
6894 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

GPU-Accelerated Incremental Euclidean Distance
Transform for Online Motion Planning of

Mobile Robots
Yizhou Chen , Shupeng Lai , Jinqiang Cui , Biao Wang, and Ben M. Chen , Fellow, IEEE

Abstract—In this letter, we present a volumetric mapping system
that effectively calculates Occupancy Grid Maps (OGMs) and
Euclidean Distance Transforms (EDTs) with parallel computing.
Unlike these mappers for high-precision structural reconstruc-
tion, our system incrementally constructs global EDT and outputs
high-frequency local distance information for online robot motion
planning. The proposed system receives multiple types of sensor
inputs and constructs OGM without down-sampling. Using GPU
programming techniques, the system quickly computes EDT in
parallel within local volume. The new observation is continuously
integrated into the global EDT using the parallel wavefront al-
gorithm while preserving the historical observations. Experiments
with datasets have shown that our proposed approach outperforms
existing state-of-the-art robot mapping systems and is particularly
suitable for mapping unexplored areas. In its actual implementa-
tions on aerial and ground vehicles, the proposed system achieves
real-time performance with limited onboard computational re-
sources.

Index Terms—Mapping, motion and path planning.

I. INTRODUCTION

AN ACCURATE representation of the local environment is
critical to the effectiveness of mobile robot navigation [1]–

[4]. Especially, the distance information to nearby obstacles is a
must in many motion planning algorithms [5]–[7]. To that end,
OGMs and EDTs are often used to bridge environment represen-
tation and planning. Both the OGM and EDT are voxel maps. In
an OGM, each voxel records the probability of being occupied by

Manuscript received January 23, 2022; accepted May 8, 2022. Date of
publication May 25, 2022; date of current version June 8, 2022. This letter
was recommended for publication by Associate Editor M. Popovic and Editor J.
Civera upon evaluation of the reviewers’ comments. This work was supported in
part by the Research Grants Council of Hong Kong SAR under Grant 14209020,
and in part by the Hong Kong Centre for Logistics Robotics. (Corresponding
author: Shupeng Lai.)

Yizhou Chen and Ben M. Chen are with the Department of Me-
chanical and Automation Engineering, Chinese University of Hong Kong,
Hong Kong 999077, China (e-mail: 1155141802@link.cuhk.edu.hk; bmchen@
cuhk.edu.hk).

Shupeng Lai is with the Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117583 (e-mail: shupenglai@
gmail.com).

Jinqiang Cui is with the Peng Cheng Laboratory, Shenzhen, Guangdong
518055, China (e-mail: cuijq@pcl.ac.cn).

Biao Wang is with the College of Automation Engineering, Nanjing Univer-
sity of Aeronautics and Astronautics, Nanjing, Jiangsu 210095, China, and also
with Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China (e-mail:
wangbiao@nuaa.edu.cn).

Digital Object Identifier 10.1109/LRA.2022.3177852

an obstacle. An EDT records the distance information from each
voxel to the nearest obstacle. Typically, a local EDT is required
to be updated at high frequency for real-time performance of the
local planner, while a global EDT is queried less frequently by
the global planner.

Creating these maps is challenging due to limited onboard
computational resources and real-time requirements of motion
planning. To solve this problem, many researchers (see, e.g., [8]–
[11]) choose to sacrifice precision for increased runtime speed.
However, their wavefront-based methods can incur large errors
in real-world scenarios because the distance values only propa-
gate on observed voxels. Besides, computational resources are
highly stretched when updating global EDT with a lightweight
onboard computing unit. As the demand for a faster update
procedure of global incremental EDT rises, it is natural to
explore the possibility of computing OGM and EDT in a parallel
fashion using GPU onboard. Unfortunately, most of the methods
designed for CPUs reported in the literature have very limited
parallelization capability.

We also note that various approaches to distance transforma-
tion have been studied in the pattern recognition society (see,
e.g., [12]–[14]). These methods are mainly developed for fast
distance transformation on a fully known binary map, usually a
2D image. However, in robotic applications, the environment
map needs to be incremental as the robot moves, while the
standard sensors of mobile robots have a limited sensing range.
Moreover, the size of the map cannot be determined in advance
for situations in unknown environments.

