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Abstract
We present in this paper a novel framework and distributed control laws for the formation of multiple unmanned
rotorcraft systems, be it single-rotor helicopters or multi-copters, with physical constraints and with inter-agent
collision avoidance, in cluttered environments. The proposed technique is composed of an analytical distributed
consensus control solution in the free space and an optimization based motion planning algorithm for inter-agent
and obstacle collision avoidance. More specifically, we design a distributed consensus control law to tackle a series of
state constraints that include but not limited to the physical limitations of velocity, acceleration and jerk, and an
optimization-based motion planning technique is utilized to generate numerical solutions when the consensus
control fails to provide a collision-free trajectory. Besides, a sufficiency condition is given to guarantee the stability of
the switching process between the consensus control and motion planning. Finally, both simulation and real flight
experiments successfully demonstrate the effectiveness of the proposed technique.
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1 Introduction
Autonomous unmanned systems, such as unmanned aerial
vehicles (UAVs) (also commonly termed as unmanned
aerial systems or UAS), unmanned underwater vehicles
(UUVs), unmanned ground vehicles (UGVs), and un-
manned surface vehicles (USVs), play important roles in
many industrial applications, such as geographic map-
ping, powerline and pipeline inspections, security surveil-
lance, logistic delivery, and warehouse management. Au-
tonomous unmanned vehicles have thus grown into a
new research focus with rapid development [1]. Com-
pared with a single agent, multi-agent systems have higher
scalability and can achieve more complex tasks. It has
thus drawn increasing attention from academia into the
research and development of multi-agent systems tech-
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niques (see, for example, [2–6]). In contrast to most of
the results related to multi-agent systems in the litera-
ture, we focus our attention in this work on the forma-
tion control of unmanned rotorcraft systems, either single-
rotor or multiple-rotor UAVs, in cluttered environments
with obstacle and inter-agent collision avoidance for sys-
tems with physical limitations on their velocities, acceler-
ations and/or jerks. These limitations will eventually be-
come constraints on system state variables in our problem
formulation.

The shape of a formation for multi-agent systems is usu-
ally specified by the absolute position, relative position [7],
bearing, or distance. Consensus control, a commonly used
formation approach, is one depends on the relative posi-
tion of the local coordinate. In the leader-follower struc-
ture, the trajectory generated by the leader usually acts as
a reference for the followers to track, and the leader is usu-
ally formulated as a linear time-invariant system. There
were many references (see, for example, [8, 9]) assuming
that the leader has zero input, which implies that its tra-
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jectory is totally determined by its initial condition and
the system matrix. Hence agents can not adjust their tra-
jectories automatically to adapt to environmental changes.
Even though the leader is subject to a bounded input in
[10, 11], the input is given by a human operator. Therefore,
the above methods are widely implemented in obstacle-
free scenarios.

Each unmanned rotorcraft system is known to have
physical limitations of velocity, acceleration, and jerk, and
these limitations will be formulated as constraints on the
input and system state variables. To the best of our knowl-
edge, the great majority of the control laws [11, 12] do not
consider both input and state constraints. Some of them
only solve input saturation [13, 14] or actuator position
and rate saturation [15]. We designed a novel consensus
control law in this paper to tackle the physical constraints.
Another important problem associated with the forma-
tion control of a multi-agent system is inter-agent collision
avoidance. Although such a problem is solved for first-
order [16, 17] and second-order systems [18], it is chal-
lenging and difficult to design an analytical control law for
triple-integrator or general linear systems. In this work, we
introduce an optimization-based motion planning tech-
nique to solve the collision avoidance problem.

The formation control is also studied as a multi-agent
motion planning problem in the robotics society. Instead
of consensus or stability, their focus is to find a dynam-
ically feasible and collision free trajectory to bring each
agent to its designated target state. The multi-agent mo-
tion planning problem is essentially a non-convex opti-
mization problem that can be solved numerically. The
solving procedure is usually initialized by certain types of
graph-based algorithms. If the graph is provided or pre-
constructed, classical algorithms like A* [19] can be ap-
plied. Otherwise, the graph needs to be constructed along
with the searching process such as described in [20] and
[21]. With the initial guess provided, various numerical op-
timization methods can then be applied to find the optimal
trajectory. In offline applications, the planning horizon of
the numerical optimization is usually not explicitly limited
[22] which allows the generation of a complete plan for
each vehicle. In online applications, however, due to the
realtime requirement, the planning horizon is usually lim-
ited to adapting to the computational resource [23] and the
replanning is required at a certain frequency. Thus the mo-
tion planning becomes a model predictive control (MPC)
problem.

