomplete 3D
map. For the planning and control of UAV, this map does not meet
the requirements for data collection, because many corners in the map
are unknown, and the shape of the device is unknown. Moreover, they
did not tackle the localization problem which is important for indoor
applications. In addition, most of the facilities need to be inspected at
different locations and angles, so UAV is much more flexible than UGV.
926-5805/© 2023 Elsevier B.V. All rights reserved.
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In indoor applications, there is no GPS signal. To achieve au-
tonomous flight, the localization system is needed to provide the po-
sition information for the UAV. Generally, UWB and VICON are used
to provide the position information. However, these are external posi-
tioning devices, it is hard to deploy these devices in new environments.
For inspection and reconstruction data collection, the overlap rate
and shooting angle are important [13]. To get a better reconstruction
result, generally, the overlap rate should be larger than 65%, and
the target facility needs to be captured at different locations and
angles. To get a high-quality image, the distance between shooting
points and the facility should meet the requirements of inspection.
Furthermore, flight safety needs to be guaranteed, it is not easy to get
the shortest path while ensuring there is no obstacle in the flight path.
Moreover, generating a dynamically feasible trajectory to follow a path
can be challenging in an obstacle-dense indoor environment. It puts
a high requirement for a UAV to adjust the primary path flexibly to
avoid obstacles while satisfying the dynamic limits. Motivated by the
aforementioned difficulties, this paper presents an efficient UAV-based
explore-then-exploit system that can be used in indoor data collection.
This system guarantees the coverage of the target facilities, collision
avoidance between UAVs and obstacles, and flight safety. The major
contributions of this paper are as follows:

• We resolve the indoor inspection and scene reconstruction task in
two steps. An efficient and safety-guaranteed explore-then-exploit
system is proposed, which can be easily deployed in any scenario
without any initial knowledge of the environment.

• A novel two-step SLAM method for the explore-then-exploit sys-
tem is proposed, in which lidar SLAM and visual SLAM are fused
to provide robust localization and 3D mapping information for
both UAVs.

• A coverage path planning algorithm for data collection is pro-
posed, in which both the coverage of the target area and the safety
of viewpoints are guaranteed, Flight efficiency is also taken into
consideration to get the shortest flight path.

• To follow the given viewpoints as quickly as possible, an obstacle-
aware trajectory generation algorithm is proposed in which
smoothness is considered with collision avoidance to provide a
high-quality trajectory.

The remainder of this paper is organized as follows. Section 2
s the literature review and background of corresponding areas. Sec-
ion 3.1 shows the hardware design and integration of the proposed
ystem. The SLAM system for exploration and exploitation is presented
n Section 3.2. Section 3.3 introduces the framework and details of
he proposed coverage path planning method. Section 3.4 presents
he UAV trajectory generation algorithm. Also, several experiments
re conducted to verify the validity of the proposed system, and the
etails are illustrated in Section 4. Section 5 presents the discussion
nd quantitative analysis of the reconstruction model. Conclusions and
uture works are presented in Section 6.

. Literature review

The proposed system focus on tackling the challenge of flying UAVs
n an indoor cluttered environment with no GPS signal and external
ositioning facilities. SLAM is used to provide the localization informa-
ion of two UAVs and build a 3D map of the indoor environment. A
overage path planning and trajectory generation algorithm is used to
uarantee the coverage of the target area and flight safety. Therefore,
his section provides a literature review and background materials for
idar-based SLAM, visual-based SLAM, coverage path planning algo-
ithms, UAV trajectory generation algorithms, and their applications in
2

acility inspection and maintenance.
2.1. SLAM

In indoor GPS-denied environments, many researchers use external
positioning facilities like VICON, and UWB to provide localization
information to UAVs [14]. However, in the real-world industry envi-
ronment, it is impractical to arrange external positioning facilities in
advance in the flight environment. SLAM plays an important role in
estimating the pose of UAVs and building a map during autonomous
flight. The SLAM technologies can be divided into two main categories:
lidar-based SLAM and visual-based SLAM [15]. In our proposed system,
considering the endurance, payload, and capabilities of each UAV, a
lidar-based SLAM is implemented in the step of exploration to get the
3D map of the work area and a visual-based SLAM is used to estimate
the pose of the UAV in exploitation step. Therefore, this subsection
provides the background materials for both lidar-based SLAM and
visual-based SLAM.

Lidar-based SLAM is robust and precise in both outdoor and indoor
environments because the light detection and ranging sensors have
a large scanning radius and high resolution, and can effectively deal
with scenes with changing light [16]. In Zhang and Singh [17], the
author proposed a real-time lidar odometry method and combine it
with a point cloud registration method to achieve real-time lidar odom-
etry and mapping. However, this method has the problem of motion
estimation drift. To overcome this problem, Shan and Englot [18]
proposed to segment and remove the point cloud of uneven ground
before feature extraction to reduce the drift. Zhang and Singh proposed
to integrate lidar with camera and IMU to improve the accuracy of
pose estimation [19,20]. Some works that focus on improving the
computational efficiency of lidar odometry are also conducted [21,22].

Compared to lidar-based SLAM, visual-based SLAM is more suitable
for small mobile platforms, because the camera is much smaller and
lighter than lidar, which means the UAV can carry more equipment
for inspection. There are three main categories of visual-based SLAM
(visual-only, visual-inertial, and RGB-D SLAM) [23]. The first visual-
only SLAM algorithm is MonoSLAM proposed by Davison et al. [24].
After that, Forster et al. [25] proposed a semi-direct monocular visual
odometry and tested it on UAV. Furthermore, ORB-SLAM, ORB-SLAM2,
and ORB-SLAM3 [26–28] were proposed and widely used in the current
autonomous mobile platform. For visual-inertial SLAM, in Leutenegger
et al. [29], the author proposed a keyframe-based visual-Inertial SLAM
that combines IMU data and re-projection terms into an objective
function and jointly optimizes the odometry. Qin et al. [30] proposed
a monocular visual-inertial system, which uses an initial guess for a
non-linear optimization process to minimize visual odometry errors.
There are also some works that combine the RGB images and depth
information together to achieve real-time pose estimation [31–33].