Motivated by the fast demand in real-time applications for
small robots, such as small UAVs and UGVs, we propose in
this letter an innovative and effective approach to increase the
efficiency and accuracy of the mapping process through massive-
scale parallelization. It is designed for the navigation purposes of
a mobile robot and allows an incremental map to be constructed
with dynamically adjustable map size. The proposed mapping
system is versatile enough to construct OGMs from commonly
used onboard sensors such as depth cameras and 2D- or 3D-
LiDAR. It computes a fast and exact batch EDT with the parallel
Euclidean Distance Transform. The batch EDT is then integrated
into the global EDT through a parallel wavefront mechanism.
With the utilization of parallel computing techniques, both the
local and global EDT can be updated in real-time. The proposed
system can be deployed on miniature computing devices with
GPU, such as Nvidia Xavier NX, commonly used for small

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 00:25:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5487-406X
https://orcid.org/0000-0003-2597-5392
https://orcid.org/0000-0002-7833-1876
https://orcid.org/0000-0002-3839-5787
mailto:1155141802@link.cuhk.edu.hk
mailto:bmchen@cuhk.edu.hk
mailto:bmchen@cuhk.edu.hk
mailto:shupenglai@gmail.com
mailto:shupenglai@gmail.com
mailto:cuijq@pcl.ac.cn
mailto:wangbiao@nuaa.edu.cn

CHEN et al.: GPU-ACCELERATED INCREMENTAL EUCLIDEAN DISTANCE TRANSFORM FOR ONLINE MOTION PLANNING OF MOBILE ROBOTS 6895

robots or unmanned systems. We will make the source code
of our system available as an open-source project.1

The contributions of this work are: i) the development of an
efficient approach that generates OGM and EDT through mas-
sive parallelization; ii) the design of an EDT integration method
that allows the incremental construction of global EDT with
dynamically adjustable map size; and lastly iii) the integration
of the proposed algorithm in various ground/aerial mobile robots
to demonstrate its effectiveness with onboard motion planning.

The rest of this letter is organized as follows: In Section II,
we recall some background materials in fast EDT algorithms
and state-of-the-art mappers. In Section III, we present the
overview and framework of our proposed mapping system. The
technical details of the proposed system are given in Section IV.
The experimental and simulation results that demonstrate the
effectiveness of our system are presented in Section V, while
the result conducted on robotic platforms is given in Section VI.
Finally, we draw some concluding remarks in Section VII.

II. RELATED WORK AND BACKGROUND

In occupancy maps, such as OGM or Octomap, they are
usually discretized into voxel grids that store occupancy in-
formation. Recently, some researchers (see, e.g., [15], [16])
use occupancy maps to perform surface reconstruction and
motion planning at the same time. They have mainly focused
on high-resolution space representation rather than fast onboard
distance checking. Although the constructed maps can be used
in collision checking in corridor-based planners, information on
the distance to obstacles is generally not captured.

For many optimization-based motion planning algorithms, it
is necessary to query the distance between the trajectory and its
nearest obstacle. The demand of multiple queries in each plan-
ning iteration dramatically affects the overall efficiency of the
planning algorithm. One common approach is to pre-compute
an EDT map such that the query process can be executed inO(1)
time. For robots, such as miniature aerial vehicles (MAVs), the
onboard computers generally have limited computational power
due to the very limited payload of the vehicle. The demand on
real-time EDT generation has forced to exclude EDT mappers
in the process (see, e.g., [8], [17]). Similarly, researchers in [5],
[6] only maintain a local and memoryless EDT to represent the
environment around the vehicle, whereas obstacles outside the
local area are ignored. Also, the works in [10], [11] construct
incremental EDT online by careful implementation of dedicated
data structures. More specifically, the method, Voxblox in [10]
builds EDTs out of the so-called truncated signed distance fields
(TSDFs), which contains projected distance information within
a truncation radius near the surface. They utilized the distance
to propagate throughout the whole space in a quasi-Euclidean
metric and finally obtain an EDT map. However, the resulting
EDT map has two sources of errors, which would accumulate
through the propagation. On the other hand, the approach,
FIESTA in [11], uses double-linked lists (DLLs) to record
distance information and improve both mapping precision and

1[Online]. Available: https://github.com/JINXER000/GIE-mapping

Fig. 1. Framework of the proposed system.

efficiency. Although their methods have been implemented on
mobile robots with vision-based sensors, the computation cost
is extremely high when maintaining a global EDT in large areas.

Many studies have been carried out in computational geome-
try and pattern recognition society in developing fast and exact
distance transform algorithms. Saito and Toriwaki [12] devise
an algorithm to produce EDT by independently scanning on
each dimension. Meijster et al. [13] follow the concept of [12]
to enhance the overall performance by additionally utilizing
properties of parabola intersections. These decomposition-based
distance transform algorithms break down the whole mapping
procedure into strips or structuring functions, which is suitable
for parallel computing. However, these methods compute EDT
in a batch of fixed-size memory, which is often not the case in
robotics applications. To address these issues, we employ the
technique of voxel hashing [18] to store the mapping history
and further utilize parallel wavefront to maintain the consistency
between the new incoming data and the existing map. Finally,
we would like to note that our previous work, i.e., the technique,
GPU-LO in [19], only considers the limited observation problem
during the mapping process. We propose in this letter more
wavefronts in the system proposed to tackle problems associated
with real-world mapping tasks.

