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Abstract. Reinforcement learning (RL) has recently been applied in autonomous
driving for planning and decision-making. However, most of them use model-free
RL techniques, requiring a large volume of interactions with the environment to
achieve satisfactory performance. In this work, we for the first time introduce
a solely self-attention environment model to model-based RL for autonomous
driving in a dense traffic environment where intensive interactions among traf-
fic participants may occur. Firstly, an environment model based solely on the
self-attention mechanism is proposed to simulate the dynamic transition of the
dense traffic. Two attention modules are introduced: the Horizon Attention (HA)
module and the Frame Attention (FA) module. The proposed environment model
shows superior predicting performance compared to other state-of-the-art (SOTA)
prediction methods in dense traffic environment. Then the environment model is
employed for developing various model-based RL algorithms. Experiments show
the higher sample efficiency of our proposed model-based RL algorithms in con-
trast with model-free methods. Moreover, the intelligent agents trained with our
algorithms all outperform their corresponding model-free methods in metrics of
success rate and passing time.

Keywords: Reinforcement Learning · Attention Mechanism · Autonomous
Driving

1 Introduction

Decision-making in a dense environment with dynamically moving obstacles has been
a hot topic in the mobile robotics community. One typical problem is passing through
dense traffic like unsignalized urban intersections for autonomous vehicles.

Although there are several algorithms that have already been successfully applied to
autonomous vehicles [19,25], most of them still rely on hand-crafted rule-based meth-
ods which are only applicable in simple driving circumstances. Situations as complex as
passing through intersections would dramatically increase the complexity of rule-based
algorithm. In contrast, learning-based algorithms can better deal with complex driv-
ing situations without complexity increase. Some researchers applied imitation learn-
ing (IL) to autonomous driving by training the intelligent agent in a supervised manner
[7,30]. However, IL suffers from tedious data labeling and poor generalizability.
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Unlike IL, RL-based methods can better generalize to unseen scenarios without data
labeling by interacting with the environment. Decision-making in dense traffic environ-
ment with RL-based methods have already been studied [11,16]. However, most of
them are based on model-free RL algorithms, which only train the intelligent agent
by exhaustively interacting with the environment. Model-based RL algorithms, on the
other hand, explicitly learn the environment transitions as well as interact with the envi-
ronment, leading to an improvement in sample efficiency.

Researchers [9,31] have already applied model-based RL to autonomous driving.
However, the environments they are dealing with are simple driving scenarios. In a
complex environment where interactions across traffic participants are unavoidable, the
environment model should be carefully designed. In such an environment, one par-
ticipant’s action not only determines its own future state but also others’ behaviors.
Compared to other model architectures, the self-attention mechanism is more capable
of extracting the interactive dependencies across all inputs.

In this work, we for the first time apply a solely self-attention environment model
to model-based RL for autonomous driving in a dense traffic environment. Our contri-
butions are listed as follows:

– We propose an environment model solely on the self-attention mechanism to simu-
late the dynamic transitions in a dense traffic environment and it shows better perfor-
mance in predicting the future states of traffic participants than other SOTAmethods.

– We introduce two self-attention modules: the Horizon Attention module to encode
the spatially interactive information and the Frame Attention module to encode
sequential state features.

– The developed environment model has been introduced to model-based RL for
autonomous driving in dense traffic. Testing results show the superiority of our pro-
posed model-based RL algorithms over their model-free RL counterparts.

2 Related Work

2.1 Attention Mechanism

Attention Mechanism is first introduced in natural language processing (NLP) by Bah-
danau et al. [3] as an improvement over the encoder-decoder neural machine translation
system based on recurrent neural network (RNN) or long short-term memory (LSTM)
[10]. However, due to the vanishing/exploding gradient problem, RNN suffers from
long-range dependency. In addition, the sequential nature of RNN/LSTMs makes the
parallelization of training examples extremely hard. By calculating the embeddings of
all input words and the weighted sum of hidden states, the attention mechanism not
only allows for the modeling of dependencies without regard to the distances but also
accelerates the training process by data parallelization.