2.2. Coverage path planning algorithm

Coverage path planning (CPP) in inspection data collection is the
method of calculating a set of viewpoints that can cover the whole of
interesting structures or facilities. The process of CPP can be divided
into two parts: viewpoints generation and path generation. Viewpoint
defines the 3D location and orientation information and viewpoints
generation gives UAVs the position and orientation that need to reach.
The results of generated viewpoints significantly influence the quality
of collected data. Path generation defines the flight order of viewpoints.
Designing a good path can let the UAV move less distance and save
time.

Currently, some researchers are focusing on using the method of
CPP and UAV to do environment inspection [34–36]. Zhou et al. [8]
proposed a one-step method, based on a prior map, it can estimate
the height and size of the building. Then the problem of building
inspection is formulated into an optimization problem that maximizes
reconstruction quality. In Zhang et al. [37], the author combines the

sampling-based method with an optimization-based method to improve
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both the information quality and the path efficiency. To improve
computing efficiency, Cao et al. [14] proposed a hierarchical planning
framework. He solved the problem on two levels, one for subspace
allocation and one for trajectory generation. For the online CPP prob-
lem, Kuang et al. [38] proposed a framework that takes the initial
path as input, utilizes SLAM to generate a sparse point cloud, estimates
building height, and does path planning based on the prediction results.

There are also some works related to using multi-agent cover-
age path planning in UAV environment inspection. Jing et al. [39]
presented a multi-UAV coverage path planning framework for the
inspection of large-scale, complex 3D structures. They combined the
set covering problem with the vehicle routing problem and used a
modified biased random key genetic algorithm to solve it. In Chen et al.
[40], the author proposed a path planning algorithm based on optimal
mass transport optimization and assigned the task views to different
drones. To inspect post-disaster buildings, Nagasawa et al. [41] first
divided the interested area. For each area, a set of camera positions can
be generated. This problem was formulated into a multiple traveling
salesman problem. In Zheng et al. [42], the author proposed a route
planning methodology to get the optimal solution for multi-UAV data
capture route planning.

However, most works are conducted outdoors with large free work
areas. In the indoor environment, there are fewer free spaces, and the
obstacles are more complex. As a result, obstacle avoidance needs to
be considered during the process of coverage path planning.

2.3. UAV trajectory generation

Generating a dynamically feasible trajectory to follow a path can
be challenging in an obstacle-dense indoor environment. It puts a high
requirement for a UAV to adjust the primary path flexibly to avoid
obstacles while satisfying the dynamic limits.

The most common approach to solve such a trajectory genera-
tion problem is to formulate it as an optimization problem using
the gradient-based solver [43,44]. Earlier work on UAV trajectory
generation in Mellinger and Kumar [45] uses a polynomial spline to
represent the trajectory and formulate obstacles as convex constraints.
They solve the QP problem with the goal of minimizing the snap term
of the trajectory. In Richter et al. [46], they used a sampling-based
approach to search for a collision-free initial reference to warm up
the optimization process. Combined with a sequence of polynomial
segments, the reference was then converted into convex constraints to
generate a smooth trajectory.

Despite the geometric initial reference being collision-free, the final
trajectory may encounter obstacles. On the one hand, using convex
hulls to formulate the obstacles space may cause a smaller feasible solu-
tion space, which could impact the effectiveness of the solving process.
On the other hand, in practice, trajectory generation optimization is
always a non-convex problem in which gradient-based solvers easily
get stuck at a local optimal point. It thus requires a good initial guess
to alleviate such a drawback.

Recently, another popular technique is to solve the non-convex op-
timization problem by combining motion primitives. Motion primitives
are a set of continuous trajectories that enable us to encode the dynamic
constraints into the planning space. They are conducive to effectively
reducing the intractable dimension of optimization variables and al-
leviating the computational load. One way of pre-computing these
primitives is to sample on the vehicle’s boundary state constraints and
solve a boundary value problem (BVP) [47]. Each primitive connects
an initial state to an end state called boundary state constrained prim-
itives (BSCPs). Several work use motion primitives to alleviate their
computational load. In Zhou et al. [48], the author proposed a real-
time trajectory generation method combined with BSCPs to separate
the dynamic and geometric environmental constraints. Similar to the
above work, we convert the viewpoints to a time-optimal path for the
3

optimization problem and use a pre-computing motion primitives table
for fast generating a dynamical-feasible and collision-free trajectory to
follow the path.

Each of the three above sub-sessions is a broad research area, while
they are not sufficiently integrated for real applications in the construc-
tion industry. To the best of our knowledge, there is no work that has
been published on indoor facility inspection and scene reconstruction
using an integrated UAV-based system.

3. Methodology

Fig. 1 shows the architecture of the proposed explore-then-exploit
system. The protected UAV is used to explore the unknown environ-
ment and build up a 3D map and keyframe graph which can be used in
the step of exploitation. The small and light UAV is used to do coverage
path planning for the target area and follow the generated trajectory
to get detailed information about facilities. This section will introduce
detailed information on each module.

3.1. Hardware platform

As shown in Fig. 2, the proposed system consists of two UAVs with
different functionality. The advantage of using 2 UAVs compared to
using 1 UAV is that it can maximize the capabilities of each UAV,
thereby increasing the overall efficiency of task completion. The first
UAV is used to explore the whole indoor environment. Because the
environment is unknown, the biggest challenge is to guarantee flight
safety. As a result, we design a protected UAV with reference to Petris
et al. [49]. 3D lidar is selected as the equipment for laser SLAM to
achieve robust localization and mapping in an unknown environment.
The stereo camera is used to build up the keyframe graph for the step
of exploitation.

For the step of exploitation, a small and light UAV is designed,
because the endurance needs to be longer to get more images during
one flight. The stereo camera and keyframe graph are used to provide
the localization information during the flight. DJI ACTION2, a 4 K
optical camera, is used to collect detailed features of target facilities.

