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ARTICLE INFO ABSTRACT

Keywords: Deep learning breakthrough stimulates new research trends in civil infrastructure inspection, whereas the lack
Defect datasets of quality-guaranteed, human-annotated, free-of-charge, and publicly available defect datasets with sufficient
Infrastructure defect inspection amounts of data hinders the progress of deep learning in defect inspection. To boost research in deep

Classification
Segmentation and detection
Learning-based approaches

learning-based visual defect inspection, this paper first reviews and summarizes 40 publicly available defect
datasets, covering common defects in various types of buildings and infrastructures. The taxonomy of the
datasets is proposed based on specific deep learning objectives (classification, segmentation, and detection).
Clarifications are also made for each dataset regarding its corresponding data volume, data resolution, data
source, defect categories covered, infrastructure types focused, material types targeted, algorithms adopted
for validation, annotation levels, context levels, and publication license for future utilization. Consequently,
the summarized defect datasets offer around 13.38M labeled images, cover more than 5 defect types, 5
infrastructure types, 5 material types, and 3 levels of image context. Given that the crack is a common interest
in civil engineering, this paper further combines existing datasets with self-labeled crack images to establish
a benchmark dataset providing more than 15,000 and 11,000 labeled images for crack classification and
segmentation, respectively. Based on the established crack dataset, experiments are conducted for classification,
segmentation, and the subsequent non-maximum suppression-based detection tasks. The proposed multi-branch
self-attention module and multi-stage-fused attentional pyramid network have been successfully adapted into the
state-of-the-art (SOTA) classification network-Swin Transformer and segmentation networks including DeepLab
V3+, DenseNet, and Full Resolution ResNet. The resulting classification network achieves 88.0% accuracy, and
the adapted segmentation models reach 77.8%, 77.6%, 76.9% mloU (mean Intersection over Union), respectively.
Moreover, a comprehensive comparison between 11 SOTA classification algorithms and 12 SOTA segmentation
algorithms has been conducted. The algorithms proposed in this work are shown to achieve satisfactory
performance with an acceptable efficiency on modern graphic processing units. Detailed suggestions are
provided for constructing high-quality datasets and inspection algorithms. Finally, this paper remarks on the
quantity, diversity, difficulty, and scalability of the reviewed defect datasets, feasibility on robotic platforms,
superiority of proposed algorithms, and criticality of algorithm comparison results, formulating a solid baseline
for future defect inspection research.

1. Introduction and the functional safety of civil structures. The subsequent rehabil-
itation measures can be then carried out according to the inspec-

Civil infrastructures such as pavements, bridges, buildings, tun- tion results. Periodical defect inspection is often conducted through
nels, and dams suffer from performance degradation caused by struc- Non-Destructive Testing (NDT), which can avoid the physical damage

ture deterioration, external loads, weather impact, poor workmanship,
poor design, and natural disasters [1-3]. Periodical defect inspection
is a necessary and pivotal measure to ensure the energy efficiency

caused by the traditional sample collection process [4]. NDT techniques
include infrared thermography (IRT) [5], photogrammetry [6], laser
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scanning [7], impact echos (IE) [8], and ground-penetrating radars
(GPR) [9]. Currently, periodical manual defect inspection is predomi-
nant in infrastructure maintenance, where inspectors make use of NDT
devices to evaluate structural health [10]. However, inspectors may
be exposed to complex site environment with potential health hazards
and safety risks [11]. Furthermore, such subjective inspection can
be error-prone [12], labor-intensive [13], and time-consuming [14],
not conducive to the subsequent rehabilitation [15]. For example,
traditional methods make wrong predictions easily under not well-
controlled illuminations, and cost more manpower to accomplish the
inspection task. Manual inspections often span several weeks to months,
resulting in outdated evaluation at the time of rehabilitation.