In this paper, we aim to establish a novel framework
and distributed control laws for the formation of multi-
ple unmanned rotorcraft systems with physical constraints
and with inter-agent collision avoidance, in cluttered envi-
ronments. The proposed method is composed of an an-
alytical distributed consensus control solution in the free

space and an optimization-based motion planning proto-
col for inter-agent and obstacle collision avoidance in clut-
tered environments. Unlike the control laws proposed in
[24, 25] where the leader is a linear system with zero input
and without saturation problems, a distributed consensus
control law is first designed to tackle the physical limita-
tions of velocity, acceleration and jerk, for formation track-
ing of a trajectory generated by the leader with a bounded
and unknown input. An optimization-based motion plan-
ning algorithm is then used to generate numerical solu-
tions when the consensus control law can not provide a
collision-free trajectory. The stability of the switching pro-
cess between the consensus control and motion planning
is guaranteed by a sufficiency condition. We should note
that the works in [26–28] also combined consensus con-
trol and MPC for formation control of UAVs, but they are
only suitable for obstacle-free environments. Specifically,
authors of [26, 27] address the inter-vehicle collision avoid-
ance problem by taking actions only in the vertical direc-
tion, thus, the methods may fail in voiding obstacles. The
reference [28] focuses on solving the collision avoidance
problem of two UAV teams, instead of the formation con-
trol of a rotorcraft team in cluttered environments.

The organization of this paper is as follows. Section 2 re-
calls some preliminary materials related to rotorcraft dy-
namics and some basic concepts in graph theory and con-
sensus control. We then present our problem formulation
and proposed framework in Sect. 3. The detailed solutions
to the problems are given in Sect. 4, and the simulation
and experimental results are presented in Sect. 5. Finally,
we draw some concluding remarks in Sect. 6.

2 Preliminaries
In this section, we begin with presenting some background
materials in rotorcraft dynamics, which shows the reason
why rotorcraft can be represented by a chain of integrators.
Then, some necessary definitions required for formulating
formation control problems are provided.

2.1 UAS structure and rotorcraft dynamics
As depicted in Fig. 1, it is very common for an unmanned
aerial system to adopt a two-layer flight control structure,
i.e., an inner-loop control layer and an outer-loop layer.
The attitude of the rotorcraft system is stabilized via the
inner loop control whereas its position and velocity is con-
trolled by the outer loop. It also has two layers for mo-
tion planning, i.e., i) the path planning block is to gener-
ate a collision-free path for the unmanned system to nav-
igate through a cluttered environment; and ii) the trajec-
tory generation module is to produce trajectory references
that can be realized by the hardware platform. How to plan
feasible paths and trajectories for a group of rotorcraft sys-
tems is a subject to be addressed later in this paper. In what
follows, we detail how the rotorcraft dynamics inside the
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Figure 1 Block diagram of the internal structure of an unmanned aerial system

dash-line box in Fig. 1 can be approximated by a chain
of integrators with a properly designed inner-loop control
law.

For a single-rotor copter, its overall dynamics are gen-
erally highly nonlinear and of high dynamical order (see,
e.g., [29, 30]). With a properly designed inner-loop con-
trol law using H∞ optimization technique, Cai et al. proved
through frequency domain analysis that the resulting dy-
namics inside the dash-line box can be safely character-
ized by a double-integrator system with its position and ve-
locity being the system state variables within the working
bandwidth fully determined by the physical system and the
inner-loop controller. For the unmanned helicopter stud-
ied in [30], the dynamics model inside dash-line box is
given as (Eqns. (8.29)–(8.31) in [30])

[
ṗ
v̇

]
=

[
0 1
0 0

][
p
v

]
+

[
0
1

]
a,

where p, v and a, are the position, velocity and accelera-
tion of the unmanned helicopter, respectively. The work-
ing bandwidth of the system is about 1 rad/sec.

For a multicopter, such as a commonly seen quadrotor,
its inner-loop is structurally decoupled even though there
are some small nonlinear terms, which can be washed
out by a feedback linearization technique (see, e.g., Phang
[31]). As shown in Phang [31] (see, e.g., Eqns. (6.17)–
(6.19)), the dynamics of a quadrotor once again can be ap-
proximated by a chain of integrators in each channel. As
such, we assume throughout the rest of this paper that the
rotorcraft dynamics are characterized by an integrator sys-
tem with appropriate physical limitations in velocity and
acceleration. That is why the rotorcraft can be character-
ized by (1).

2.2 Notations and definitions
Notations. Throughout this paper, In denotes the identity
matrix with n dimension. 1n is an n-dimensional column
vector with all elements being 1. XT denotes the trans-
pose of the matrix or vector X. Given a signal x : R+ →R

s,
x = [x1, . . . , xs]T, |x| is the Euclidean norm, and ‖x‖∞ =
maxi ‖xi‖.