III. OVERVIEW OF THE PROPOSED SYSTEM FRAMEWORK

In what follows, we present a framework, depicted in Fig. 1,
for generating OGM and EDT through massive parallelization,
which can be divided into three stages: OGM construction, batch
EDT, and global EDT integration. In the OGM construction
stage, the system intakes data from the sensors and builds the
OGM. Position and attitude information are usually estimated
by localization algorithms, while range measurement can be
obtained from onboard range sensors. The range measurement
is then integrated into the global OGM as occupancy probabil-
ities by parallel implementations of ray casting and volumetric
projection.

In the batch EDT stage, the parallel EDT algorithm transforms
the OGM in the euclidean distance metric. Domain knowledge,
such as pre-built OGM or pre-defined forbidden zones, can also
be incorporated into the EDT process. The algorithm scans each
dimension in turn and calculates the distance value for each
voxel.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 00:25:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/JINXER000/GIE-mapping

6896 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Finally, in the global EDT integration stage, the EDT in the
local area is integrated into the hash table that stores global EDT.
After identifying the proper sources, the parallel wavefront is
utilized to propagate actual distance values over both the local
and global EDT. Hence the batch EDT is updated with global
observation, and the history can be preserved in the hash table.

IV. ALGORITHMS AND THE PIPELINE

We present in the following the detailed algorithms for con-
structing OGM, batch EDT and global EDT integration.

A. OGM Construction

Two GPU-accelerated algorithms for OGM construction are
developed. The first one is a massively-parallel version of the
traditional ray casting algorithm [20], while the second one
is a parallel volumetric projection method utilizing the sensor
model [21]. Each voxel of OGM contains its occupancy proba-
bility and its visibility information.

In ray casting, given a pixel at entry (i, j) of a depth image,
the algorithm first transforms the pixel to a 3D voxel Vx,y,z:

Vx,y,z = T −1K−1Di,j,w, (1)

where T is the transformation from the world frame to the sensor
frame, K is the intrinsic parameters of the sensor, and Di,j,w

is the measurement at (i, j) with depth w. Rays are then cast
from the sensor to measured obstacle points and update the
occupancy probability of each voxel along the line. Denoting
the number of points perceived as n, the average travel distance
as l, and the voxel size as q, the computational complexity of
ray casting process is in the orderO(nl/q). One most significant
challenge to parallelize ray casting is that multiple rays might try
to write to the same voxel with different data, leading to serious
synchronization issues of possible memory conflict. We resolve
this problem using CUDA-atomic operations, which forces I/O
operations to be mutually exclusive.

On the other hand, we adopt the volumetric projection method
of [21], which is developed to construct TSDF using optical
triangulation scanners, to build OGMs with sensors such as 2D-
or 3D-LiDAR. Instead of casting rays from pixels in the depth
image to the 3D space, the projection computes the appropriate
sensor value of each voxel in the local volume by simulating the
acquisition process according to the sensor model. Assuming the
range measurement data to be two-dimensional, the projection
from the voxel (x, y, z) to the sensor data entry (i, j) can be
formulated as:

Di,j,w̄ = KT Vx,y,z, (2)

where Di,j,w̄ is the projection onto the sensor with the projected
range w̄. Thereafter, by comparing the projected range w̄ with
the measured range w, occupancy information can be updated.
The detailed procedure can be found in our previous work [19].
In volumetric projection, the computational complexity is pro-
portional to the volume size, i.e., O(N), if there are N voxels
within the local volume. As N is generally huge in many
applications, such an approach is rarely used in CPU. It can be

massively parallelized, however, in GPU without CUDA-atomic
operations.

The choice among various OGM construction methods de-
pends heavily on input data. For example, during the construc-
tion of point cloud, some sensors choose not to generate a point if
the corresponding ray hits no object within the detection range.
If a ray casting method is applied directly, the volume covered
by such a ray will not be updated as known and obstacle-free.
Besides, when the resolution of the range sensor is extremely
high, a down-sampling procedure is required to speed up ray
casting. As such, we give preference to volumetric projection if
intrinsic parameters of the range sensor can be obtained.

B. Batch EDT

Unlike the existing EDT construction methods of [9]–[11],
which propagate distance from newly observed voxels in an
ordered fashion, our method first evaluates EDT in the local
volume with a GPU-based scanning technique without intro-
ducing propagation error. The parallel batch EDT workflow
is given in Algorithm 1, which consists of one initial scan
and several auxiliary scans. We extend the scanning method
of Meijster et al. [13], which performs exact EDT in linear
time, to the 3D space. It decomposes memory into independent
lines and can therefore be parallelized. In fact, any other EDT
algorithm with similar attributes (see, e.g., [14]) can be applied
in our framework. In addition to calculating distance values, our
algorithm tracks the nearest obstacle of each voxel during scans,
which is essential for subsequent wavefront propagation.