Due to the aforementioned limitations, more and more researchers
tend to incorporate machine learning and deep learning algorithms into
automatic defect inspection solutions. Especially in recent years, deep
learning has become the main stream solution due to its unprecedented
breakthrough. Deep learning-based solutions are evolving to automate
the defect inspection efficiently [16-19]. Nevertheless, compared to the
successful application of deep learning in natural language processing,
facial recognition [20], image processing [21,22], and 3D vision for
autonomous aerial and ground vehicles [23-25], research in deep
learning-based defect inspection is still restricted. The most critical
reason is the lack of quality-guaranteed, human-annotated, free-of-
charge, and publicly available defect datasets, which are beneficial to
training highly accurate neural networks for defect inspection based on
supervised learning [26]. Although there exist reviews focusing on NDT
devices for building inspection [4] and segmentation algorithms for
pavement crack detection [27], they neither provide a comprehensive
review of the datasets spanning different infrastructure and defect types
nor a systematic comparison of deep learning algorithms for visual
inspection. Thus, it is essential and meaningful to make a comprehen-
sive review and systematic comparison of existing publicly available
datasets and algorithms to boost deep learning-based defect inspection.
To the authors’ best knowledge, this paper is the first comprehensive
review of publicly available civil infrastructure inspection datasets,
and the first that provides a systematic review and comparison of pub-
licly available state-of-the-art (SOTA) algorithms for surface defect
inspection.

Motivated by the aforementioned difficulties, this paper intends
to promote research in deep learning-based defect inspection by con-
ducting a comprehensive review on existing publicly available defect
datasets with a systematic comparison between SOTA algorithms for
the task of classification, segmentation, and detection on a constructed
crack dataset. The major contributions of this paper are as follows:

» A comprehensive review of the existing publicly available datasets
for deep learning-based visual defect inspection.

+ A systematic comparison of the SOTA algorithms for defect clas-
sification, segmentation and detection, with crack as the typical
research interest for a case study.

» Proposed deep learning-based network architectures based on the
adaptations to SOTA algorithms for crack classification, segmen-
tation and subsequent detection with non-maximum suppression.

+ Suggestions on developing high-quality defect datasets and defect
inspection algorithms.

The remainder of this paper is organized as follows. Section 2 is
the literature review methodology. Section 3 shows the review results
of the datasets and corresponding methods. The self-established crack
dataset, results of the comparison between our methods and SOTAs
for crack classification, segmentation, and detection are presented and
discussed in Section 4. Based on the review and comparison, Section 5
points out existing barriers to building a high-quality and large-scale
defect dataset and offers corresponding suggestions. Also, the system-
atical suggestions on methodology to conduct highly-effective defect
recognition are provided. Conclusions and future work are presented
in Section 6 to form a comprehensive baseline for studies on civil
infrastructure defect inspection.
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2. Literature review methodology

A comprehensive review of the literature related to publicly avail-
able datasets for deep learning-based visual defect inspection was
conducted using Google Scholar. Based on keywords searching, a con-
siderable amount of literature most relevant to the research interest
was acquired. The literature was filtrated according to the following
procedures: (1) Title, abstract, and conclusion screening; (2) Dataset
public availability checking; (3) Full-text screening to extract crit-
ical features of the datasets. Specifically, the following features of
the defect dataset were selected and summarized, they are: data vol-
ume, data resolution, data source, defect categories covered, infrastructure
types focused, material types targeted, annotation levels, context levels,
publication license, algorithms adopted for validation, algorithm training
strategies, and data augmentation methods. These critical features are of
the utmost concern when developing deep learning-based solutions for
defect inspection. The main focus of the review is on visual inspection
datasets, i.e., datasets with optical images supplemented with IRT
images. Datasets with data from other NDT devices (see e.g., IE and
GPR) are beyond the scope of this review.