In the step of exploration, the lidar-based SLAM is performed us-
ing Velodyne 16, the keyframe graph is constructed by VINS using
the images from Intel RealSense D435i, and the SLAM algorithm is
online-calculated using NVIDIA Jetson Xavier NX. After exploration,
the created map is processed on a laptop to determine views, paths,
and trajectories. NVIDIA Jetson Xavier NX is utilized to control the
UAV and perform an online visual-based SLAM computation during the
exploitation step.

After a broad comparison, with the consideration of price and
weight, we choose Velodyne 16 as the 3D lidar and D435i as the stereo
camera. Other lidars like Livox and Ouster and cameras like D455 and
ZED are also supported in the proposed framework because it is a
general framework. The detailed comparison is listed in the appendix.

3.2. SLAM for explore-then-exploit system

The working space is relatively limited, and the environment is full
of obstacles while conducting indoor autonomous inspections, particu-
larly in industrial facilities. As a result, achieving strong localization for
UAVs is one of the biggest challenges. Considering the particularities
of indoor environments, existing SLAM technology, and the payload
of UAVs, we choose Fast-LIO2 [21] as the lidar-based slam for the
UAV in the exploration step. Because in Fast-LIO2, the raw points are
directly registered in the map, and incremental k-dimensional tree data
is used to update and re-balance the map, which makes the lidar-
inertial odometry framework accurate, robust, and fast. In the step of
exploitation, VINS-MONO [30] is implemented to provide pose esti-
mation for the UAV. VINS-MONO is a robust and versatile monocular
visual-inertial state estimator that tightly integrates IMU and optical

images together and is widely used on onboard computers with limited
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Fig. 1. The overall framework of the explore-then-exploit system.
Fig. 2. The hardware design and architecture integrating two designed UAVs.
Fig. 3. The framework of SLAM system.
computing resources. We take advantage of these two frameworks and
combine them together to provide robust pose estimation for each UAV.
The framework of the proposed SLAM method is presented in Fig. 3.

In the step of exploration, Velodyne is responsible for providing
the point cloud scan and autopilot is responsible for providing the
4

IMU data. Fast-LIO2 is implemented in the Xavier NX platform to
get the pose estimation and 3D map of the indoor environment. In
addition, visual-inertial odometry is also implemented based on the
IMU data from autopilot and the image from D435i. During the flight,
the onboard computer saves the keyframe at 1 Hz. Each keyframe
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Fig. 4. The coordinate systems of stereo camera and lidar.

contains the global pose and the corresponding image. In addition, the
pose of the keyframe is the odometry from Fast-LIO2 because it is more
robust than VINS. The corresponding image is from D435i.

However, as illustrated in Fig. 4, the coordinate frame of VINS and
Fast-LIO2 is inconsistent. As a result, the odometry in the Fast-LIO2
coordinate needs to be transformed to the VINS coordinate to ensure
that the pose saved in the key frame is accurate. Let the coordinate of
Fast-LIO2 be L, the coordinate of VINS be C, the pose in L be 𝑷 L, the
pose in C be 𝑷 C and the transformation matrix between L and C be
C𝐓L. We can get the following equations:

C𝐓L =
[C𝐑L

C𝐏L
𝟎1×3 1

]

(1)

𝑷 C = C𝐓L𝑷 L (2)

where

C𝐑L =
⎡

⎢

⎢

⎣

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎤

⎥

⎥

⎦

, C𝐏L =
⎡

⎢

⎢

⎣

𝑝𝑥
𝑝𝑦
𝑝𝑧

⎤

⎥

⎥

⎦

(3)

represent the rotation and the translation of two frames, respectively.
The value of 𝑟11,… , 𝑟33, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 ∈ R are determined by hardware
design. After the coordinate transformation, the key frame graph is
successfully built. To increase the matching frequency of loop closure,
in the step of exploration, the exploration method is based on the field
of view of the camera, so most of the viewing angles in the step of
exploitation will be covered.

In the step of exploitation, just relying on visual-inertial odometry is
not enough. Because the working time becomes longer, the estimation
drift will be larger. Thus, the local pose from VINS and the global
pose from the keyframe graph are combined in loop fusion. When the
UAV encounters a similar scene, searching and image matching are
performed to get the global pose of the UAV and fix the drift from local
estimation. After loop fusion, the UAV can get a precise pose estimation
with little drift.

3.3. Safety-guaranteed coverage path planning

It is challenging to ensure both target facility coverage and flight
safety when collecting data inside. To solve this issue, we propose a
safety-guaranteed coverage path planning algorithm, which includes
viewpoints generation and path generation. The overall framework of
the proposed method is shown in Fig. 5.

In the step of viewpoints generation, several cuboids 𝐵 ∈ [𝑥𝑙 , 𝑦𝑙 ,
𝑧𝑙 , 𝑥𝑟, 𝑦𝑟, 𝑧𝑟], with [𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙] being the lower left coordinate of 𝐵 and
[𝑥𝑟, 𝑦𝑟, 𝑧𝑟] being the upper right coordinate of 𝐵, are used to describe
different objects. The point clouds in different cuboids are treated as
regions of interest (ROI) and obstacles. Then the farthest point sampling
5

algorithm is performed to make the point cloud uniformly distributed
in the region of interest. The details are as shown in Algorithm 1. Given
the input points set 𝑃 , 𝑁 is the number of the elements, and Nnew is
the number of the elements of the output points set. We randomly set a
start point 𝑠 as the sampling set �̄�. Then iterative updates the distance
set �̄�𝑝 by calculating the minimum distance between 𝑝𝑜𝑖𝑛𝑡𝑝 and �̄�. In
each iteration, a new point that is farthest from �̄� is selected and added
to �̄�. Finally, the distributed points set �̄� can be extracted.

