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Abstract Motivated by the importance of physical constraints of multi-agent sys-
tems, we investigate in this work the semi-global leader-following output consensus
control of discrete-time heterogeneous linear systems subject to position and rate-
limited actuators and directed switching networks. Based on a distributed observer,
we designed a distributed control law for each follower. It is shown that the problem
is solvable by the control law if the switching networks are directed and every time
disconnected. The problem is then solved by utilizing the theory of output regulation
and low gain feedback design techniques. The result is successfully demonstrated
by a numerical example.

1 Introduction

The past decade saw the tremendous development of multi-agent systems because
of their wide applications in output regulation [1, 2], consensus [3], synchronization
[4], and formation control [5], to name just a few, among which consensus control is
one of the fundamental problems, and the consensus problem include the leaderless
type and the leader-following type. The leaderless consensus control aims to drive
the states/outputs of agents converge to a same value, while the objective of the
leader-following consensus control is to drive the state/output of the follower systems
converge to the state/output of the leader.

All real-life systems, be it aircraft, spacecraft, ground vehicles and underwater
vehicles, have physical constraints. The physical constraints include but not limited to
actuator saturation and limits of velocities and accelerations. In most results consid-
ering physical constraints, only input saturation is studied (see, for example, [6–10]).
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Specifically, Refs. [7, 8] solved the semi-global asymptotically stabilization problem
for respectively a continuous-time linear system and a discrete-time linear system
with input saturation. References [9, 10] tackled the semi-global leader-following
output consensus problem of a group of linear systems over continuous-time domain
and discrete-time domain, respectively.

For multi-agent systems with position-limited actuators, a few results on global
consensus were obtained, see for example Zhao and Lin for continuous time systems
[11] and discrete-time systems [12], in which both a state feedback nonlinear control
law and an output feedback nonlinear control law were designed. Event-triggered
approach is also used in [13, 14] for establishing global consensus control laws. In
the work of Zhou and Chen [15] which studied the formation-containment control of
Euler–Lagrange systems, the leaders are subject to position-limited actuators, while
the followers are not.

Besides input saturation, rate saturation is also an inevitable part of actuators. For
instance, rate saturation has been identified as a contributing factor to the mishaps
of YF-22 [16] and Gripen [17]. Destabilizing effects of actuator rate saturation was
further discussed in [18]. It shows that rate-limited actuators may lead to more severe
cases. Motivated by the above facts, Lin [19] studied the position and rate-limited
case in 1997 for the semi-global stabilization problem of a linear system. In [20],
the discrete-time counterpart of [19], semi-global stabilization was achieved by a
linear feedback control law if a discrete-time linear system is asymptotically null
controllable. The result of [19] is extended to solve the semi-global leader-following
consensus [21] and containment problem [22] of multiple linear systems in contin-
uous time domain.

In the above literature, the communication topology is assumed to be static. The
communication topology can also be switching. The jointly connected switching
graph is the mildest condition because it allows the graph to be disconnected at
every time instant. Relevant results about multi-agent systems over jointly connected
switching graph include [23–26], in which the authors has tackled the problem from
different angles for different classes of systems.

In this chapter, we study the problem of the leader-following output consensus
control of heterogeneous linear systems with actuator position saturation and rate
saturation, and the graph is directed jointly connected switching. Based on a dis-
tributed observer, we designed a distributed control law. The difficulty lies in the
process to prove the stability of the overall closed-loop system or equivalently the
convergence of a corresponding Lyapunov function.

Throughout this chapter, for a time constant T ≥ 0 and a signal x(t) :R+ →R
s ,

x(t)=[x1(t), x2(t), . . ., xs(t)]T is a columnvector, |x(t)| denotes theEuclidean norm
at time t , ‖x(t)‖∞ = maxi |xi (t)|, and ‖x(t)‖T,∞ = supt≥T |x(t)|. We denote x(t),
t ∈ Z

+ by a shorthand notation x when no confusion will occur. The symbol ⊗
denotes the Kronecker product of matrices, Z+ represents the set of nonnegative
integers, 1N ∈ R

N denotes a N × 1 vector with all elements being 1, and 0 represents
a vector or matrix of zero with appropriate dimension. Let σ : Z+ → P, where
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P = {1, 2, . . . , ρ} denote a discrete-time switching signal in the sense that there
exists a subsequence ki , i = 0, 1, . . ., of {k|k ∈ Z

+}, called switching instants, such
that σ(k) is a constant for ki ≤ k < ki+1.