Rotorcraft team. Consider a team of N rotorcraft navi-
gating in a cluttered environment. For each rotorcraft i ∈
N = {1, 2, . . . , N} ⊂ N, we denote by pi(t) ∈ R

3 its position
at time t. We use P(p) ⊂R

3 to represent the volume occu-
pied by a rotorcraft at position p. Given a (virtual) leader,
the communication among the rotorcraft and the leader
is denoted by a graph G = {V ,E} where V = {0, 1, . . . , N}
and E = V × V . For i, j ∈ V , (j, i) ∈ E if and only if ro-
torcraft i has access to the information of rotorcraft. Let
A = [aij] ∈R

(N+1)×N+1 be the adjacency matrix of the graph
G , where aij = 1 if (j, i) ∈ E , otherwise, aij = 0. The Lapla-
cian matrix is denoted as L = [lij] ∈ R

N×N with lij = aij if
i �= j and lii =

∑N
j=0 aij. In this paper, we assume that there

exists at least one direct path between any two rotorcraft.
Formations. Suppose that there are m ∈ N pre-defined

template formations, such as circle, line or square. Each
template f ∈ I = {1, 2, . . . , m} is determined by a reference
point cf and its relative position between other rotorcraft
{�pf

1, . . . ,�pf
n}. In other words, the absolute position of ro-

torcraft i is given by pf
i = cf + �pf

i . In this paper, the tem-
plate formations are given priorities.

Field of view. We assume that all rotorcraft have the same
limited field of view, and it is assumed as a sphere with a
given radius and with its center being located at the rotor-
craft’s position. This field of each rotorcraft is denoted by
Bi ∈R

3.
Static obstacles. Assume there are many static obstacles

O ⊂ R
3, and the obstacles seen by the ith rotorcraft isOi :=

Bi ∩O. We further denote by Ōi a dilatation of Oi within
its visual space, that is,

Ōi :=
{

p ∈R
3|P(p) ∩Oi �= ∅}

.

If rotorcraft i is in Ōi, it will collide with obstacles.
Position-time obstacles. At current time t0, for a time

horizon τ which is usually several seconds in the near fu-
ture, the position-time obstacles seen by rotorcraft i is de-
noted by

Ôi(t0) = Ōi × [0, τ ] ⊂R
4,

where × is the Cartesian product of the obstacles’ space
and the time dimension.
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Position-time free space. At time t, the free space of ro-
torcraft i is defined as

F̄i(t) = R
3 × [0, τ ]\Ôi(t),

which is the positions where rotorcraft would not collide
with any obstacles within the time horizon τ .

3 Problem formulation and proposed framework
In this section, we define three problems that together
form the formation control problem of multiple rotorcraft
systems. Next, a novel framework is given to solve the
three problems.

3.1 Problem formulation
We now formally introduce the flight formation of multiple
rotorcraft systems. The outer dynamics of each rotorcraft
can be safely characterized by the following triple integra-
tor

ẋi = Axi + Bui, i ∈N , (1)

where

A =

⎡
⎣03 I3 03

03 03 I3
03 03 03

⎤
⎦ , B =

⎡
⎣03

03
I3

⎤
⎦ , (2)

and xi = [pT
i , vT

i , aT
i ]T ∈ R

9 being its position, velocity and
acceleration, ui(t) being its jerk. The physical constraints
are

‖vi‖ ≤ vmax, ‖ai‖ ≤ amax, ‖ji‖ ≤ jmax. (3)

Consider a team of rotorcraft satisfying (1)–(3), a com-
munication graph G , m pre-defined template formations
that are known to all rotorcraft, a set of static obstacles, and
a limited field of view of each rotorcraft. In this paper, we
aim to tackle the distributed formation control of multiple
rotorcraft systems in cluttered environments. The whole
problem can be defined as the following three problems,
and we will solve them jointly.

Problem 1 (Target formation selection) At time t0, design
an approach to determine whether or not a formation can
be formed at time t0 + τ where τ is a prediction time hori-
zon such that all rotorcraft’s position at time t0 + τ are col-
lision free. Find the target formation f ∗ ∈ I if one kind of
formation can be formed.

Problem 1 derives from the fact that rotorcraft will
change formations to adapt to different environments. It is
also impossible for rotorcraft to form any formation when
the obstacles are dense. Suppose that rotorcraft are and

will be in formation f1 ∈ I at time t0 and t0 +τ , respectively.
Then, is there an analytical solution navigating rotorcraft
in formation f1 during (t0, t0 + τ ] satisfying the physical
constraints?

Problem 2 (Analytical control law) Assume that rotor-
craft are in formation f1 ∈ I at time t0 and will keep this
formation during [t0, t0 + τ ]. Design an analytical control
law that satisfies the physical constraints (3) for rotorcraft
to maintain formation f1 during (t0, t0 + τ ].

Another problem associated with the formation control
of multiple rotorcraft is to guarantee the inter-vehicle col-
lision avoidance when they switch from formation f1 to f2
where f2 �= f1. In such a case, the problem is formulated into
a nonconvex optimization problem which will be solved
numerically using motion planning algorithms.

Problem 3 (Collision avoidance) Design or find a motion
planning algorithm for rotorcraft to switch from formation
f1 to f2 where f2 �= f1 such that rotorcraft do not collide with
each other and with obstacles.