Algorithm 1: Implementation of farthest point sampling
algorithm

Input: 𝑃 , N, Nnew
Output: �̄�

1 𝑠 ← 𝑠 ∈ 𝑃 ;
2 �̄� ← {𝑠};
3 while iterations <Nnew do
4 foreach 𝑝𝑜𝑖𝑛𝑡𝑝 ∈ 𝑃 ⧵ �̄� do
5 foreach 𝑝𝑜𝑖𝑛𝑡𝑠 ∈ �̄� do
6 �̄�𝑠 ← �̄�𝑠 ∪ {distance(𝑝𝑜𝑖𝑛𝑡𝑝, 𝑝𝑜𝑖𝑛𝑡𝑠)};
7 �̄�𝑝 ← �̄�𝑝 ∪ {𝑑 ∈ �̄�𝑠 ∣ min(𝑑)};
8 𝑝𝑜𝑖𝑛𝑡new ← argmax𝑝𝑜𝑖𝑛𝑡𝑝 �̄�𝑝;
9 �̄� ← �̄� ∪ {𝑝𝑜𝑖𝑛𝑡new};

These distributed point clouds need to be downsampled according
to the overlap rate. As shown in Fig. 6, the field of view of the camera
is 𝐹𝑂𝑉 , the overlap rate is 𝑅, the aspect ratio of the image is 𝜅,
the overlap distance in the horizontal direction is 𝑑H and the overlap
distance in the vertical direction is 𝑑V. The effective distance in the
horizontal 𝐹𝑂𝑉H and vertical 𝐹𝑂𝑉V directions can be calculated by
the following equations:

𝜅 =
𝐹𝑂𝑉V
𝐹𝑂𝑉H

(4)

𝐹𝑂𝑉H = 2𝐷 tan 𝐹𝑂𝑉
2

(5)

𝑅 =
𝑑H

𝐹𝑂𝑉H
=

𝑑V
𝐹𝑂𝑉V

(6)

𝑑H = 2𝑅𝐷 tan 𝐹𝑂𝑉
2

(7)

𝑑V = 2𝑅𝜅𝐷 tan 𝐹𝑂𝑉
2

. (8)

The distributed points set �̄� is downsampled to ensure the hori-
zontal and vertical distance between two points is 𝐹𝑂𝑉H and 𝐹𝑂𝑉V.
Following point cloud downsampling, the viewpoints are generated at a
distance D from the point cloud along the normal direction of the target
facility surface. The viewpoints adjustment process is then performed
to alter the viewpoints situated in the obstacle area. As shown in Fig. 7,
when the generated viewpoint is in the obstacle area, it should be
replaced with a new viewpoint by searching in the normal direction
until reaching a safe distance. The 𝐹𝑂𝑉H decreases as the distance to
the plane decreases. So, to ensure the coverage rate, the new viewpoint
has two view angles. Let the angle between the centerline of the 𝐹𝑂𝑉
and the normal be 𝛼, and the distance between the new viewpoint and
plane be 𝐷1. 𝛼 can be calculated by Eq. (9). Then we can get the best
viewpoints within free space.

𝛼 = −𝐹𝑂𝑉
2

+ tan−1
𝐹𝑂𝑉H
2𝐷1

(9)

After viewpoints generation, we can get n viewpoints 𝑣𝑖, 𝑖 ∈
{1, 2,… , 𝑛}. Let

𝑉 = {𝑣1,… , 𝑣n} (10)

be the set of viewpoints. The next step is to calculate the shortest
path through all viewpoints. We formulate it into a safety-guaranteed

̄
traveling salesman problem. Let 𝑁 = {1, 2,… , n}, the minimum discrete
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Fig. 5. The entire algorithm procedure of viewpoints generation.
interval be 𝑑, the distance between 𝑣𝑖 and 𝑣𝑗 be 𝐶𝑖𝑗 , and the number
of sample points be 𝑁𝑖𝑗 . The set of discrete points 𝑉𝑖𝑗 between 𝑣𝑖 and
𝑣𝑗 can be calculated by the following equations:

𝑁𝑖𝑗 =
𝐶𝑖𝑗

𝑑
(11)

𝑉𝑖𝑗 = {𝑣1𝑖𝑗 , 𝑣2𝑖𝑗 ,… , 𝑣𝑁𝑖𝑗
}. (12)

The generated 3D map is converted to occupy grid map to determine
the obstacle area �̄�. The formulation is shown in Eq. (13). 𝑣𝑖𝑗 represents
the connection relationship between 𝑣𝑖 and 𝑣𝑗 . 𝑢𝑖 and 𝑢𝑗 are any real
number. The objective function 𝐹 of this optimization problem is to
minimize the total distance traveling through all these viewpoints. The
first two constraints are used to guarantee that each viewpoint can be
visited and only visited once, and the third constraint ensures that there
are no sub-tours. The last constraint is used to guarantee the generated
path is obstacle free. When the points set 𝑉𝑖𝑗 between 𝑣𝑖 and 𝑣𝑗 has
an intersection with obstacle area �̄�, the distance 𝐶𝑖𝑗 is set to positive
infinity. A Genetic Algorithm (GA) is used to solve the problem because
it has a good global search ability and can get a good solution in a short
period. Finally, a path with the shortest travel cost and no collisions can
6

be obtained.

min𝐹 =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑐𝑖𝑗𝑣𝑖𝑗

s.t.
∑

𝑗∈�̄�

𝑣𝑖𝑗 = 1, ∀𝑖 ∈ �̄�

∑

𝑖∈�̄�

𝑣𝑖𝑗 = 1, ∀𝑗 ∈ �̄�

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑣𝑖𝑗 ≤ 𝑛 − 1, ∀𝑖, 𝑗 ∈ �̄�\{0}
𝑣𝑖𝑗 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ �̄�

𝑢𝑖, 𝑢𝑗 ∈ R, ∀𝑖, 𝑗 ∈ �̄�

𝑐𝑖𝑗 = ∞, ∀𝑖, 𝑗 ∈ �̄�, 𝑉𝑖𝑗 ∩ �̄� ≠ ∅

(13)

3.4. Obstacle-aware trajectory generation

The generated path from the TSP solver cannot be executed by the
UAV directly because it does not consider the dynamic constraints of
the UAV. As a result, a trajectory generation method is designed to
convert the path to a smooth trajectory while avoiding obstacles in an
indoor environment.
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Fig. 6. The illustration of the effective field of view of the camera.

Fig. 7. The illustration of the process of the viewpoint adjustment.