2 Preliminaries

This chapter considers the leader-following output consensus problem of the follow-
ing class of discrete-time heterogeneous linear systems which are subject to actuator
position and rate saturation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi (t + 1) = Ai xi + Bi sat�1(vi ) + Wiw

vi (t + 1) = vi + sat�2

(
(α − 1)vi + ui

)
, |α| < 1

yi (t) = Ci xi
ei (t) = Ci xi + Qw, i = 1, . . . , N , k ∈ Z

+

(1)

where xi ∈ R
ni , yi ∈ R

m , ui ∈ R
qi are respectively, the plant state, output and con-

trol input of the ith follower. The second equation denotes the actuator dynamics
with state vi ∈ R

qi . Without loss of generality, we assume that all actuators have
the same time constant α. ei ∈ R

m denotes output tracking error between the i th
follower and the leader. The leader generates both the output to be tracked y0
and the disturbances to be rejected Wiw. Here, sat�1(·), sat�2(·) : Rqi → R

qi repre-
sent vector valued saturation functions. For vi = [vi,1, vi,2, . . . , vi,qi ]T, sat�1(vi ) =
[sat�1(vi,1), sat�1(vi,2), . . . , sat�1(vi,qi )]T. For each j = 1, 2, . . . , qi , sat�1(vi, j ) =
sgn(vi, j )min{|vi, j |,�1} is the standard saturation function. Like in [27], the leader
system takes the following form:

{
w(t + 1) = Sw,

y0(t) = −Qw,
(2)

where w ∈ R
s , y0 ∈ R

m are the state and output, respectively.
As in [23], associated with (1) and (2), and a given switching signal σ(·), we can

define a switching digraph Ḡσ(t) = (V̄, Ēσ(t)), where V̄ = {0, 1, . . . , N } and ( j, i) ∈
Ēσ(t), i = 1, . . . , N , j = 0, 1, . . . , N , if and only if the control ui can make use of
the information of node j at time t . Denote by Āσ(t) = [ai j (t)]Ni, j=0 ∈ R

(N+1)×(N+1)

the weighted adjacency matrix of Ḡσ(t), in which aii (t) = 0. For i, j = 0, 1, . . . , N ,
let ai j (t) > 0 if ui can make use of the information of node j at time t , otherwise,
ai j (t) = 0.

The following assumptions on matrices of agents (1) and (2) are made.

Assumption 1 The matrix S is neutrally stable, which means all eigenvalues of S
are semi-simple with modulus 1.
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Remark 1 Assumption1 can be relaxed to the assumption that S is marginally
stable, i.e., all eigenvalues of S are inside the unit circle and those eigenvalues with
modulus 1 are semi-simple.

Assumption 2 For each i = 1, . . . , N , (Ai , Bi ) is stabilizable, and all eigenvalues
of Ai are located inside or on the unit circle.

Lemma 1 (See Saberi et al. [28])Let Assumption2 hold. Then, for any ε > 0, for i =
1, . . . , N, there exists a unique positive definitematrix Pi (ε) ∈ R

ni×ni , i = 1, . . . , N,
of the following parametric algebraic Riccati equation (ARE):

Pi (ε) = AT
i Pi (ε)Ai − AT

i Pi (ε)Bi
(
BT
i Pi (ε)Bi + I

)−1
BT
i Pi (ε)Ai + ε I (3)

and Ai − Bi
(
BT
i Pi (ε)Bi + I

)−1
BT
i Pi (ε)Ai is Schur. Moreover, limε→0 Pi (ε) = 0.

Here we note that the above discrete-time ARE can be solved non-recursively
using the approach given in Chen et al. [29]. For convenience, we denote Pi := Pi (ε)
hereafter. We further define

Ki = (BT
i Pi Bi + I )−1BT

i Pi Ai . (4)

Since limε→0 Pi (ε) = 0, it is obvious that limε→0 Ki (ε) = 0. Moreover, by (3), it
can be verified that

(Ai − Bi Ki )
TPi (Ai − Bi Ki ) − Pi = ε I − K T

i Ki . (5)

Assumption 3 For each i = 1, . . . , N , the following regulator Equation

�i S = Ai�i + Bi�i + Wi

Ci�i + Q = 0 (6)

have a pair of solutions �i ∈ R
ni×s and �i ∈ R

qi×s .