Based on the attention-mechanism, many breakthroughs have been made in NLP
and computer vision tasks. The Transformer [26] differs from previous neural trans-
lation models in that it is based on self-attention mechanisms to draw global depen-
dencies between input and output. It gets SOTA performance in translation with less
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training time and significantly more parallelization. BERT [5] also achieves SOTA per-
formances in a wide range of NLP tasks by pretraining deep bidirectional representa-
tions from unlabeled text based on Transformers and finetuning one additional task-
specific output layer. ViT [6] directly applied a pure Transformer architecture [26] to
sequences of image patches and showed excellent results on image classification tasks.
Swin-Transformer [17] surpassed previous SOTA networks on a broad range of vision
tasks by a large margin with a hierarchical Transformer whose representation is com-
puted with shifted windows.

In this work, we equip the environment model of dense traffic with self-attention
mechanisms to extract the dependencies across both different traffic participants and
different state histories.

2.2 Traffic Trajectory Prediction Methods

Predicting the future trajectories of other traffic participants in dense traffic is a com-
plex problem for the autonomous driving community. Early researchers [21,25] mostly
focused on rule-based Finite/Hybrid State Machines to encode the desired behavior of
the vehicle in the encountered urban scenarios. However, the complexity of these meth-
ods could dramatically increase as the driving scenarios become more general. Besides,
the constant velocity assumption that is usually employed in those systems ignores
the surrounding vehicles’ reactions, leading to potential risks in dense urban traffic
scenario [8].

The learning-based prediction method, on the other hand, does not show a com-
plexity increase even in complicated situations and is more capable of modeling the
participants’ intentions. Altche et al. [2] introduced an LSTM-based network that pre-
dicted the future longitudinal and lateral trajectories for vehicles on the highway. Ma
et al. [18] also proposed an LSTM-based network that contains instance and category
layers to predict the trajectories of heterogeneous traffic participants. Tang et al. [24]
introduced a probabilistic framework to efficiently model the future motions of agents
with a dynamic attention-based state encoder.

However, most previous learning-based prediction methods are based upon RNN or
combine RNN with the attention mechanism, which could be time-consuming during
inference due to RNN’s poor parallelization capability. In this work, we propose a pre-
diction network that is solely based on the self-attention mechanism for forecasting the
future motions of all the participants involved in dense traffic.

2.3 Reinforcement Learning

RL involves interactions between the intelligent agent and the environment. It is usually
formulated as a Markov decision process < S,A, P,R, γ >, with the measurable space
S, action space A, state transition dynamics P , reward function R and discount factor
γ. The training purpose for solving RL task is just to find a policy π that maximizes the
expected γ-discounted cumulative reward.

In the RL paradigm, based on whether the intelligent agents predict the environ-
ment responses, there are two kinds of RL methods: model-free and model-based RL.
Model-free RL indicates that the agent learns policies by directly interacting with the
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Fig. 1. Illustration of model-free and model-based RL. The loop formed by the solid line denotes
the model-free RL while the loop of dotted line represents the model-based RL.

environment, while model-based RL constructs a predictive model of the environment
dynamics and integrates both learning and planning, as illustrated in Fig. 1.

Among various model-free algorithms, Q-learning [28] is a typical value optimiza-
tion method by learning a near optimal state-action value function with a sufficient num-
ber of learning samples. Deep Q-Networks (DQN) [20] achieved SOTA performances
in many Atari games by introducing deep neural network (DNN) as a non-linear value
approximator and experience replay technique. The Q value updating rule is:

Q(St, At) ← Q(St, At) + α(Rt+1 + γ max
a

Q(St+1, a) − Q(St, At)), (1)

where Q(St, At) is the estimated action value of state S when choosing action A at
time t, α ∈ [0, 1] is the learning rate.

Instead of evaluating a value function before getting the optimal policy, policy opti-
mization methods aim to obtain an optimal policy directly. In policy optimizations,
the policy function is usually parameterized as a learnable neural network πθ. The
REINFORCE [29] algorithm is a simple straightforward policy optimization algorithm,
whose policy parameters are updated by:

θ ← θ + αγtG∇θlnπ(At|St, θ), (2)

where θ denotes the parameter of policy network, α is the learning rate and γtG is
the γ-discounted cumulative reward. Actor-Critic [14] is a policy optimization method
which integrates the benefits of value optimization. Deep Deterministic Policy Gradient
(DDPG) [22] is an actor-critic algorithm that can learn policies for continuous action
space with DNN approximation function.