3.4.1. Safe navigation
We formulate the trajectory generation problem as a nonlinear

optimization problem minimizing the cost function 𝐽 that trades off
flight safety 𝐽𝑐 and path-following performance 𝐽𝑓 . This optimization
problem can be given as follows:

min
𝐮

𝐽 = 𝜆𝑐𝐽𝑐 + 𝜆𝑓𝐽𝑓 (14)

where 𝜆𝑐 and 𝜆𝑓 represent the weights for each cost term.
To handle the collision of potential threats, we need to penalize

the closest distance 𝑑[𝑘] between the position on the current executed
trajectory of the UAV 𝐩[𝑘] and obstacles in the surrounding environ-
ment at time step 𝑘. The executed trajectory can be generated through
BSCPs, which will be introduced in the next section. To calculate 𝑑[𝑘],
we represent the environment as a 3D grid map, and the position of the
UAV corresponds to the node on the map. For each node, the closest
distance value from the node to the obstacles can be obtained efficiently
using the Euclidean distance transform (EDT) map [50]. Therefore, the
flight safety cost for 𝑁 time steps in the future is penalized as:

𝐽c =
𝑁−1
∑

𝑘=0
𝑒−𝑑[𝑘]. (15)

It can be observed from the cost function that if the UAV moves closer
to the obstacle, the cost value will grow rapidly. Therefore, the above
evaluation function tends to push the generated trajectories of the UAV
to stay away from obstacles to ensure flight safety.

In addition, to follow the path given in Section 3.3 as quickly as
possible, we use a jerk-limited trajectory (JLT) method to generate a
time-optimal reference trajectory from the UAV’s current position to the
next closest point on the path [44]. JLT provides a smooth trajectory
from arbitrary initial states to a set goal state for the UAV system. It
has been proven well suited for UAVs as it could satisfy the maximum
7

Fig. 8. Representation of following the path using JLT as a reference trajectory. The
circles are the viewpoints of the path, the blue squares represent the points on an
executed trajectory, and the green squares represent the points on JLT.

thrust and physical limits [51] and can be quickly generated in 3D
environments [52]. The deviation of the position between the time-
optimal JLT and the current trajectory for 𝑁 time steps is penalized
as

𝐽f =
𝑁−1
∑

𝑘=0
‖𝐩[𝑘] − 𝐩JLT[𝑘]‖22, (16)

where 𝐩JLT[𝑘] denotes the position on the JLT at time step 𝑘 correspond-
ing to 𝐩[𝑘]. As shown in Fig. 8, by penalizing the above cost function,
the UAV can quickly follow the reference path under the guidance of
JLT while avoiding obstacles.

By solving the above problem, a feasible trajectory can be generated
to guide the UAV along the reference path while avoiding collisions
in indoor environments. However, it can be challenging to solve such
general nonlinear optimization problems. Apart from active reactions
to obstacles and the following performance, the dynamical feasibility
and flight smoothness in cluttered indoor environments should also
be considered. Therefore, we construct BSCPs to separate dynamics
and smooth constraints from obstacles and path-following constraints
to simplify the optimization problem. With the BSCPs, a long feasible
trajectory with a large number of state parameters can be encoded in
a few parameters (end-state parameter), thus effectively reducing the
intractable search space (or dimension) of the optimization problem
and alleviating the computational load. Finally, we can use a gradient-
free based solver, particle swarm optimization (PSO), to select the
high-quality BSCPs by minimizing 𝐽 while taking the obstacles and
the given path into account. PSO is a metaheuristic method that can
efficiently find the solution even when the optimization function is
not continuous [53]. Compared with the existing results, this gradient-
free optimization method has a more stable optimization time and can
handle the problem with gradient information.

3.4.2. Construction of BSCPs
In this subsection, we need to pre-compute dynamically feasible

motion primitives of the UAV to meet the real flight requirements.
A UAV can be modeled by a triple integrator on its 𝑥, 𝑦, 𝑧 axes,
respectively. Hehn and D’Andrea [54]. Define 𝐩, 𝐯, 𝐚, and 𝐣 as position,
velocity, acceleration, and jerk, respectively. The smooth constraints
can be given as

𝐯 ∈ [𝐯min, 𝐯max], 𝐚 ∈ [𝐚min, 𝐚max], 𝐣 ∈ [𝐣min, 𝐣max]. (17)

For each axis, let 𝐱 = [𝐩, 𝐯, 𝐚]T and 𝐮 = 𝐣 be the state and control input
of the system. Let 𝜏 be the discretization time step. The outer loop of
the UAV’s dynamic model is defined as follows:

(18)
𝐱[𝑘 + 1] = 𝐀𝐱[𝑘] + 𝐁𝐮[𝑘],
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Fig. 9. The overall structure of trajectory generation.
where

𝐀 =
⎡

⎢

⎢

⎣

1 𝜏 𝜏2∕2
0 1 𝜏
0 0 1

⎤

⎥

⎥

⎦

, 𝐁 =
⎡

⎢

⎢

⎣

𝜏3∕6
𝜏2∕2
𝜏

⎤

⎥

⎥

⎦

. (19)

Given the above dynamic model of the UAV, its motions are formu-
lated as BSCPs which can be obtained by solving BVP selected by PSO.
The purpose of constructing BSCPs is to control the system from any
initial state to the desired goal state 𝐱𝑑 = [𝐩𝜃 , 0, 0]T. The relative error
state is defined as:

𝐬 = 𝐱 − 𝐱𝑑 =
⎡

⎢

⎢

⎣

𝐩 − 𝐩𝜃
𝐯
𝐚

⎤

⎥

⎥

⎦

. (20)

To reach 𝐱𝑑 , a BVP solver needs to be designed to drive 𝐬 to zero. For
this purpose, an offline model-based dynamic programming approach
is employed to search for the optimal action 𝑢∗ of the system. The
approximation of value function 𝑄(𝐬) from 𝐬 to the origin can be defined
as:

𝑄(𝐬[𝑘]) = 𝑟(𝐬[𝑘], 𝑢[𝑘]) +𝑄(𝐬[𝑘 + 1]), (21)

where 𝑟(𝐬, 𝑢) is the expected reward of action 𝑢 from relative state 𝐬.
To take the desired goal state, input penalty, and invariant constraints
into account, the reward function is defined as follows:

𝑟(𝐬,𝐩) = 𝐬TW𝐬 + 𝜆𝐩2 + 𝐽𝑠(𝐬,𝐮), (22)

where W represents the corresponding weight matrix associated with
relative error state derivation 𝐬TW𝐬, 𝜆 is the weight of penalizing the
control input, and 𝐽𝑠(𝐬,𝐮) penalizes the violation of dynamic constraints
in Eq. (17) to prevent the UAV making aggressive movements.