Assumption 4 For each i = 1, . . . , N , there exists a time T ≥ 0 such that

‖�iw‖T,∞ < �1 and ‖�i Sw‖T,∞ < �2. (7)

Remark 2 Under Assumption1, ‖w‖ is bounded. �iw and �i Sw can be viewed
as the generalized actuator position and rate of the leader. If Assumption4 is not
satisfied, it is impossible for the followers to catch up the leader when it moves at its
maximal pace.Note that�iw(t + 1) = �i Sw(t), therefore,‖�iw‖T,∞ = ‖�i Sw‖T,∞
for a time T ≥ 0. For simplicity, we denote � = min{�1,�2}.

For the switching digraph, we made the following assumption.
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Assumption 5 There exists T̄ ≥ 0 such that for all t ∈ Z
+, every node i , i =

1, . . . , N , is reachable from node 0 in the union digraph ∪T̄
p=0Ḡσ(t+p).

Remark 3 Similar assumptions to Assumption5 have also been used in [25, 30].
It is the mildest assumption about a leader-follower digraph because it allows the
digraph to be disconnected at any time instant.

We now describe the problem as follows.

Discrete-time leader-following output consensus problem:Given amulti-agent
system consisting of the leader system (2), the follower systems (1) and a switching
digraph Ḡσ(t), design a distributed state feedback control law such that, for a priori
given bounded sets Xi,0 ⊂ R

ni , Vi,0 ⊂ R
qi , W0 ⊂ R

s , and

[xTi (0), vTi (0),wT(0)]T ∈ Xi,0 × Vi,0 × W0,

the leader-following output consensus is achieved, that is, for any i = 1, . . . , N ,

lim
t→∞ ei = 0. (8)

3 Main Result

This section aims to design a distributed control law for the discrete-time leader-
following output consensus problem .

For i, j = 0, 1, . . . , N , let

wi j (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1 + ∑N
j=0 ai j (t)

, if i = j,

ai j (t)

1 + ∑N
j=0 ai j (t)

, otherwise.
(9)

Then, we design a dynamic compensator as follows:

ηi (t + 1) = Sηi + S
N∑

j=0

wi j (t)(η j − ηi ), i = 1, . . . , N (10)

where η0 = w. Based on (10), we construct the state feedback consensus control law
for each follower:

ui = −Ki Ai (xi − �iηi ) − Ki Bi (vi − �iηi ) + �i Sηi − αvi , (11)

where �i and �i are a pair of solutions of the regulator Eq. (6), and Ki is defined in
(4).
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We now have the following theorem.

Theorem 1 Consider a multi-agent system consisting of the leader (2) and the fol-
lowers (1). Assume that Assumptions 1–5 hold. The state feedback consensus protocol
(11) solves the discrete-time leader-following output consensus problem. That is, for
a priori given bounded sets Xi,0 ⊂ R

ni ,Vi,0 ⊂ R
qi ,W0 ⊂ R

s , and

[xTi (0), vTi (0),wT(0)]T ∈ Xi,0 × Vi,0 × W0,

there exists an ε∗ ∈ (0, 1] such that for each ε ∈ (0, ε∗], the output consensus error
satisfies

lim
t→∞ ei = 0.

Proof Denote η̃i = ηi − w as the leader state estimation error for the i th follower.
Then Theorem 1 of [25] shows limt→∞ η̃i = 0, i = 1, . . . , N .

Denote x̃i = xi − �iw, one have

x̃i (t + 1) = Ai xi + Bi sat�1(vi ) + Wiw − �i Sw

= Ai x̃i + Bi sat�1(vi ) − Bi�iw, (12)

where the last equality holds due to Assumption4.
The Lyapunov function candidate we defined is as follows

V =
N∑

i=1

[
x̃Ti Pi x̃ + 4

(
Ki x̃i + vi − �iw

)T(
Ki x̃i + vi − �iw

)]
. (13)

Then, along the trajectories of (1), (2), and (12),

�V = V (t + 1) − V (t)

= 4
N∑

i=1

([
Ki x̃i (t+1) + vi (t+1)−�iw(t+1)

]T[
Ki x̃i (t+1) + vi (t+1)−�iw(t+1)

]

−(Ki x̃i + vi −�iw)T (Ki x̃i + vi −�iw)
)
+

N∑

i=1

(
x̃Ti (t + 1)Pi x̃i (t + 1)− x̃Ti Pi x̃i

)
.