However, model-free methods usually suffer from low sample efficiency. For intel-
ligent agents which need to be applied to practical situations, interacting with real-
world environments would be limited due to cost and safety concerns. Model-based RL
[12,23] is advantageous in reducing the required number of interactions by simulta-
neously learning the environment transitions. In this work, we develop various model-
based RL algorithms with our proposed environment model for autonomous driving in
dense traffic.
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3 Methodology

3.1 Problem Definition

The problem of developing model-based RL algorithms for passing through dense traf-
fic could be decomposed into two tasks: one is constructing an environment model for
dense traffic, and the other is solving the passing problem with RL algorithm with the
environment model.

We first assume the states of agents involved in the traffic are preprocessed, includ-
ing their spatial coordinates, velocities, and headings. At time t, the feature vector of
any agent At

i is denoted as f t
i = (px, py, vx, vy, cosφ, sinφ)ti, where px/py is the coor-

dinate in x-/y- axis, vx/vy is the velocity in x-/y- axis, and φ is the agent heading. In the
following paragraphs, we denote ‘ego-agent’ as the traffic participant controlled by RL
algorithms and ‘other-agent’ as the participants in the environment except ‘ego-agent’.
The task of formulating an environment model is just to observe the states of all the
agents during the time interval [1, Tobs] and predict their states and rewards from the
environment at time step t = Tobs + 1.

With the environment model, the problem of autonomous driving in dense traffic
could be viewed as the ego-agent navigating to a target position without collision with
other-agents. It is an optimization problem whose objective is to maximize the expected
cumulative reward. For an environment with one ego-agent and N other-agents, the
optimization objective should be:

argmax
πθ

E[R|πθ, Se, So,1:N ],

s.t. Te ∈ [0, Tmax], Pe ∈ Pf , Ve ∈ Vf

(3)

where πθ is the policy taken by the intelligent ego agent, R is the cumulative reward, Se

is the ego agent state, so,1:N is the states for other agents. Te is the passing time of ego
agent, with the maximum allowable time as Tmax. Pe and Ve are the ego agent position
and velocity, which should be limited in the feasible position region Pf and velocity
region Vf , respectively. The collision restriction is not shown in Eq.(3) because it is
integrated in the cumulative reward R.

Fig. 2. The overall network structure for traffic environment modeling with HA precedes FA
(HA-FA model).



322 J. Wen et al.

3.2 Environment Model

The transition dynamics of a dense traffic environment is complex due to the inter-
actions between different agents. The action taken by one agent results in both its own
state transition and others’ decision makings. Hence, the environment model for a dense
traffic should consider not only the state histories of each agent, but also the interac-
tion dependencies on others. We propose two self-attention modules to deal with both
the state histories and the interactions: the Frame Attention (FA) module to encode
the sequential state features for each agent and the Horizon Attention (HA) module to
encode the interactive information with others.

The overall structure of our environment model can be seen in Fig. 2. The sequential
states of each agent within the time interval Tobs are first embedded by encoders. The
parameters of the ego-encoder differ from the other-encoders because it is used for
embedding ego-agent’s state. The embedded features are then fed into the HA module
to extract the interactive information across agents at each time step t ∈ [1, Tobs]. After
that, the FA module draws the time dependencies of sequential features with length Tobs

for each agent, with ego-FA for ego-agent and other-FA for other-agents. Decoders are
finally used to get the state of each agent in the next time step. The reward from the
environment is regressed by a feed-forward layer after concatenating all the FA features.

Fig. 3. (a) The detailed architecture of single-head HA-module. (b) The detailed architecture of
single-head FA-module.

The detailed architectures of HA and FA modules can be seen in Fig. 3. Both mod-
ules adopt the self-attention mechanism used in [26]. HA-module recursively uses two
self-attention modules while FA-module uses one. The main difference between HA
and FA modules lies not in their architectures but in their functionalities.