The 𝐽𝑠(𝐬,𝐩) can be defined as:

𝐽𝑠(𝐬,𝐩) = 𝜆𝑣(max(‖𝐯min − 𝐯‖, 0) + max(‖𝐯 − 𝐯max‖, 0))2

= 𝜆𝑎(max(‖𝐚min − 𝐚‖, 0) + max(‖𝐚 − 𝐚max‖, 0))2

= 𝜆𝑗 (max(‖𝐣min − 𝐣‖, 0) + max(‖𝐣 − 𝐣max‖, 0))2,

(23)

where 𝜆𝑣, 𝜆𝑎, 𝜆𝑗 are the trade-off between 𝐯, 𝐚 and 𝐣, respectively and
‖ ⋅ ‖ denotes the 𝑙2 norm. Through the iterative process, we can get the
minimum value function for each state:

𝑄∗(𝐬[𝑘]) = min
𝐩[𝑘]∈

𝑟(𝐬[𝑘],𝐮[𝑘]) +𝑄∗(𝐬[𝑘 + 1]), (24)

where 𝐮 is chosen from a set of admissible control inputs  . Once the
above value iteration has converged, a look-up table consisting of an
optimal action for each state is constructed. As a result, for any relative
state 𝐬, we can obtain a unique dynamically feasible trajectory 𝐩 of the
UAV determined by 𝐮∗.

The overall framework of our method is shown in Fig. 9 and
Algorithm 2. The collision information has been stored in the EDT
map (line 1). For each viewpoint that needs to be strictly passed, We
use JLT method to generate a time-optimal reference trajectory �̄� 𝑟

𝑖
between two viewpoints for quickly following (line 3–4). According to
the objective function 𝐽 , which accounts for the obstacle constraints
8

Algorithm 2: Trajectory generation with collision avoidance
using particle swarm optimization

Input: 𝑉 ,�̄�,𝐱
Output: �̄�

1  ← 𝐸𝐷𝑇𝑚𝑎𝑝(�̄�);
2 randomize 𝑚 particles;
3 for each 𝑣𝑖, 𝑖 = 1, 2,… , 𝑛 do
4 �̄� 𝑟

𝑖 ← 𝑔𝑒𝑛𝐽𝐿𝑇 (𝐱, 𝑣𝑖);
5 for each 𝐱𝑗 , 𝑗 = 1, 2,… , 𝑚 do
6 𝐯𝑗 ← 𝐯𝑗 + 𝜔1(𝐱𝑙𝑗 − 𝐱𝑗 ) + 𝜔2(𝐱𝑔 − 𝐱𝑗 );
7 𝐱𝑗 ← 𝐱𝑗 + 𝐯𝑗 ;
8 �̄�𝑗 ← BSCP(𝐱, 𝐱𝑗);
9 𝑐𝑜𝑠𝑡𝑗 ← 𝐽 (�̄�𝑗 ,, �̄� 𝑟

𝑖 )
10 if 𝑐𝑜𝑠𝑡𝑗 < 𝑐𝑜𝑠𝑡𝑙𝑗 then
11 𝑐𝑜𝑠𝑡𝑙𝑗 ← 𝑐𝑜𝑠𝑡𝑗
12 𝐱𝑙𝑗 ← 𝐱𝑗
13 if 𝑐𝑜𝑠𝑡𝑗 < 𝑐𝑜𝑠𝑡𝑔 then
14 𝑐𝑜𝑠𝑡𝑔 ← 𝑐𝑜𝑠𝑡𝑗
15 𝐱𝑔 ← 𝐱𝑗

16 𝐱∗ ← 𝐱𝑔
17 �̄�𝑖 ←BVP(𝐱, 𝐱∗);
18 �̄� = [�̄�1,… , �̄�𝑛]

and path-following performance, we can assess all potential end states
of the UAV that have been transformed into BSCPs. To minimize 𝐽 at
each time step, the PSO method can choose the end-state constraints
𝐱∗ from these potential candidates (line 5–15). After obtaining 𝐱∗, by
using the BVP solver, the smooth trajectory �̄�𝑖 following the path can
be generated with collision avoidance (line 16–17).

4. Experiments

To elaborate on the proposed explore-then-exploit system, we con-
duct several field experiments in indoor environments without external
localization devices. The accuracy and stability of the proposed SLAM
system, the robustness of the proposed trajectory generation method,
and the performance of the whole system are tested separately. The
experiments are conducted in an 8.4 meters long, 6.0 meters wide, and
6.0 meters-high environment. The maximum and minimum dynamic
feasibility limits of the velocity, acceleration, and jerk are set as 𝑣 =
[2.5,−0.5], 𝑎 = [2.0,−0.5], and 𝑗 = [5.0,−2.0], respectively. VICON is
used to get the ground truth of flight trajectory. For the performance
test of the whole system, both the step of exploration and exploitation
is performed in each scenario, and the 3D map and keyframe graph
from the SLAM system is built by the onboard computer Xavier NX. The
coverage path planning and trajectory generation module is processed
by a laptop with an Intel i7-9700 CPU and 16 GB RAM. The overlap
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Table 1
The comparison of the accuracy and stability of different algorithms (vins loop is our method).