One can note that in a formation f ∈ I , the positions of
vehicles rely on the position of the reference point cf . And
the trajectory generation of the reference point is also for-
mulated as an optimization problem and is solved by mo-
tion planning algorithms. Moreover, Problem 2 and Prob-
lem 3 illustrate that vehicles will switch between the ana-
lytical control law and the motion planning algorithm. It is
important to ensure the stability of the switching process
when designing both methods.

3.2 Framework overview
In the following, we give a novel framework connecting
Problems 1–3, followed by detailed methods for these
problems in Sect. 4.

In this paper, receding horizon control (RHC) is taken
to generate trajectories for the team of rotorcraft. As il-
lustrated in Fig. 2, each time interval consists of three
subintervals: the communication part, the motion part,
and the non-execution part. During each cycle, the follow-
ing steps that form our framework are executed, which is
also demonstrated in Fig. 3.

Figure 2 Determination of time intervals
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Figure 3 Overview of the proposed framework. The blue parts represent local steps. In the orange parts, rotorcraft will communicate with each
other to perform parameter consistency

1) At each initial time t0, the individual obstacle-free
convex region of each rotorcraft, denoted by Ci, is com-
puted (One algorithm is given in Sect. 4.1).

2) The common obstacle-free convex region of all rotor-
craft is computed in a distributed way by C =

⋂
i∈N Ci (One

algorithm is given in Sect. 4.1).
3) Each rotorcraft computes the trajectory for the virtual

leader for time (t0, t0 + �t3], using the numerical solution
(One numerical solution is given in Sect. 4.4).

4) The trajectory of the virtual leader is finally obtained
by all rotorcraft performing consistency by selecting the
one with the minimum cost that is defined in (10) among
all trajectories generated in Step 3).

5) Given the common obstacle-free convex region com-
puted in Step 2), all rotorcraft come to an agreement about
whether they can keep current formation f1 ∈ I at time
t0 + �t3 or not.

(i) If formation f1 can be kept (i.e.,
P(cf1 (t0 + �t3) + �pf1

i ) ⊂ C , ∀i ∈N ),
consensus-based formation control is implemented
during the motion interval [t0 + �t1, t0 + �t2] (One
consensus control is given in Sect. 4.2). Then, return
to Step 1).

(ii) In case of formation f1 cannot be kept, they will
reach consistency on if or not they can form other
template formations. The template formations are
checked from the highest priority to the lowest
priority. If formation f2 �= f1 ∈ I can be formed (i.e.,
P(cf2 (t0 + �t3) + �pf2

i ) ⊂ C , ∀i ∈N ), numerical
solution is used to navigate rotorcraft to reach the
set defined in (14) with f = f2 (a small neighboring
set around the formation f2) to form formation f2.
Then, return to Step 1) with the updated initial time
and formation. In case none of the formations can
be formed, the numerical solution is used by each

rotorcraft to reach its goal respectively. Then, return
to Step 1).

The above steps repeat with the updated information until
all rotorcraft navigate to their final targets.

Remark 1 The trajectory of the virtual leader is predicted
for time �t3, which is longer than the motion time �t2. It
can be inferred from the definition of formation that the
trajectory of the virtual leader stands for that of the refer-
ence point.

Remark 2 Note that MPC can also be used for formation
control. However, the optimal solution at each sampling
time cannot guarantee the stability of the MPC algorithm.
This strategy we designed aims to use the consensus con-
trol law for formation control as much as possible because
the stability of the consensus control law can be proved.

Analytical solution-based formation control. In this pa-
per, the virtual leader also satisfies the dynamics (1). Dur-
ing the time interval [t, t + �t3), its trajectory is generated
by all rotorcraft with some communication using a motion
planning algorithm that is to be introduced in Sect. 4.4.

The leader together with the N rotorcraft forms a team
of N + 1 rotorcraft, where the leader is numbered as rotor-
craft 0 and the follower rotorcraft are numbered as 1 to N ,
respectively. They form the following rotorcraft systems

{
ẋ0 = Ax0 + Bu0,
ẋi = Axi + Bui, i ∈N ,

(4)

where for i = 0, 1, . . . , N , xi = [pT
i , vT

i , aT
i ]T, and the input ui

being the jerk. Chosen a template formation f , if there is a
control law of the form ui(t) = gi(xi(t), x0(t), u0(t)), so that
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limt→∞(pi(t) – p0(t) – �pf
i ) = 0, then such a law is an ana-

lytical solution for the formation control.
For a template formation f , the relative positions of the

rotorcraft and the virtual leader are denoted by {�pf
1, . . . ,

�pf
N }. The formation control limt→∞(pi(t) – p0(t)) = �pf

i
is equivalent to limt→∞(pi(t) – �pf

i – p0(t)) = 0. If the state
of followers is re-formulated as

x̂i =

⎡
⎣p̂i

vi
ai

⎤
⎦ =

⎡
⎣pi – �pi

vi
ai

⎤
⎦ , (5)

the systems in (4) are converted to
{

ẋ0 = Ax0 + Bu0,
˙̂xi = Ax̂i + Bui, i ∈N .

(6)

Then, the formation control is transformed into the leader-
following consensus control problem.