Horizon Attention (HA): The HA module is based on the multi-head self-attention
mechanism to extract the dependencies between different agents that have interactions.
In this module, the relationship between each agent can be extracted by a weight matrix,
in which a higher value indicates a more important dependency. The HAmodule outputs
a high-dimensional feature for each agent that not only encodes the ego-agent state but
also other-agents’ state and their corresponding relationship.

Frame Attention (FA): The FAmodule is proposed to encode the sequential features of
each agent in the scene. Compared to RNN/LSTM architecture, the FAmodule is advan-
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tageous in data parallelization and dependency extraction. Besides, taking an agent’s
full history of states gives it a better understanding of the dynamic environment.

Algorithm 1. Procedure for model-based value optimization in dense traffic
1: Initialize value function Q(s, a), environment model Model(s, a) and an empty experience

buffer B
2: While not done:
3: Observe S from real environment
4: Get action A ← ε-greedy(S, Q)
5: Execute action A, observe reward R and state S′

6: B ← B ∪ (S, A, R, S′)
7: Update Q(S, A) with Eq.(1) and Model(s, a) with (S, A, R, S′)
8: Repeat n times:
9: S ← random previously observed state
10: A ← random previous action taken in S
11: R, S′ ← Model(S, A)
12: Update Q(S, A) with Eq.(1)

3.3 Model-Based RL for Dense Traffic

Model-based RL is more advantageous than model-free RL in its higher sample effi-
ciency. With an environment model, the intelligent agent could learn how the environ-
ment transfers and then predict the action that would lead to desirable outcomes. In this
work, we use our proposed environment model to generate imagined future rollouts and
add them to the experience buffer from which the intelligent agent could learn a passing
policy.

The procedure for model-based value optimization RL that combines direct RL,
model learning, and planning is presented in Algorithm 1. The environment model is
trained online with the real experience from the environment, and the value function
is updated by both the real environment experience and the imagined rollouts from the
environment model.

Algorithm 2. Procedure for model-based policy optimization in dense traffic
1: Initialize parameters θ of policy π, parameters α of environment model M and an empty

experience buffer B
2: While not done:
3: Observe S from real environment
4: Get action A ← ε-greedy(πθ)
5: Execute action A, observe reward R and state S′

6: B ← B ∪ (S, A, R, S′)
7: Update environment model Mα with (S, A, R, S′)
8: Update policy πθ with Mα and B
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The general algorithm for model-based policy optimization is shown in Algorithm
2. The policy is also updated with both real and imagined experiences. The policy updat-
ing method is general such that it could be implemented by any policy optimization
method such as TD3 [4], DDPG [22], etc.

4 Experiments

4.1 Environment Setup

The simulated environment is modified upon the intersection environment presented in
[15]. The environment range is set to [−40m, 40m]. The ego-agent is rewarded by 5 if
it reaches its destination, −5 if it collides with other-agents or violates traffic rules, and
a positive reward of 0.5 is used to encourage driving in a desired speed range. There are
3 levels of difficulty for the environment based on the average number of other-agents,
i.e. easy, medium, and hard.

The agents in the simulated environment are controlled in a hierarchical manner,
including a low-level lateral controller and a high-level longitudinal controller. The lat-
eral action is implemented by a low-level lateral tracker for both ego- and other- agent.
The longitudinal acceleration is realized by our learned policies for the ego-agent while
implemented by a rule-based intelligent driver model (IDM) [13] for other-agents.

Horizon
Attention

ego Frame
Attention

other Frame
Attention

other Frame
Attention

Fig. 4. FA-HA environment model. (Dots indicate the same with HA-FA model.)

4.2 Environment Model Evaluation

In order to evaluate the effectiveness of our environment model, we first collect experi-
ence data from the simulated environment through random policy and then train envi-
ronment models in a supervised manner. The training set contains 100k data while the
testing set contains 10 k. The models are trained on a computer with the configurations:
NVIDIA GTX1080Ti graphics card, Intel i7 6800k, 48 GB RAM. During training, the
batch size is 32, the learning rate is set to 0.0005, and maximum training epoch is set
to 50.