3. Review results on datasets and corresponding methods

Based on the above literature review on publicly available defect
datasets with optical images supplemented with IRT images. Alto-
gether 40 defect datasets are summarized, illustrated, and demon-
strated. Fig. 1 shows the taxonomy of summarized defect datasets
based on different aspects. For each dataset, its corresponding data
volume, data resolution, data source, defect categories covered, infras-
tructure types focused, material types targeted, algorithms for valida-
tion, annotation levels, image context levels, and publication license
are clarified. In this paper, the taxonomy of these datasets is elabo-
rated as per specific deep learning objectives (annotation levels). The
datasets are grouped into classification-oriented, detection-oriented,
and segmentation-oriented, with patch-level, bounding-box-level, and
pixel-level annotation respectively.

As demonstrated in Fig. 1, the summarized defect datasets cover
various types of infrastructure such as pavements, bridges, buildings,
tunnels, and dams with different materials such as concrete, asphalt,
steel, masonry, and wood. These datasets cover the most common
defect types: crack, spalling, delamination, corrosion, and efflorescence.
As to data types, most datasets utilize optical images (in terms of grey-
scale and color images), with IRT images [26,28], IE signals [29,30],
and GPR signals [30] as alternatives. Optical images are typically
used to detect surface defects of the structure, while IRT images, IE
signals, and GPR signals can reveal subsurface defects. Besides, these
datasets vary in the level of image context information, i.e., the pixel
level, object level, and scene level. The data contained in different
datasets are collected via hand-held sensors, robotic platforms, or
UAV platforms. In particular, compared to the hand-held cameras and
wall-climbing robots, the UAV platform combined with visual-inertial
odometry offers a feasible solution for defect data collection and local-
ization in the GPS-denied environment, e.g., defect inspection under the
bridge [10,31]. Sections 3.1-3.3 illustrate classification, segmentation,
and detection-oriented datasets with optical images supplemented with
IRT images respectively. Within each subsection, the defect datasets
are further grouped based on the type of targeted civil infrastructure.
Section 3.4 describes the status and trend of data collection and labeling
procedures.

3.1. Classification-oriented datasets

In this subsection, each dataset described is labeled either at the
image level or at the patch level (if multiple image patches are cropped
from the raw image) to conduct multi-class classification between
different defect categories or binary classification of a particular defect



Table 1

A summary of publicly available classification-oriented defect datasets (first sorted by infrastructure type, then sorted in chronological order).

Dataset Year Num.of image Resolution Data source/platform Defect type Structure type Material type Annotation level Image context License
patches
a. Crack
Cameras on eround b. Pothole Private License,
GAPs-v1 [13] 2017 6.3 M 64 x 64 . 8 c. Inlaid patch Pavement Asphalt Patch Level Pixel Level for Academic Use
vehicle .
d. Applied patch Only
e. Open joint
GAPs-v2 [14] 2019 6.7 M 64 X 64 to 256 X 256 Cameras on ground Same as GAPs-vl Pavement Asphalt Patch Level Pixel Level Private License,
vehicle for Academic Use
Only
a. Crack
CBID [32] 2017 1028 229 x 229 Not clarified b. Water seepage Bridge Concrete Patch Level Pixel Level CC BY 4.0 License
c. Spalling, etc.
Xu [33] 2019 6069 224 x 224 Camera on UAV Crack Bridge Concrete Patch Level Pixel Level CC BY 4.0 License
a. Crack, Efflorescence
Philipp [34] 2019 3607 Multiple Hand-held camera b. Ge.:r.leral defects (e.g. Bridge Concrete and Steel Patch Level Pixel Level CC BY 4.0 License
graffiti, moss, etc.)
c. Scaling, spalling
d. Exposed
reinforcement, Rust
staining
KrakN [12] 2020 16114 224 x 224 Hand-held cameras Thin crack(< 0.2 mm) Bridge Concrete Patch Level Pixel Level CC BY 4.0 License
DCTCD [35] 2021 250 512 x 512 Cameras on UAV Thin crack (>=0.1 mm) Bridge Concrete Patch Level Pixel Level GNU General
Public License
v3.0
CCIC [36] 2018 40000 227 x 227 Hand-held camera Crack Building Concrete Patch Level Pixel Level CC BY 4.0 License
Crawled from internet . o Concrete, Steel, Masonry, Pixel Level .
¢ — Ner [3] 2020 36413 448 x 448 Hand-held cameras Spalling, etc. Building and Wood Patch Level Object & Scene Level CC BY-NC-SA 4.0 License
CSSC [10] 2017 45024 130 x 130 Crawled from internet Crack and Spalling Bridge and Building Concrete Patch Level Pixel Level Not Clarified
44263 100 x 100
SDNET2018 [37] 2018 56092 256 x 256 Hand-held camera Crack Bridge, Building and Pavement Concrete Patch Level Pixel Level CC BY 4.0 License
Qurishee [26] 2020 2088 4032 x 3024 and Not clarified Crack Not clarified Concrete Patch Level Pixel Level CC BY 4.0 License
5312 x 2988
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Fig. 1. Taxonomy of defect datasets.