(14)

Denote


i,1 = x̃Ti (t + 1)Pi x̃i (t + 1) − x̃Ti Pi x̃i ,


i,2 = [
Ki x̃i (t+1) + vi (t+1) − �iw(t+1)

]T[
Ki x̃i (t+1) + vi (t+1) − �iw(t+1)

]

− (Ki x̃i + vi − �iw)T(Ki x̃i + vi − �iw). (15)

We have
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i,1 = x̃Ti (t + 1)Pi x̃i (t + 1) − x̃Ti Pi x̃i

= x̃Ti A
T
i Pi x̃i − x̃Ti Pi x̃i + x̃Ti A

T
i Pi Bi

[
sat�1(vi ) − �iw

]

+ [
Bi sat�1(vi ) − Bi�iw

]T
Pi

[
Ai x̃i + Bi sat�1(vi ) − Bi�iw

]

= x̃Ti
( − ε I − K T

i Ki + AT
i Pi Bi Ki + K T

i B
T
i Pi Ai − K T

i B
T
i Pi Bi Ki

)
x̃i

+ x̃Ti A
T
i Pi Bi

[
sat�1(vi ) − �iw

]

+ [
Bi sat�1(vi ) − Bi�iw

]T
Pi

[
Ai x̃i +Bi sat�1(vi ) − Bi�iw

]
(16)

= −ε x̃Ti x̃i − x̃Ti K
T
i Ki x̃i + 2x̃Ti (Ai − Bi Ki )

TPi Bi
[
sat�1(vi ) − �iw + Ki x̃i

]

+ [
sat�1(vi ) − �iw + Ki x̃i

]T
BT
i Pi Bi

[
sat�1(vi ) − �iw + Ki x̃i

]

= −ε x̃Ti x̃i − x̃Ti K
T
i Ki x̃i + 2x̃Ti K

T
i

[
sat�1(vi ) − �iw + Ki x̃i

]

+ [
sat�1(vi ) − �iw + Ki x̃i

]T
BT
i Pi Bi

[
sat�1(vi ) − �iw + Ki x̃i

]
, (17)

where (16) and (17) hold because of (5) and the definition of Ki in (4), respectively.
In addition,


i,2 = [
Ki x̃i (t + 1) + vi (t + 1)−�iw(t + 1)

]T[
Ki x̃i (t + 1) + vi (t + 1)−�iw(t + 1)

]

− (
Ki x̃i + vi − �iw

)T(
Ki x̃i + vi − �iw

)

= [
Ki Ai x̃i + Ki Bi sat�1 (vi ) − Ki Bi�iw + vi + sat�2 (ui + αvi − vi ) − �i Sw

]T

· [
Ki Ai x̃i + Ki Bi sat�1 (vi ) − Ki Bi�iw + vi + sat�2 (ui + αvi − vi ) − �i Sw

]

− (
Ki x̃i + vi − �iw

)T(
Ki x̃i + vi − �iw

)
, (18)

where

sat�2 (ui + αvi − vi )

= sat�2

(
−Ki Ai (xi − �iηi )−Ki Bi (vi −�iηi ) + �i Sηi − vi

)

= sat�2

(
−Ki Ai x̃i −Ki Bi vi +Ki Bi�iw+�i Sw−vi +Ki (Ai�i η̃i +Bi�i η̃i )+�i Sη̃i

)
.

Recall that limt→∞ η̃i = 0, there exists a time T1 such that

‖Ki (Ai�i + Bi�i )η̃i‖T1,∞ ≤ 1

60
�, ‖�i Sη̃i‖T1,∞ ≤ 1

60
�. (19)

For any [xTi (0), vTi (0),wT(0), ηT
i (0)]T ∈ Xi,0 × Vi,0 × W0 × Zi,0, x̃i (T1),

vi (T1), w(T1) and η̃i (T1) belong to bounded sets X̃i,T1 ,Vi,T1 ,WT1 andZi,T1 respec-
tively, independent of ε, since they are determined by bounded control inputs. Let
c > 0 be a constant such that

sup
[x̃i (T1),vi (T1),w(T1),η̃i (T1)]T∈X̃i,T1×Vi,T1×WT1×Zi,T1

V ≤ c. (20)
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Define LV (c) := {[x̃i (T1)T, vi (T1)T,w(T1)T, η̃i (T1)T]T ∈ R
ni+qi+s : V ≤ c