In the case of computing a 3D EDT, our objective is to find the
nearest obstacle (i, j, k) with respect to each voxel (x, y, z). In
the initial scanning INITSCAN(), distance values of all occupied
voxels are set as 0, while those of empty voxels are set as
inf. When generating EDT in 1D, each column is required to
be swept forward and backward to compute each grid of its
distance to the nearest obstacle within the same column. The
sweep always starts with a value of 0 at the obstacle and then
increments in empty areas. This procedure can be described as:

G(x, y, z) = min
j∈rows

{|j − y| | G(x, j, z) = 0}, (3)

where G(x, y, z) is the distance value of voxel Vx,y,z when
scanning the first dimension.

Fig. 2 illustrates the auxiliary scan on the X-Y-plane. Every
thread In the auxiliary scan on the X-Y-plane, every thread

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 00:25:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GPU-ACCELERATED INCREMENTAL EUCLIDEAN DISTANCE TRANSFORM FOR ONLINE MOTION PLANNING OF MOBILE ROBOTS 6897

Fig. 2. An illustration of distance functions in AUXSCAN(). When a voxel
Vx,y,z (the red dot) is inspected by the current thread, it will be assigned to one
parabola segment given the lower envelope (pink curve). The blue dots denote
the possible positions of the nearest obstacle of Vx,y,z .

executes a sweeping process along X-axis while fixing the value
on Y- and Z-axes. Assuming the nearest obstacle of voxel Vx,y,z

lies on the column Ci, the distance function of its x value can
be written as

f(x) = (x− i)2 +G(i, y, z)2, (4)

where G(i, y, z) is regarded as a constant since it is already
calculated at INITSCAN(). The distance function of each voxel
can be represented as a parabola shifted by itsG value (as shown
in Fig. 2). Essentially, the calculation of distance values is to find
the lower envelope of the union of all parabolas, which can be
formulated as

F (x, y, z) = min
i∈cols

{(x− i)2 +G(i, y, z)2}, (5)

where cols denotes all columns of the map in the X-Y-plane.
When traversing the row, parabolas are inserted one by one. If the
incoming parabola intersects the current lower envelope, a new
parabola segment will be created, and the lower envelope will be
updated. We refer readers to [13] for details. After calculating
distance values on the X-Y plane, the function AUXSCAN()
can then be adopted to progress on Z-axis in a similar fashion.
Finally, the nearest obstacles in the entire 3D space are captured.

Lastly, each scan is to be followed by a TRANSPOSE()
function. We utilize a tensor transpose library, cuTT [22], to
reorder the memory of the local volume so that coalescing
memory access can be achieved. After all scans, each voxel of the
EDT goes through validation CHECKVALID(). Note that during
the OGM construction, voxels are divided into three categories:
free, occupied, and unknown. A voxel will be further integrated
into the global EDT only if it is ever observed by the robot.

C. Global EDT Integration

With the batch EDT process, the observable region in the
local volume is filled with EDT at each timestamp. However,
the mapping accuracy is greatly affected by dynamic obstacles,
sensor noise, and more severe, limited observation, which can
be illustrated in Fig. 3. More specifically, Fig. 3(a) depicts an
MAV flying in 2D grids. When computing batch EDT in the
local volume (green dotted-line box), the map only reveals the

Fig. 3. Limited observation and dynamic obstacle problems. Batch EDT is
computed within green dotted line. The obstacles are painted in the dark red
grids. The color shade in the observed space represents the distance value. The
blue grids are unobserved area.

Fig. 4. EDT operation speed with different environmental change score.

Fig. 5. The mapping results of different mappers on different platforms. The
bold line in each center of the bar is the standard deviation of time throughout
the run. (a) OGM construction time on PC (b) OGM construction time on Xavier
NX (c) EDT time on PC (b) EDT time on Xavier NX.

information inside the local volume and has no knowledge about
sensed regions in history. In Fig. 3(b), as the vehicle moves to
the right, the obstacles at the left boundary are no longer inside
the updating range and are ignored in the batch EDT process. In
consequence, inconsistencies between the global EDT and the
current local EDT occur. Besides, dynamic obstacles can also
pop up (the light salmon grid at lower right) and disappear (the
grid with red dashed line at upper right) in the field of view.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 00:25:06 UTC from IEEE Xplore. Restrictions apply.

6898 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Fig. 6. The RMS error in different parameter settings. (a) RMS Error w.r.t.
Voxel Size (b) RMS Error w.r.t. Connectivity.

Fig. 7. The average speed and RMS error measured in the entire map. (a)
Global EDT time on Xavier NX (b) Global RMS Error w.r.t. Voxel Size.

Fig. 8. The snapshots and the constructed maps when an MAV flying through
obstacles. The movement is limited to a 2D plane since only a 2D LiDAR is
used.