Even though the consensus-based formation control law
gives an analytical solution for the formation control, it can
not solve potential collision problems among agents. In-
stead, the collision avoidance constraint can be formulated
into a nonconvex optimization problem.

Nonconvex optimization problem. The numerical solu-
tion is applied in two cases, 1) the trajectory generation of
the virtual leader, 2) the motion planning of all rotorcraft
when none of the template formations can be performed
or when rotorcraft switch formations.

Consider system (1) with state and input constraints (3).
The formula

P
(
pi(t)

)
/∈O, ∀t ≥ t0, (7)

where O denotes the space occupied by obstacles, defines
the obstacle collision free constraint, and the inter-vehicle
collision free constraint is

P
(
pi(t)

) ∩P
(
pj(t)

) ∈ ∅, ∀t ≥ t0,∀i �= j ∈N . (8)

The controller regulates the system (1) from any initial
states to desired points [pi,d, 03, 03]. The initial condition
constraint is

xi(t0) = xi,0. (9)

For rotorcraft i, we use ui(t), xi(t), t ∈ [t0, t0 + T] to rep-
resent its input trajectory and state trajectory, respectively,
where T denotes the planning horizon. The local motion
planning satisfying the above constraints can be formu-
lated as an optimization problem that solves

Ji = ξi
(
xi(t0 + T)

)
+

∫ t0+T

t=t0

Li
(
x(t), ui(t)

)
. (10)

Functions ξi and Li are the user-defined terminal and run-
ning costs, respectively.

• For i = 0, the virtual leader, there is no need to
consider the inter-vehicle collision free constraint (8).

• For rotorcraft 1 to N , the problem is subject to system
(1) and constraints (3), (7)–(9). Constraint (8) is
considered because inter-vehicle collisions must be
avoided.

We aim to find the position, velocity, acceleration, and jerk
of the rotorcraft and the virtual leader. Because of the colli-
sion avoidance constraints (7) and (8), especially constraint
(8), the optimization problem is nonconvex, which is NP-
hard to solve.

4 Solutions to the problems
In this section, we present the details of the three parts
of our framework, which are the common obstacle-free
convex region, consensus control, and numerical solution-
based algorithm we used. Then, we analyzed the stabil-
ity and convergence of the framework. The three parts
are respectively solutions to the three problems defined in
Sect. 3.1.

4.1 Solution to Problem 1: common obstacle-free convex
region

Rotorcraft may form different obstacle maps since each of
them has a limited field of view, which may result in differ-
ent target formations. Therefore, rotorcraft should com-
pute a common obstacle-free convex region.

In this paper, the method of Deits and Tedrake [32]
is chosen, which solves the optimization problem recur-
rently to compute Ci. Assume that the separating hyper-
planes rotorcraft i obtains are Hi,kx = bi,k , for Hi,k ∈ R

li×4,
bi,k ∈ R

li where li is the number of hyperplanes. Let Hi =
[HT

i,1, . . . , HT
i,li ]

T and bi = [bT
i,1, . . . , bT

i,li ]
T, then, the set of

points satisfying

Ci =
{

x ∈R
4|Hix ≤ bi

}
(11)

form the convex polytope. Since the obstacles has been de-
tected by rotorcraft are in position-time space, so is the
convex polytope. Therefore, the hyperplanes are defined
in 4-dimensional space instead of a 3-dimensional space.

As shown in Algorithm 1, the common convex region is
computed in a distributed and iterative way. Before trans-
mitting information, the separating hyperplanes of each
rotorcraft are set as an empty set (line 1). Then, only new
hyperplanes are transmitted to and from their neighbors
to reduce communication costs (lines 3 and 4). The whole
process ends after d rounds of communication. The con-
vex region shrinks after each iteration and it finally con-
verges to the intersection of all rotorcraft’s convex regions.
An example of an obstacle-free convex region obtained is
demonstrated in Fig. 4.
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Algorithm 1 Distributed intersection of convex regions
1: Hi(–1) = ∅, bi(–1) = ∅, Hi(0) = Hi(t0), bi(0) = bi(t0)
2: for j = 0, 1, . . . , d – 1 do
3: Send H̄i(j) = Hi(j)\Hi(j – 1) and b̄i(j) = bi(j)\bi(j – 1)

to all k ∈Ni
4: Receive H̄k(j) and b̄k(j) from all k ∈Ni
5: Ci(j + 1) = convhull(Hi(j), bi(j), H̄k(j), b̄k(j))
6: end for

Figure 4 An illustration example of the obtained common convex
region. The dash lines denote the hyperplanes of all rotorcraft, the
light purple area is the common obstacle-free convex region, and the
four red dots denote vehicles and the grey blocks are obstacles

It is proved in [33] that the resulting convex region C is
obstacles free since it does not intersect with any obstacle
in the field of rotorcraft for the time period [t0, t0 + �t3].