}
. Let

ε∗ ∈ (0, 1]be such that, for all ε ∈ (0, ε∗], [x̃Ti (T1), vTi (T1),w(T1), η̃T
i (T1)]T ∈ LV (c)

implies that

‖Ki x̃i‖ ≤ 1

60
�, ‖Ki Ai x̃i‖ ≤ 1

60
�,

‖Ki Bivi‖ ≤ 1

60
�, ‖Ki Bi sat�1(vi )‖ ≤ 1

60
�,

‖Ki Bi�iw‖ ≤ 1

60
�, ‖BT

i Pi Bi‖ ≤ 12

23
. (21)

For easy references, we let

ki := Ki x̃i , hi := Ki Ai x̃i , ri := Ki Bivi , di := �i Sη̃i , mi := Ki Bi�iw,

and
ti := Ki Bi sat�1(vi ), ni := Ki (Ai�i η̃i + Bi�i η̃i ).

Substituting (17) and (18) into (14) gives

�V ≤ −ε

N∑

i=1

x̃Ti x̃i

+
N∑

i=1

(
2ki (sat�1 (vi ) − �i w + ki ) − k2i + 12

23
(sat�1(vi ) − �i w + ki )

2
)

+
N∑

i=1

4
([
hi +ti −mi +vi −�i Sw+sat�2 (−hi −ri +mi +�i Sw−vi +ni +di )

]2

− (vi − �i w + ki )
2
)
. (22)

By Assumption1, �iw and �i Sw vary between their extreme values.

1. If ‖vi − �i Sw‖ ≤ 11
12�, which implies ‖sat�1(vi ) − �iw‖ ≤ ‖vi − �iw‖, thenwe

have

�V ≤ −ε

N∑

i=1

x̃Ti x̃i

+
N∑

i=1

(
− k2i + 2ki (vi − �i w + ki ) + 4

(
ni + di

)2

+ 12

23
(vi − �i w + ki )

2 − 4(vi − �i w + ki )
2
)

≤ − ε

N∑

i=1

x̃Ti x̃i



Leader-Following Output Consensus of Discrete-Time … 81

+ 4
N∑

i=1

η̃Ti (Ki Ai�i + Ki Bi�i + �i S)T(Ki Ai�i + Ki Bi�i + �i S)η̃i

+
N∑

i=1

(
− k2i +2ki (vi − �i w + ki ) − (vi −�i w + ki )

2 + (vi − �i w + ki )
2

+ 12

23
(vi − �i w + ki )

2 − 4(vi − �i w + ki )
2
)

≤ − ε

N∑

i=1

x̃Ti x̃i

+ 4η̃T
[
K A� + K B� + �(IN ⊗ S)

]T[
K A� + K B� + �(IN ⊗ S)

]
η̃

+
N∑

i=1

(
− (vi − �i w)2 − 57

23
(vi − �i w + ki )

2
)
, (23)

where

K = blockdiag{K1, . . . , KN }, � = blockdiag{�1, . . . ,�N },

� = blockdiag{�1, . . . , �N }, A = blockdiag{A1, . . . , AN },

and
B = blockdiag{B1, . . . , BN }.

Since limt→∞ η̃i = 0, one can conclude from (23) that

�V < 0, ∀[x̃i (T1), vi (T1),w(T1), η̃(T1)]T ∈ LV (c)\{0}. (24)

2. Otherwise, if ‖vi − �i Sw‖ ≥ 11
12�, which means ‖vi‖ ≥ 11

12�, it follows that

�V ≤ −ε

N∑

i=1

x̃Ti x̃i

+
N∑

i=1

[
2ki

(
sat�1(vi ) − �iw

) + k2i + 12

23

(
sat�1(vi )−�iw + ki

)2

+ 4(vi − �i Sw + hi + ti − mi − �)2 − 4(vi − �iw + ki )
2
]

≤ − ε

N∑

i=1

x̃Ti x̃i

+
N∑

i=1

[
1

602
�2 + 2 · 1

60
� · 1.9� + 12

23

(

1 + 0.9 + 1

60

)

�2
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+ 4

(

2 × 11

12
+ 1

20
− 1+ 1

60

) (

−1 + 1

20
+ 1

60

)

�2

]

≤ − ε

N∑

i=1

x̃Ti x̃i − N�2, (25)

which means (24) holds.