To tackle the above problems, we combine the batch EDT
with our global integration algorithm. Essentially, this algorithm
extract frontiers (Algorithm 2), and then perform parallel wave-
front (Algorithm 3) separately. Afterwards, the updated EDT in
the current local volume is stored in a GPU hash table [18], which
aims to make the mapping spatial efficient. The updated portion
of hash table on GPU is streamed to CPU; hence the global EDT
on both CPU and GPU are continuously constructed in the run
time.

The source extraction function GETSOURCE() of Algo-
rithm 2 is explained in detail. Line 2 inspects each voxel cur
that lies on the boundary of the batch EDT and its neighbor
nbr that lies outside the local volume. If the nearest obstacle

nbr.parent is inside the local volume, but the distance value of the
neighbor in GPU hash table DIST(GHash, nbr) can be raised
by one obstacle inside the local volume, it implies that nbr.parent
disappears in the robot’s field of view(Line 6). Otherwise, if
an obstacle suddenly pops up in the new observation, it will
lower the distance value of nbr (Line 8). If the nearest obstacle
nbr.parent, which is outside the local volume, can lower the
distance value inside the local volume DIST(E, cur), then cur is
appended to the frontier corresponding to the limited observation
situation (Line 10).

Subsequently, the parallel wavefront function PARWAVE-
FRONT() in Algorithm 3 propagates the accurate distance from
the frontiers to both inside and outside the local volume. The
essential problem of conducting propagation in parallel is that
GPU implementations of wavefront algorithms [23], [24] are
inherently computationally inefficient and can even be slower
than traditional CPU-based algorithms. We tackle this prob-
lem by extending hierarchical frontiers [25], which originally
solves single-source shortest path problems, to our wavefront
context, where a voxel can be visited more than once in one
or more iterations. Algorithm 3 shows the details of the par-
allel wavefront propagation to raise the distance value caused

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 00:25:06 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GPU-ACCELERATED INCREMENTAL EUCLIDEAN DISTANCE TRANSFORM FOR ONLINE MOTION PLANNING OF MOBILE ROBOTS 6899

Fig. 9. OGM and EDT constructed by a UGV in narrow corridors.

by vanished obstacles. In the function CHOOSELEVEL(), the
frontier levels are changed in accordance with the number of
elements of the frontier. If it exceeds the maximum size of a
GPU thread-block, the frontier is stored on the global memory
for multiple thread-blocks to access. Otherwise, they are placed
in the shared memory of one thread-block, which is faster than
on the global memory. In Line 4, each cell cur of the frontier
is placed on a single thread. Starting at Line 5, we enumerate
all the neighbors of cur whose distance value is not raised. If
the nearest obstacle of nbr is found disappeared inside the local
volume, nbr will be propagated by cur and be inserted back into
frontierA. Otherwise, in Line 11, if the current voxel encounters
a neighbor that has a closer obstacle to cur, the algorithm adds
cur to another frontier frontierB for a lowering wavefront. The
algorithm for lowering wavefront is similar to Algorithm 3
except that it propagates the minimum distance value to the
neighborhood. Following the wavefront processing frontierB
outside the local volume, the wavefront of frontierC begins to
propagate global observation into the local volume. We omit this
algorithm in the paper because of page limitation. Interested
readers are referred to the detailed algorithm appended in the
supplementary material.2 Finally, the propagation ends once all
frontiers become empty.

V. EXPERIMENTAL RESULTS

In this section, we conduct a series of thorough tests on three
datasets: the UAV-pillar dataset, the UGV-Corridor dataset, and
the Cow-and-Lady dataset. The UAV-Pillar dataset is synthe-
sized in the Gazebo simulator, where an MAV is flying through
pillars at a constant speed, gathering range information with an
onboard 3D LiDAR. The UGV-Corridor dataset is recorded in a
real-world environment with long and narrow corridors, where
a UGV is equipped with a 16-line Velodyne LiDAR and drives
through pedestrians. The Cow-and-Lady dataset is presented
with the work Voxblox [10], and its data is collected using a
depth camera in a small room.

2[Online]. Available: https://github.com/JINXER000/GIE-mapping/blob/
main/doc/sup-mat.pdf

A. Simulation in an Unexplored Environment

While exploring an unknown space, the robot updates its map
with continuous sensor data stream. The degree of change in the
sensed environment also affects the computational efficiency
of the mapping process. We demonstrate that the speed of our
method is stable while exploring an unknown environment.

To quantify the difference between two sensed environments,
we define the change score V as:

V (t1, t2) = E
i∈S

(|Et1(i)− Et2(i)|), (6)

where S is the set of all grids in the map, i is the index of the
grid, and Et1 , Et2 are respectively the ground truth EDTs at two
distinct timestamps t1, t2 over the global range. The unknown
volume is treated as empty during ground truth EDT calculation.
If there is no difference between the sensed environment at t1
and t2, the score will be 0. The more the sensed environment
changes, the higher the score is. The EDT updating speed versus
the environment change score can be found in Fig. 4, where
the resolution is set as 0.2 m and the local update range is
20 m× 20 m× 6 m. The figure shows that the EDT construction
time continues to increase as the environmental change score
increases. However, the construction speed of our mapper re-
mains almost constant. This is because the traditional mappers
construct EDT purely with wave propagation and rely more on
existing EDT.