Model-Based Reinforcement Learning with Self-attention Mechanism 325

Besides the proposed HA-FA model, we also implement an FA-HA model as
shown in Fig. 4, where the only difference is the order of HA and FA modules. The
HA/FAmodule is also replaced with multi-layer perceptron (MLP) to get MLP-FA/HA-
MLP models. Other implemented environment models include: Social-LSTM (SL) [1],
Social-Attention (SA) [27], GMM [31], WM [9] and a naive MLP model.

Table 1. Testing Displacement Error of Different Models

Models MLP SA SL GMM WM MLP-FA HA-MLP FA-HA HA-FA

Average Error (m) 0.650 0.325 0.329 0.401 0.457 0.359 0.190 0.436 0.167

Straight Road Error (m) 0.276 0.151 0.141 0.191 0.188 0.183 0.192 0.204 0.143

Intersection Error (m) 0.782 0.388 0.397 0.477 0.555 0.425 0.187 0.520 0.172

The positional displacement error of these methods with respect to the testing data is
shown in Table 1. It is noted that our proposed HA-FA model achieves the best average
prediction performance than other methods. All these methods achieve good results in
straight road prediction, indicating the effectiveness of common prediction methods in
simple driving scenarios. However, in complex situations like intersections, the perfor-
mances of these methods differ a lot. Our proposed HA-FA model performs best in such
situation, mainly contributed to the adoption of HA module as compared with MLP-FA
model. It should be noted that FA-HA model shows a dramatic performance drop even
though it contains both HA and FA modules. The reasons are discussed in Sect. 5.

In
te

rs
ec

ti
o

n
S

tr
ai

g
h

t 
R

o
ad

HA-FA model MLP-FA model HA-MLP model

Fig. 5. Visualization of environment transition predictions. Green rectangle: ego-agent, blue rect-
angle: other-agents, transparent yellow rectangle: predicted states. (Color figure online)

In order to better understand the effectiveness of HA/FA modules, the visualization
results of the predicted future positions for different agents of HA-FA/MLP-FA/HA-
MLPmodels are shown in Fig. 5. It is seen that our HA-FAmodel has superior prediction
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Table 2. Average Inference Time of Different Models

Models MLP SA SL GMM WM MLP-FA HA-MLP FA-HA HA-FA

Average Inference Time (s) 0.042 0.102 0.097 0.059 0.115 0.047 0.051 0.052 0.055

performance for agents in both straight roads and intersections. The MLP-FA model,
however, has similar performance in straight road scenario while shows bad predictions
when agents are in the intersection region. In contrast, the HA-MLP model shows better
results thanMLP-FA in intersections but slightly worse when agents are at straight road.

The average inference time of each model is computed in Table 2. Although the
inference time of our proposed HA-FA model is not the shortest, it’s still much less
than the time used by other RNN/LSTM- based models like SA/SL/WM, validating the
effectiveness of parallelization for the self-attention mechanism.

4.3 Model-Based and Model-Free RL

We implement the training of different RL algorithms in both model-based and model-
free manners. Model-free RL methods have been tried with both value optimization
like DQN and policy optimization methods like DDPG and TD3. For DQN, the ego-
agent output three discrete actions “slow-down”,“idle”, and “speed-up”. For policy opti-
mization algorithms, the ego-agent produces continuous acceleration ranging in [−5, 5].
The ego-agents for all the implemented algorithms have the same structure as the Ego-
Attention network [16], and our proposed HA-FA model is used as the environment
model for the model-based RL methods.