Method MeanErrorx (m) MeanErrory (m) MeanErrorz (m) MaxErrorx (m) MaxErrory (m) MaxErrorz (m) VarErrorx VarErrory VarErrorz

Lidar 0.04304 0.03180 0.28513 0.26068 0.17975 0.44477 0.00149 0.00102 0.00515
Vins only 0.11788 0.08165 0.14776 0.39805 0.36375 0.64746 0.01165 0.00749 0.01858
Vins loop 0.08058 0.07666 0.15278 0.27833 0.33723 0.55962 0.00460 0.00427 0.01197
Table 2
The performance comparison of trajectory optimization.
Method Mellinger [45] Richter [46] Our

Simple facility without obstacles Trajectory length (m) 90.53 100.07 71.55
Collision distance (m) 0.25 0.27 0.38

Simple facility with obstacles Trajectory length (m) 95.85 96.71 83.15
Collision distance (m) 0.06 0.28 0.36

Complex facility with obstacles Trajectory length (m) 140.74 147.25 114.30
Collision distance (m) – 0.07 0.18
rate is set at 65%, and the distance to the plane is set at 2 m. Finally,
the collected images are used to reconstruct the facility. We use DJI
TERRA in a desktop with an Intel i9-10920X CPU and NVIDIA RTX
4000 GPU to reconstruct the model. The reconstruction result shows
our method can collect high-quality data for indoor facility inspection.
Fig. 10 shows the detailed information of the laboratory environment,
3D map from lidar SLAM, generated trajectory, work scene, and the
overall and detailed feature of the reconstruction result.

4.1. Performance test of proposed SLAM system

In this experiment, Fast-LIO2 and VINS are performed to get the
pose of the UAV, and VICON is used to provide the ground truth.
Fig. 11 shows the flight trajectory and error of different methods.
Table 1 shows the quantitative comparison including the mean error,
maximum error, and error variance. Compared to VINS, our method
achieves better performance in both mean error, maximum error, and
measurement stability and is close to Fast-LIO2.

4.2. Performance test of proposed trajectory generation method

In this experiment, the proposed trajectory generation method is
compared with the two most widely used methods: minimum trajectory
generation [45] and polynomial trajectory generation [46] under the
three different scenarios. The UAV is required to pass through the
viewpoints in 3D indoor environments as quickly as possible while
avoiding obstacles. The number of viewpoints increases with the com-
plexity of the environment. Each method is tested 20 times for the
same environment. For fairness, each method is tested 20 times for
the same environment. Table 2 displays the statistical average data to
evaluate the performance of the trajectory generation of 20 trails. It
can be observed that our method takes a shorter time than others to
follow the reference viewpoints while maintaining safe distances from
obstacles.

Collision distance measures the closest distance with obstacles for
the whole trajectory. The method proposed by Mellinger generates a
dynamically feasible trajectory to strictly follow the viewpoints, but it
does not consider the complex obstacles. To restrict the trajectory in
the safe region, Richter uses RRT to generate collision-free paths as the
initial guess. Although it slightly sacrificed the flight time for safety,
this kind of optimization method with hard constraints is difficult to
meet the requirements of collision avoidance in a narrow space. In
contrast, our method penalizes the closest distance with obstacles to
push the trajectory away from collisions to achieve better performance.

Trajectory length implied the overall flight time. In any scenario,
trajectories from Mellinger and Richter are longer than ours. This is
because their algorithm does not optimize the time of path-following. In
addition, the overshoot of the trajectories is unavoidable because they
solve the optimization problem with strict constraints. In contrast, our
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method generates time-optimal JLT as references based on the given
viewpoints to pass through these points as quickly as possible. In par-
ticular, in a complex environment, our trajectory length increases more
slowly than others proving that our method can perform satisfying
results even in obstacle-dense environments.

4.3. Performance test of the whole system

4.3.1. Simple facility with no obstacle
We use some polystyrene boxes in the first experiment to represent

the target facility. In this experiment, 43 images are collected, and all
surfaces of the target facility have been collected successfully, which
means our coverage path planning can ensure the complete coverage
of the target object. The result is shown in the sixth and seventh row
of Fig. 10, a very detailed 3D reconstruction model can be built, which
represents the collected images are of very good quality.

4.3.2. Simple facility with obstacles
In the third experiment, we add some obstacles in the environment

to test whether our proposed method can generate a safe path and tra-
jectory. The viewpoints adjustment process is performed to guarantee
the generated viewpoints maintain a safe distance to the obstacle. In
this experiment, the UAV can successfully follow generated trajectory,
avoid obstacles, and collect the data. 47 images are collected and used
to reconstruct the target facility. The reconstruction result is also used
to measure the quality of collected data. As illustrated in the seventh
row of Fig. 10, even in an environment with obstacles, the detailed
texture of the 3D model is also clear.

4.3.3. Complex facility with obstacle
In the last experiment, we change the shape of the target facility to

an irregular polyhedron and added many obstacles in the environment
to test the acquisition quality of the proposed system for a complex
facility in a cluttered environment. The distance between the obstacle
and the target facility is only 1.5 m, and some area is only 0.8 m.
Working in such a challenging environment needs the SLAM system
to provide a precise pose estimation, otherwise, the UAV would collide
with facilities and obstacles. Also, the trajectory generation algorithm
needs to generate a feasible path for the UAV to follow. In this exper-
iment, our coverage path planning algorithm can generate viewpoints
covering the target facility in a limited space. The trajectory generation
algorithm can generate a trajectory considering the dynamic constraints
of the UAV to ensure the UAV can fly safely in a narrow environment.
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Fig. 10. The experiments environment, setup, process, and results.
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Fig. 11. The trajectory and measurement errors of different methods.
Fig. 12. 3D map built by UAV and UGV respectively. The left map is built by UAV.
The right map is built by UGV.