B. Experiments on Real-World Datasets

We test each stage of our system separately to show how
differences in techniques that affect performance. First, we show
the necessity of transpose operation in the batch EDT stage. The
coalescing pattern is realized by forcing each thread to access
adjacent memory, and scanning is significantly accelerated. In
this experiment, we test the UGV-Corridor dataset on an Xavier
NX. Table I shows the difference between the approaches with
and without the coalesced memory access. It is observed that the
parallel EDT operation is much faster in the coalescing case.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 00:25:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/JINXER000/GIE-mapping/blob/main/doc/sup-mat.pdf
https://github.com/JINXER000/GIE-mapping/blob/main/doc/sup-mat.pdf

6900 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

TABLE I
BATCH EDT TIME WITH AND WITHOUT COALESCED MEMORY ACCESS

TABLE II
GLOBAL EDT INTEGRATION TIME WITH DIFFERENT PROPAGATION

ALGORITHMS

Apart from the global EDT integration technique proposed
in Section IV-C, we evaluate the methods on the Cow-and-
Lady dataset with different graph traversal algorithms. The
experiments are done on a PC with Intel i5-8300H CPU and
a GTX1060 GPU, mapping 6 m × 6 m × 3 m local range in
0.05 m resolution. In our method, the GPU thread-block limit is
set as 512, and 6-connectivity is used. The results of average
updating time are shown in Table II. The baseline solution
using dynamic brushfire on CPU with the bucket-heap data
structure is adopted, which is similar to the implementation by
Lau et al. [9]. This cache-oblivious data structure minimizes the
I/O operations in theory. Following the work of [26], we have
also implemented a GPU version3 of the bucket heap, aiming
to speed up the computation. However, it turns out that this
data structure is not suitable for GPU since its performance is
even worse than that of the CPU bucket heap. In contrast, our
proposed method is cache-aware and we have the freedom to
decide the parameters catering to different computing platforms.
Other technqiues included for comparison with our works are
the parallel Bellman-Ford method [27], the BFS (breadth-first
search) method accelerated by prefix-sum,4 and the algorithm
with GPU pripority queue.5

The following experiments are conducted to show that
our method outperforms the state-of-the-art EDT mapper, FI-
ESTA [11]. All comparisons are done with the UGV-Corridor
dataset, and the local volume is set to 10 m × 10 m × 1.2 m. For
results on the Cow-and-Lady dataset, we refer interested readers
to the supplemented video6 [19].

First, we evaluate the performance of mappers on different
computing platforms, i.e., a personal computer (with Intel i5-
8300H CPU and a GTX1060 GPU) and an Nvidia Xavier NX.
Since high-frequency local planning is usually limited within a
local volume, the CPU-GPU stream is turned off in our method,
while the accurate EDT inside the local volume is copied to CPU
and broadcast by ROS (although the global EDT in our method

3[Online]. Available: https://github.com/JINXER000/parHeap
4[Online]. Available: https://github.com/rafalk342/bfs-cuda
5[Online]. Available: https://github.com/crosetto/cupq
6[Online]. Available: https://github.com/JINXER000/GIE-mapping

can be directly accessed by a GPU-based motion planner [28]).
In FIESTA, we simply disable the global_update option to
update its EDT only within the local volume, which makes
the condition work in its favor. The frequency of updating the
EDT is 2 Hz, and the resolution is 0.05 m. The elapsed time of
constructing OGM and EDT are measured separately, and the
results are plotted in bar charts as shown in Fig. 5. Obviously,
our method outperforms FIESTA in speed on both platforms.
Furthermore, as discussed in Section V-A, the average EDT time
of our method is expected to be less volatile.

The second set of experiments is performed to investigate
the extent to which hyperparameters, such as voxel size and
connectivity, affect the accuracy of the EDT within the local
volume. The results are shown in Fig. 6. The mappers in this
experiment take measurements from the UGV-Corridor dataset,
construct their own OGM and EDT, and then calculate the
RMS error of the EDT against ground truth. In the ground
truth calculation, a K-D tree of the current OGM constructed
by each mapper is first created. The nearest neighbor of each
voxel is then found and the least distance to the obstacles is
computed. Note that we only focus on the error induced by the
EDT computation and do not include the error caused by the
discretization of OGM. In Fig. 6(a), all samples are tested with
6-connected in propagation. Since FIESTA is more accurate than
Voxblox [10] according to Han et al. [11], we only compare our
method with FIESTA. In both FIESTA and our method, global
update is enabled while only the error in the local volume is
taken into consideration. Also, the RMS error curve of the batch
EDT version of our mapper is plotted to show the necessity
of global EDT integration. We can see that the resolution and
the RMS error are negatively correlated. The mapping accuracy
with respect to connectivity is shown in Fig. 6(b), where the
resolution is fixed as 0.05 m. As the connectivity increases,
the RMS error drops. From similar results in FIESTA, a likely
explanation is that the error is mainly incurred by wavefront
propagation. When the connectivity remains constant, as the
number of voxels increases, error cases in the propagation has a
larger chance to occur. On the other hand, as more neighbors are
considered, the propagation error could be reduced. We refer
interested readers to [29] for a more descriptive explanation.
Compared to FIESTA, our mapper is more accurate in any
situation because the exactness of our batch EDT method helps
to reduce the error.