Fig. 6. Learning curves of model-based and model-free methods

The learning curves are shown in Fig. 6 and the average cumulative reward for each
methods is shown in Table 3. If we define “Rising Time” as the used episodes when
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Table 3. Cumulative Reward and Rising Time of Different Methods (MF: model-free, MB:
model-based)

Models DQN (MF) DQN (MB) TD3 (MF) TD3 (MB) DDPG (MF) DDPG(MB)

Cumulative Reward 15.3 20.9 20.8 22.3 21.1 21.3

Rising Time 1215 1038 381 219 238 137

Table 4. Evaluated result of success rate and passing time (MF: model-free, MB: model-based)

Success Rate Easy Medium Hard Passing Time Easy Medium Hard

IDM (baseline) 97.02% 95.05% 88.12% IDM (baseline) 132.46 147.19 173.84

DQN (MF) 95.34% 92.23% 86.78% DQN (MF) 128.36 140.34 175.53

DQN (MB) 96.81% 92.13% 87.09% DQN (MB) 127.53 139.28 175.42

TD3 (MF) 96.32% 95.31% 88.19% TD3 (MF) 125.55 138.54 172.33

TD3 (MB) 97.57% 96.87% 89.77% TD3 (MB) 120.21 136.91 170.85

DDPG (MF) 95.44% 94.98% 88.09% DDPG (MF) 125.38 139.33 173.95

DDPG (MB) 96.87% 95.87% 88.59% DDPG (MB) 123.29 137.65 171.32

the cumulative reward reaches 90% of the final average reward, then the method with
less rising time has better sample efficiency, as shown in Table 3. It can be seen that all
the model-based methods equipped with our proposed environment model show higher
cumulative reward and better sample efficiency than their corresponding model-free
methods. The model-based TD3 method achieves the highest cumulative reward and
the model-based DDPG method has the best sample efficiency.

The testing result of each method with respect to the success rate and passing time
is shown in Table 4. The baseline metrics are implemented upon the IDM method. It
is seen that the model-based methods with our proposed environment model achieve a
relatively higher success rate and less passing time than their corresponding model-free
methods. Model-based TD3 and DDPG algorithms could even outperform the rule-
based IDM method in our evaluated metrics.

5 Discussion

In this section, we qualitatively discuss the performance drop by the order exchange of
HA and FA modules. As shown in Fig. 7(a), the HA-FA model first extracts the inter-
active dependencies across agents in each frame by HA, and then the decoded features
of all frames are fed into FA to get the time dependencies. In contrast, as shown in
Fig. 7(b), the FA-HA model first gets the time dependencies of each agent and then
extracts the interactive dependencies with the encoded features, which has fewer con-
nections than the HA-FA model.

Hence, the performance drop of the FA-HA model might be caused by two factors:
(1) The environmental information is not fully utilized by the FA-HA model. As shown
in Fig. 7(a)(b), the HA-FA model fully utilizes the interactive information of all frames,
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(a) HA-FA

T T+1

(b) FA-HA

T T+1
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Fig. 7. (a) Network connections for HA-FA model, (b) Network connections for FA-HA model,
Blue Lines: Horizon Attention, Green Lines: Frame Attention. (c) Illustration about the different
attention importance for different agents at different time steps. (Color figure online)

while the FA-HA model only uses the encoded features from the FA module with time
dependency while ignoring the interactive information at most time frames; (2) The
time dependencies extracted by the FA module for each agent could vary for different
agents such that the HA module could not get useful interactive information. As shown
in Fig. 7(c), the encoded feature for agent C might have higher importance at frame T
while agents A and B higher at frame T + 1.

6 Conclusion

In this work, an environment model for dense traffic based solely on the self-attention
mechanism has been proposed and model-based RL algorithms upon the proposed envi-
ronment model have been developed. The FA and HA modules are presented: the FA
module is used to encode temporal features of one agent while the HA module is to
understand the interactive dependencies among all agents spatially at each time frame.
The HA-FA model shows superior performance over other SOTA methods in predicting
future states of traffic participants. The performance drop of the FA-HA model could
be caused by less information utilization and a mismatch of temporal dependencies for
different agents. Model-based RL algorithms for both value and policy optimizations
have been developed for dense traffic environments. With our proposed HA-FA model,
we successfully trained intelligent agents in a model-based manner for various RL algo-
rithms like DQN, DDPG, and TD3 with better sample efficiency and higher cumulative
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reward. The agents trained with the proposed model-based algorithms also surpass the
corresponding agents trained in a model-free manner with a higher success rate and less
passing time.
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