4.2 Solution to Problem 2: leader-following consensus
control with state constraint

To achieve the leader’s trajectory tracking, it is reasonable
to assume that the leader’s maximum velocity, acceleration
and jerk are less than that of the followers. For simplicity,
we denote vmax – v0,max = δv, amax – a0,max = δa. We sup-
pose that agents can share information if they are within
the communication range, so the communication graph is
undirected.

Regarding the systems (6), consider the following control
law for rotorcraft i, i = 1, 2, . . . , N ,

ui(t) = –μBTP

( N∑
j=1

aij(x̂i – x̂j) + ai0(x̂i – x0)

)

– γ fi(t), (12)

where γ = j0,max, the maximum jerk of leader. μ ≥ 1/
(2λmin(L)) is a positive constant where λmin(L) is the min-
imum eigenvalue of the Laplacian matrix. Denote ζi(t) =∑N

j=1 aij(x̂i – x̂j) + ai0(x̂i – x0), fi(t) is designed as

fi(t) =

{
BTPζi(t)

‖BTPζi(t)‖ , if ζi(t) �= 0,
0, otherwise.

P is the solution of the following Algebraic Riccati Equa-
tion (ARE)

ATP(ε) + P(ε)A – P(ε)BBTP(ε) = –εI9. (13)

From [34], we have limε→0 P(ε) = 0. Then, we have the fol-
lowing theorem.

Theorem 1 Consider the multiagent agent system (6). For
i = 1, 2, . . . , N , for any vi(0) – v0(0) ≤ δv, ai(0) – a0(0) ≤ δa,
and ‖vi(0)‖ ≤ vmax, ‖ai(0)‖ ≤ amax, there exists an ε∗ ∈
(0, 1], such that for any ε ∈ (0, ε∗], the solution of the closed-
loop system consisted of (6) and (12) satisfies ‖vi(t)‖ ≤ vmax,
‖ai(t)‖ ≤ amax, ‖ui‖ ≤ jmax, and limt→∞(x̂i(t) – x0(t)) = 0.

Proof See Appendix. �

Remark 3 Theorem 1 indicates that the control law (12)
can tackle the state constraints in velocity, acceleration and
the input constraint (jerk). It also shows that if the initial
states of agents are within a small neighborhood of the tar-
get formation, they will converge to the formation without
inter-agent collisions. Inter-agent collisions may happen
when agents change formation configuration, because the
current state is outside the small neighborhood of the tar-
get formation to be formed. In this paper, a motion planing
algorithm is introduced to solve the problem.

4.3 Stability and convergence analysis
The individual stability of the analytical solution and nu-
merical solution has been proved by theoretical analysis
and experiments. The potential instability may occur in
the switching process.

(i) When consensus control switches to the numerical
solution, the end state of the consensus control is the initial
state of the non-convex optimization problem (10). Given
any initial state in (9), the numerical solution will generate
trajectories satisfying constraints (3) and (7)-(9).

(ii) For system (1), following (5), the actual position of
vehicles is recovered by pi = p̂i + �pf

i . One can note from
Sect. 4.2 that the inter-vehicle collision avoidance problem
is not considered. Given a chosen formation template f ,
the expected initial state of the consensus control is as-
sumed to be [(pf

i )T, 01×3, 01×3]T, where pf
i = pf

0 + �pf
i . To

solve the inter-vehicle collision avoidance problem of the
consensus-based formation, we define a set for each vehi-
cle

Ti =
{

di =
(
dT

i,1, dT
i,2, dT

i,3
)T ∈R

9|∥∥di,1 – pf
i
∥∥ ≤ ri,

‖di,2‖ ≤ ρi,‖di,3‖ ≤ κi
}

, (14)

where ri, 0 < ρi < δv and 0 < κi < δa are small numbers. The
three constraints in (14) ensure that vehicles navigate to
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Figure 5 (a) If the initial state xi(t0) is in a small neighborhood of the
target formation, i.e., xi(t0) ∈ Ti , and Ti ∩ Tj = ∅, then their trajectories
xi(t) will not intersect; (b) If Ti ∩ Tj �= ∅, their trajectories may intersect

a small neighborhood of the expected initial state. As il-
lustrated in Fig. 5, there exist ri and rj such that ∀i �= j,
Ti ∩ Tj = ∅ and ‖di,1 – dj,1‖ > 2r where r is the radius of
vehicles. The constraint ‖di,1 – dj,1‖ > 2r guarantees vehi-
cles in set Ti are at a distance of at least 2r so that vehicles
will not collide with each other.

Theorem 1 shows that for [pT
i (0), vT

i (0), aT
i (0)]T ∈ Ti,

there exists an ε∗
i such that for any ε ∈ (0, ε∗

i ], the state
[pT

i (t), vT
i (t), aT

i (t)]T ∈ Ti. Therefore, when switching to
consensus control, if rotorcraft navigate to the set Ti, they
will not collide with each other during the consensus con-
trol process, which is a sufficient condition for the switch-
ing stability.