In addition to the experiments in the local volume, we
compared the mapping performance with Voxblox [10], FI-
ESTA [11], and GPU-LO [19] in terms of global EDT. From
Fig 7(a), although maintaining the global EDT on both GPU and
CPU causes extra overhead in our method, it is negligible com-
pared to the drastically increasing load in FIESTA. Similarly, as
shown in Fig 7(b), when measuring RMS error over the whole
map, the newly proposed technique has outperformed FIESTA
and GPU-LO. The results assure us that our system suffices to
provide global EDT for online global motion planners.

VI. IMPLEMENTATION ON ACTUAL ROBOTIC PLATFORMS

To verify that the entire mapping system can run on
lightweight onboard computers, we conduct an experiment with

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 00:25:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/JINXER000/parHeap
https://github.com/rafalk342/bfs-cuda
https://github.com/crosetto/cupq
https://github.com/JINXER000/GIE-mapping

CHEN et al.: GPU-ACCELERATED INCREMENTAL EUCLIDEAN DISTANCE TRANSFORM FOR ONLINE MOTION PLANNING OF MOBILE ROBOTS 6901

an MAV navigating in an unexplored and cluttered indoor
environment. The motion planner is taken directly from [30],
which requires distance information from EDT. The range mea-
surement comes from a 2D LiDAR mounted on the top of the
MAV. An Intel Real-sense T-265 tracking camera is used to
estimate the current pose of the MAV. All computations are done
on an onboard Nvidia Xavier NX. In Fig. 8, the MAV flies to an
unmapped region while avoiding obstacles. The mapper updates
EDT at 10 Hz within 20 m × 20 m with 0.1 m voxel width,
allowing the motion planner to obtain the required distance
information in real-time.

Lastly, Fig. 9 depicts a global EDT map constructed using
a UGV equipped with a 16-line LiDAR. The experiment was
carried out in an indoor environment with narrow corridors.
We set the resolution as 0.1 m while the local volume is
20 m × 20 m× 1.2 m. Using a computer with Intel i5 9300H
CPU and Nvidia 1660Ti GPU, the vehicle navigates fully au-
tonomously through walking pedestrians. The results show that
our proposed technique is efficient and can be readily adopted
for real applications.

VII. CONCLUSION

In this letter, we have proposed a novel robotic volumet-
ric mapping framework with parallel computing. the proposed
system is capable of generating real-time OGMs and EDTs
that can be used for rapid motion planning. The effectiveness
and the efficiency of our proposed technique has been proved
by various experiments in simulations, datasets, and the real
world problems. With the deployment on the onboard computing
devices of both MAV and UGV, we have demonstrated that our
system can efficiently build incremental EDT for mobile robots
to navigate in unexplored environments.

REFERENCES

[1] M. Lan, S. Lai, T. H. Lee, and B. M. Chen, “A survey of motion and task
planning techniques for unmanned multicopter systems,” Unmanned Syst.,
vol. 9, no. 2, pp. 165–198, 2021.

[2] M. Mondal and S. Poslavskiy, “Offline navigation (homing) of aerial
vehicles (quadcopters) in GPS denied environments,” Unmanned Syst.,
vol. 9, no. 2, pp. 119–127, 2021.

[3] S. Yuan, H. Wang, and L. Xie, “Survey on localization systems and algo-
rithms for unmanned systems,” Unmanned Syst., vol. 9, no. 2, pp. 129–163,
2021.

[4] J. Q. Cui et al., “Search and rescue using multiple drones in post-disaster
situation,” Unmanned Syst., vol. 4, no. 1, pp. 83–96, 2016.

[5] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in Proc. IEEE Int.
Conf. Robot. Automat., 2009, pp. 489–494.

[6] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE Robot.
Automat. Lett., vol. 4, no. 4, pp. 3529–3536, Oct. 2019.

[7] P. Arora and C. Papachristos, “Environment reconfiguration planning for
autonomous robotic manipulation to overcome mobility constraints,” in
Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 2352–2358.

[8] R. Javis, “Distance transform based path planning for robot navigation,”
in Recent Trends in Mobile Robots, Y. F. Zureik, Ed., Singapore: World
Scientific, 1994, pp. 3–31.