Thus, we conclude from (23) and (25) that

�V < 0, ∀[x̃i (T1), vi (T1),w(T1), η̃(T1)]T ∈ LV (c)\{0},

which implies

lim
t→∞ x̃i = lim

t→∞(xi − �iw) = 0, lim
t→∞(vi − �iw) = 0,

and
lim
t→∞ ei = lim

t→∞
(
Ci (x̃i + �iw) + Qw

) = 0.

This completes our proof. �

4 An Illustrative Example

We consider a group of multi-agent systems consisting of one leader and four fol-
lowers, whose switching communication network is as described in Fig. 1.

The leader system is given by (2) with

S =
[
0.8 −0.6
0.6 0.8

]

, Q =
[−1 0

0 −1

]

.

The four follower systems are described by (1). In particular, for i = 1, 2,

Ai =
⎡

⎣
1 0.1 0
0 1 0.1
0 0 1

⎤

⎦ , Bi =
⎡

⎣
0
0
0.1

⎤

⎦ , Wi =
⎡

⎣
−0.2 −0.7
0.6 −0.2
0.0 −0.1

⎤

⎦ , Ci =
[
1 0 0
0 1 0

]

,

and for i = 3, 4,

Ai =
⎡

⎣
0.5 0 0
0 1 0.1
0 0 1

⎤

⎦ , Bi =
⎡

⎣
0.1
0
0.1

⎤

⎦ , Wi =
⎡

⎣
0.3 −0.7

−0.7 0.2
−0.2 −0.7

⎤

⎦ , Ci =
[ −1 0 2

0 −1 0

]

.

The solutions of the regulator equation in (6) are
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0

1 2

3 4

0

1 2

3 4

)b()a(

0

1 2

3 4

0

1 2

3 4

)d()c(

Fig. 1 Switching digraph Ḡσ(t) with P = {1, 2, 3, 4}. a Ḡ1. b Ḡ2. c Ḡ3. d Ḡ4

�i =
⎡

⎣
1 0
0 1
0 0

⎤

⎦ , �i = [
0 1

]
, i = 1, 2

and

�i =
⎡

⎣
1 0
0 −1
1 0

⎤

⎦ , �i = [
0 1

]
, i = 3, 4, 5.

We assume in this example that follower systems have the same actuator “time
constants”, that is, for i = 1, 2, 3, 4, α = 0.5. We also assume � = 8. It is easy to
verify that Assumptions1–5 are satisfied.

The initial system states and actuator positions of the followers are chosen as

[
x1(0) x2(0) x3(0) x4(0)

] =
⎡

⎣
2 2 0 −2
3 2 −1 0
4 0 3 −1

⎤

⎦
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Fig. 2 Components of estimation errors ηi − w for i = 1, 2, 3, 4

and [
v1(0) v2(0) v3(0) v4(0)

]=[
0 −1 2 −2

]
.

The initial states of the distributed observers (10) are set as random values.
We consider the low gain parameter ε = 0.01. The solutions of the discrete time

parametric ARE (3) are

Pi (0.01) =
⎡

⎣
0.4626 0.9970 1.0487
0.9970 3.4640 4.7468
1.0487 4.7468 9.9810

⎤

⎦ , i = 1, 2

and

Pi (0.01) =
⎡

⎣
0.0133 −0.0001 −0.0006

−0.0001 0.4684 1.0234
−0.0006 1.0234 4.6907

⎤

⎦ , i = 3, 4.

The estimation errors ηi − w and output consensus error ei , i = 1, 2, 3, 4, are
respectively shown in Figs. 2 and 3. Clearly, the leader-following output consensus
is achieved.
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Fig. 3 Output consensus errors ei , i = 1, 2, 3, 4, under the consensus protocol (11) with ε = 0.01

5 Conclusion

Wehave considered in this chapter a group of heterogeneous linear systems subject to
actuator position and rate saturation, and switching topologies. A distributed control
law has been designed to solve the semi-global leader-following output consensus
problem. In the near future, we will investigate a global control protocol for systems
with actuator position and rate saturation.
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