4.4 Solution to Problem 3: MPC-based trajectory
generation

As introduced in Sect. 1, there are several motion planning
techniques. To achieve real time planning, we extend the
work of Lai et al. [35], which uses MPC for trajectory gen-
eration of a single agent with boundary state constraint, for
trajectory generation of multiple rotorcraft.

The cost function of the optimization problem is

Ji =
(
xi(t0 + T) – xtg

)TQi
(
xi(t0 + T) – xtg

)

+
∫ t0+T

t=t0

ui(t)TRiui(u),

where xtg denotes the state of the target, and Qi and Ri
are positive definite matrices, which obviously satisfies the
form of (10). The constraints are (3) and (7)-(9).

Remark 4 Let us note that MPC is one of the motion
planning methods to solve the collision avoidance prob-
lems. In this framework, it can be replaced by other algo-
rithms like the sampling-based motion planning methods.
We use MPC in this paper because it runs faster than the
sampling-based motion planning methods.

5 Simulation and experimental results
Both simulations and experiments are done in this section
to verify the effectiveness of our method, using a group
of quadrotors whose dynamics satisfy (1). In both simula-
tion and experiment, there are four quadrotors whose state
constraints are

v0,max = 1, a0,max = 2, u0,max = 4,

v1,max = 2, a1,max = 3, u1,max = 5. (15)

The consensus control law is derived from the one in (12)
with ε = 0.1 and μ = 2. Quadrotors will choose one for-
mation from line and square, and the priority of line is
lower than square. The formation templates are shown in
Fig. 6.

In simulation, the computations are performed in MAT-
LAB R2020a with a laptop (Intel Core i7 CPU@1.8G Hz).
The group of quadrotors navigates in a 6 m×5 m area con-
taining six convex obstacles. The obstacles are placed ran-
domly in the area, except two cuboid obstacles (the two
ones in the bottom of the area) are placed in parallel so
that the line formation have the possibility to be formed.
Four targets are given. The next target will not be given,
unless the virtual leader enters the reaching radius (0.15 m)
of the current one. Formations are recurrently predicted at
2 Hz and the algorithm is recurrently implemented at 4 Hz.
Figure 7 shows quadrotors’ trajectories, obstacle-free con-
vex regions, and expected formations at several time in-
stants.

In the experiment, the obstacles are placed at the same
position as in the simulation to show the effectiveness of
our method. We use a kind of nano quadrotor helicopter
Crazyflie 2.1 as the flying platform, and the localization
system we use to localize quadrotors and obstacles is VI-
CON. The Crazyflie 2.1 is an open source flying develop-
ment platform that weighs only 27 g. It is also equipped
with low-latency/long-range radio. Therefore, by combin-
ing with the Crazyradio PA, we can control it and display
data using our computer. A laptop with Intel Core i7 CPU
is used to do online planning. The hardware used in the
experiment is shown in Fig. 8 which also illustrates the in-
formation flow. The experiment environment is shown in
Fig. 9 and the actual flight video captured can be found at
YouTube: https://youtu.be/XGehuDDPxVk. The real tra-
jectories and velocities of quadrotors in the experiment
are shown in Fig. 10 and Fig. 11, respectively. Figure 10
shows that quadrotors’ trajectories are almost the same as
the ones in simulation in Fig. 7.

In this example, the four quadrotors start in a square
formation. Firstly, the consensus-based formation control
law is applied by quadrotors to main the square formation,
until they meet a narrow corridor at t = 2.5 s. They pre-
dict that they can not pass the narrow corridor with the
square formation. Hence, they change to line formation

https://youtu.be/XGehuDDPxVk
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Figure 6 Distribution of MAVs in the square formation and line formation. MAVs are distributed in the line evenly

Figure 7 Snapshots of the simulation results at t = 0.5 s, t = 2.5 s, t = 9.25 s and t = 29.75 s, respectively. (a) The light purple areas denote the
common obstacle-free convex regions, red dots are the quadrotor positions, and the blue stars denote the target formation for the next cycle;
(b) The red lines and the blue lines represent trajectories of the four quadrotors’ and the virtual leader, respectively

Figure 8 The hardware used in the experiment

using MPC, and we say rotorcraft change to the line suc-
cessfully if each of them reaches a small neighborhood of
the line formation Ti which is defined in (14). The param-
eters that are defined in Ti are set as ri = 0.05, ρi = 0.02,
κi = 0.02. Then, they pass the corridor in line using the con-
sensus control until t = 9.25 s, from which they return to
the square using MPC with the same set Ti. Finally, they
navigate to the last target in the square using consensus
control.

6 Conclusion
In this paper, we have presented a novel formation shap-
ing framework that combines an analytical and a numeri-
cal solution for quadrotors navigating in cluttered environ-
ments. More specifically, the analytical solution we used is
consensus control, and the consensus control law we de-
signed can handle a set of state constraints. More impor-
tantly, the stability of the switching process is proved by
both theoretical analysis and experiments.
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Figure 9 The experimental environment of our flight test

Figure 10 Real trajectories of rotorcraft in the experiment

Appendix

Proof of Theorem 1 Let x̃i = x̂i – x0, x̃f = [x̃T
1 , . . . , x̃T

N ]T, and
ζ = [ζ T

1 , . . . , ζ T
N ]T. We have ζ = (L⊗ I9)x̃f . Then, the closed-

loop system can be written in terms of ζ (t). Since L is in-
vertible, the convergence of ζ (t) means that of x̃f (t).