[9] B. Lau, C. Sprunk, and W. Burgard, “Improved updating of Euclidean
distance maps and Voronoi diagrams,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2010, pp. 281–286.

[10] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D Euclidean signed distance fields for on-board MAV plan-
ning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 1366–
1373.

[11] L. Han, F. Gao, B. Zhou, and S. Shen, “FIESTA: Fast incremental Eu-
clidean distance fields for online motion planning of aerial robots,” in
Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS), Macau, China, 2019,
pp. 4423–4430.

[12] T. Saito and J.-I. Toriwaki, “New algorithms for Euclidean distance trans-
formation of an n-dimensional digitized picture with applications,” Pattern
Recognit., vol. 27, no. 11, pp. 1551–1565, 1994.

[13] A. Meijster, J. B. Roerdink, and W. H. Hesselink, “A general algorithm for
computing distance transforms in linear time,” in Mathematical Morphol-
ogy and Its Applications to Image and Signal Processing, Berlin, Germany:
Springer, 2002, pp. 331–340.

[14] T. T. Cao, K. Tang, A. Mohamed, and T. S. Tan, “Parallel band-
ing algorithm to compute exact distance transform with the GPU,” in
Proc. ACM SIGGRAPH Symp. Interactive 3D Graph. Games, 2010,
pp. 83–90.

[15] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. Kelly, and S. Leuteneg-
ger, “Efficient octree-based volumetric SLAM supporting signed-distance
and occupancy mapping,” IEEE Robot. Automat. Lett., vol. 3, no. 2,
pp. 1144–1151, Apr. 2018.

[16] N. Funk, J. Tarrio, S. Papatheodorou, M. Popović, P. F. Alcantarilla, and
S. Leutenegger, “Multi-resolution 3D mapping with explicit free space
representation for fast and accurate mobile robot motion planning,” IEEE
Robot. Automat. Lett., vol. 6, no. 2, pp. 3553–3560, Apr. 2021.

[17] L. Wu, K. M. B. Lee, L. Liu, and T. Vidal-Calleja, “Faithful Euclidean
distance field from log-Gaussian process implicit surfaces,” IEEE Robot.
Automat. Lett., vol. 6, no. 2, pp. 2461–2468, Apr. 2021.

[18] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time 3D
reconstruction at scale using voxel hashing,” ACM Trans. Graph., vol. 32,
no. 6, pp. 1–11, 2013.

[19] Y. Chen, S. Lai, B. Wang, F. Lin, and B. M. Chen, “A GPU mapping system
for real-time robot motion planning,” in Proc. IEEE Int. Conf. Real-time
Comput. Robot., 2021, pp. 762–768.

[20] J. Amanatides et al., “A fast voxel traversal algorithm for ray tracing,”
Eurographics, vol. 87, no. 3, pp. 3–10, 1987.

[21] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proc. 23rd Annu. Conf. Comput. Graph.
Interactive Techn., 1996, pp. 303–312.

[22] A.-P. Hynninen and D. I. Lyakh, “cuTT: A high-performance tensor
transpose library for CUDA compatible GPUs,” 2017, arXiv:1705.01598.

[23] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the GPU using CUDA,” in Proc. Int. Conf. High Perform. Comput., 2007,
pp. 197–208.

[24] Y. Deng, B. D. Wang, and S. Mu, “Taming irregular EDA applications on
GPUs,” in Proc. Int. Conf. Comput. Aided Des., 2009, pp. 539–546.

[25] L. Luo, M. Wong, and W.-m. Hwu, “An effective GPU implementation of
breadth-first search,” in Proc. IEEE Des. Automat. Conf., 2010, pp. 52–55.

[26] J. Iacono, B. Karsin, and N. Sitchinava, “A parallel priority queue with
fast updates for GPU architectures,” 2019, arXiv:1908.09378.

[27] F. Busato and N. Bombieri, “An efficient implementation of the Bellman-
Ford algorithm for Kepler GPU architectures,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 8, pp. 2222–2233, Aug. 2016.

[28] H. Lu, Q. Zong, S. Lai, B. Tian, and L. Xie, “Flight with limited
field of view: A parallel and gradient-free strategy for micro aerial
vehicle,” IEEE Trans. Ind. Electron., vol. 69, no. 9, pp. 9258–9267,
Sep. 2022.

[29] O. Cuisenaire and B. Macq, “Fast Euclidean distance transformation by
propagation using multiple neighborhoods,” Comput. Vis. Image Under-
standing, vol. 76, no. 2, pp. 163–172, 1999.

[30] S. Lai, M. Lan, and B. M. Chen, “Model predictive local motion planning
with boundary state constrained primitives,” IEEE Robot. Automat. Lett.,
vol. 4, no. 4, pp. 3577–3584, Oct. 2019.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 10,2022 at 00:25:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