5. Discussion

In indoor facility inspections, there are two main concerns: what
scenarios the proposed system is suitable for and whether the system
outputs can satisfy the requirements of inspection. For the first ques-
tion, our system does not rely on external positioning facilities, as
mentioned in Section 4.1, the measurement error of our SLAM system
is within 10 cm. The distance between the two facilities is 0.8 m, and
the tip-to-tip dimension of our UAV is 41 cm, meaning our trajectory
generation method can find a safe trajectory within a 0.4 m distance.
These advantages allow our system to apply to most indoor scenarios.
In addition, compared to BIM and UAV-based methods, our method
does not require the initial knowledge of the target environment, the
first UAV with a 3D Lidar can explore the unknown environment and
construct a 3D map making the proposed method applicable to any
scenario. Moreover, compared to the UGV-UAV cooperative method,
the proposed method is more robust in 3D environments. As shown in
Fig. 12, we use an unmanned ground vehicle and drone carrying 3D
Lidar Velodyne 16 respectively to model indoor scenes. As shown in
the right image, only the bottom environmental information is shown
on the map constructed by UGV. In contrast, the map built by UAV is
a complete 3D map with all the necessary information on facilities and
obstacles.

For the second question, to quantitatively evaluate our system
output, we calculate the mean absolute error (MAE), root means square
error (RMSE), and mean absolute percentage error (MAPE) of the
reconstructed model in the three experiments. As shown in Fig. 13, we
put some markers on the facility and measure the distance between
each marker. Finally, we get 45 measurement distances and compare
them with the corresponding distance in the reconstructed model. The
results illustrated in Table 3 show that the accuracy of the reconstruc-
tion model is within 3 cm, indicating the high quality of collected
images and reconstruction.
11
Fig. 13. The markers and measurement distances of the target facility.

Table 3
The quantitative analysis of reconstruction model.
Method MAE (cm) RMSE MAPE

Experiment1 1.7111 1.9149 2.85%
Experiment2 2.0667 2.3898 3.78%
Experiment3 2.7333 3.1376 5.04%

6. Conclusion and future works

This paper proposes an explore-then-exploit system that can work
in a cluttered environment for complex facility inspection and recon-
struction data collection. The proposed system consists of the hardware
setup and integration of each UAV, the SLAM system for the step of
exploration and exploitation, the coverage path planning algorithm
in a cluttered environment, and the trajectory generation algorithm
for safe flight in a narrow environment. The hardware and software
connection of each UAV is proposed. Lidar-based SLAM and Visual-
based SLAM is used and integrated to provide robust and precise pose
estimation in indoor inspection. The coverage path planning method
that considers both the flight safety and coverage of the target facility
is proposed and verified in different indoor environments. A trajectory
generation algorithm is presented to show the UAV can follow the
generated trajectory in a cluttered and narrow environment. To verify
the proposed system can be used in indoor facility inspection data
collection, we build up three scenarios and use the proposed system
to collect data. The 3D reconstruction results in different experiments
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Table 4
Comparison among different types of lidar.
Model Product Image Price Parameters

Ouster OS0–32 $4000

∙ Field of View (Vertical): 90◦

∙ Field of View (Horizontal): 360◦

∙ Measurement Range: 35 m
∙ Range Accuracy: Up to ±5 cm
∙ Vertical Resolution: 32 channels
∙ Weight: ∼447 g

Velodyne VLP-16 $3600

∙ Field of View (Vertical): 30◦

∙ Field of View (Horizontal): 360◦

∙ Measurement Range: 100 m
∙ Range Accuracy: Up to ±3 cm
∙ Vertical Resolution: 16 channels
∙ Weight: ∼830 g

Livox MID-40 $599

∙ Field of View (Circular): 38.4◦

∙ Measurement Range: 260 m
∙ Range Accuracy: Up to ±2 cm
∙ Vertical Resolution: N/A
∙ Weight: ∼760 g
Table 5
Comparison among different types of lidar.
Model Product Image Price Parameters

RealSense
D435i $345

∙ Depth Field of View (H × V): 87◦ × 58◦

∙ RGB sensor Field of View (H × V): 69◦ × 42◦

∙ Measurement Range: 0.3 m to 3 m
∙ Depth Accuracy: Up to ±4 cm @ at 2 m
∙ Weight: ∼75 g

RealSense
D455 $419

∙ Depth Field of View (H × V): 87◦ × 58◦

∙ RGB sensor Field of View (H × V): 90◦ × 65◦

∙ Measurement Range: 0.6 m to 6 m
∙ Depth Accuracy: Up to ±8 cm @ at 4 m
∙ Weight: ∼116 g

STEREOLABS
ZED 2 $449

∙ Depth Field of View (H × V): 110◦ × 70◦

∙ RGB sensor Field of View (H × V): 110◦

× 70◦

∙ Measurement Range: 0.2 m to 20 m
∙ Depth Accuracy: Up to ±3 cm @ at 3 m
∙ Weight: ∼124 g
show our system can collect high-quality data in a cluttered indoor
environment safely.

This paper presents a new idea for indoor facility inspection which
greatly reduces labor costs. Taking boiler inspection as an example,
normally, it costs two people and one day to inspect the boiler interior,
but with our system, it only takes one hour and one staff to complete
the entire inspection task. With a centimeter-level SLAM system, UAVs
can fly in a narrow space as small as 0.8 m width, and collect data at
any location and angle, meaning that our system can also be widely
used in indoor scenarios. Compared with 3D scanning equipment like
FARO, which has higher accuracy and resolution, UAV is more flexible
so that it can move to any location and build up a complete 3D map
of the whole environment without human aid. Furthermore, deploying
FARO in an indoor environment is very expensive. When the work area
is difficult for humans to enter like the air ducts and boiler interior,
UAV is a good choice for the exploration stage.

Compared with UGV, UAV cannot carry many devices and the
duration of UAV is much shorter. In addition, with the consideration of
safety and the dynamic constraints of UAVs, they cannot fly very fast in
the environment. As a result, for large-scale indoor environments, like
the entire power plant, the battery needs to be changed frequently, and
the total inspection time will be extended. In the future, we will extend
our system to a multi-agent collaborative system to save inspection
time. New algorithms need to be developed, including but not limited
to collaborative exploration, collaborative coverage path planning, and
obstacle avoidance between UAVs.
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Appendix

There are a lot of new 3D lidars recently, like Ouster and Livox.
They have the same or better performance than Velodyne. We have
summarized the detailed parameters of three representative lidars in
Table 4. For RGB sensors, there are also many alternatives such as
D455 and ZED cameras. We have summarized the detailed parameters
in Table 5.
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