We construct the following Lyapunov function

Vζ (t) = ζ T(IN ⊗ P)ζ , (16)

where P is the solution of the ARE (13). Since the initial
condition satisfies the state constraint, there exists some
bounded and impact sets Xi0 for i = 1, 2, . . . , N , such that
x̂i(0) ∈Xi0 and x0(0) ∈X00.

Let c be a constant such that

sup
x̂i(0)∈Xi0,x0(0)∈X00

Vζ (t) ≤ c.

Define LV (c) := {ζ ∈ R
9N : Vζ (t) ≤ c}. Because LV (c) is

bounded and limε→0 P = 0, there exists an ε∗ ∈ (0, 1], such

that for all ε ∈ (0, ε∗], ζ ∈ LV (c) means
∥∥∥∥∥–μBTP

( N∑
j=1

aij(x̂i – x̂j) + ai0(x̂i – x0)

)∥∥∥∥∥
=

∥∥–μBTPζi(t)
∥∥ ≤ jmax – j0,max,

which further implies

‖ui‖ =
∥∥–μBTPζi(t) – γ fi

∥∥ ≤ jmax.

Thus, the input of the each rotorcraft satisfies the jerk con-
straint.

Substituting the control law (12) into the system (6) gives

˙̂xi = Ax̂i – μBBTPζi(t) – γ Bfi(t),

whose compact form is

˙̂xf = (IN ⊗ A)x̂f – μ
(
IN ⊗ BBTP

)
ζ (t) – γ (IN ⊗ B)f̄ (t)

with f̄ (t) = [f T
1 (t), . . . , f T

N (t)]T. Denote x̄0(t) = 1N ⊗x0(t) and
ū0 = 1N ⊗ u0(t), it follows that

˙̃xf = (IN ⊗ A)x̃f – μ
(
IN ⊗ BBTP

)
ζ (t) – γ (IN ⊗ B)f̄ (t)

– (IN ⊗ B)ū0.

Since ζ = (L⊗ I9)x̃f , we have

ζ̇ (t) =
[
IN ⊗ A – μ

(
L⊗ BBTP

)]
ζ (t)

– γ (L⊗ B)f̄ (t) – (L⊗ B)ū0.

Then, the derivative of the Lyapunov function is

V̇ζ = ζ T[
IN ⊗ (

ATB + BA
)

– μ
(
LT + L

) ⊗ PBBTP
]
ζ

– 2γ ζ T(L⊗ PB)f̄ (t) – 2γ ζ T(L⊗ PB)ū0. (17)

Besides, since μ ≥ 1/(2λmin(L)), we have

IN ⊗ (
ATB + BA

)
– μ

(
LT + L

) ⊗ PBBTP

≤ IN ⊗ (
ATB + BA – 2μλ(L)PBBTP

)
≤ –IN ⊗ εI9. (18)

On the other hand, based on the definition of fi(t),
it is easy to obtain that ζ T

i (t)PBfi(t) = ‖BTPζi(t)‖ and
ζ T

i (t)PBfj(t) ≤ ‖BTPζi(t)‖ for j �= i. Then, we have

– 2γ ζ T(L⊗ PB)f̄ (t)

= 2γ

N∑
i=1

ζ T
i PB

( N∑
j=1

aij
(
fj(t) – fi(t)

)
– ai0fi(t)

)
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Figure 11 Velocities of rotorcraft in the experiment

≤ –2γ

N∑
i=1

ζ T
i PBai0fi(t) = –2γ

N∑
i=1

ai0
∥∥ζ T

i PB
∥∥, (19)

and

–2γ ζ T(L⊗ PB)ū0 = 2
N∑

i=1

ai0ζ
T
i PBu0

≤ 2γ

N∑
i=1

ai0
∥∥ζ T

i PB
∥∥. (20)

Substituting (18), (19) and (20) into (17) gives

V̇ζ (t) ≤ –ζ T(IN ⊗ εI9).

Since Vζ (t) decreases over time, ζ (t) and x̃i also decrease.
Because vi(0) – v0(0) ≤ δv, ai(0) – a0(0) ≤ δa, and ‖vi(0)‖ ≤
vmax, ‖ai(0)‖ ≤ amax, we have ‖vi(t)‖ ≤ v0(t) + δv ≤ vmax

and ‖ai(t)‖ ≤ a0(t) + δa ≤ amax. Thus, the trajectory of
the closed-loop system satisfy the state condition. Be-
sides, Vζ = 0 leads to ζ = 0, Since L is invertible, it means
limt→∞(x̂i(t) – x0(t)) = 0. �
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