between defect and non-defect categories. It should be noted that the
classification datasets can also be used to detect defects based on
the sliding window technique, e.g., Histogram of Oriented Gradients
(HOG) Detector [38], Deformable Part-based Model (DPM) [39], and
Overfeat detector [40]. In general, the sliding window technique is
to slide a window to go through all possible locations and scales
in the image and further classify each image patch bounded by the
window to check whether the image patch contains the target object
(the defect in our case) or not [41]. In this manner, the detection
problem can be converted to a classification problem, and the defect
in the original image can be detected. Table 1 shows the summary of
publicly available classification-oriented defect datasets. Each dataset’s
corresponding data volume, data resolution, data source, defects cat-
egories covered, infrastructure types focused, material types targeted,
annotation level, and image context level are clarified. These datasets
are firstly sorted according to the corresponding infrastructure type and
then sorted in chronological order. Table 2 shows the corresponding al-
gorithms used for validating the datasets. For each dataset, its network
structures and training strategies are listed. Fig. 2 shows exemplary
images for each classification-oriented dataset.

3.1.1. Pavements

The German Asphalt Pavement Distress (GAPs) datasets have three
versions, i.e. GAPs-v1 [13], GAPs-v2 [14], and GAPs-10 m [15]. GAPs-
v1 [13] dataset is the first standardized, quality-controlled, patch-level
annotated, free of charge, and publicly available dataset with a decent
size enough to train neural networks for asphalt pavement distress clas-
sification. The data collection procedure strictly follows the regulations
developed by the German Road and Transportation Research Associa-
tion (FGSV). The images are downward-facing road images collected
by a surface camera system composed of two photogrammetrically
calibrated cameras. The GAPs-vl dataset contains 1,969 grey-scale
images (8-bit) comprising 1,418 images for training, 51 images for
validation, and 500 images for testing. Each resulting image has a
resolution of 1920 x 1080, with a pixel resolution of 1.2 mm x 1.2 mm.
Each high-resolution image is annotated to impose 64 x 64 bounding
boxes enclosing pavement distress (defined by FGSV), which covers
cracks, potholes, inlaid patches, applied patches, and open joints. Each
image is further sliced into multiple 64 x 64 image patches. Thus, the
dataset has 4.9 M patches for training, 200 k patches for validation, and
1.2 M patches for testing. Cracks are the dominant distress class in the
GAPs-v1 dataset. Various crack types are included: single or multiple
cracking, longitudinal or transversal cracking, alligator cracking, and

sealed cracks. The GAPs-v1 dataset is dedicated to the binary classifica-
tion of pavement distress. All of the aforementioned damage classes are
labeled as ‘Distress’, while intact road patches are labeled as ‘Normal’.

GAPs-v2 [14] is an improvement on the GAPs-v1 dataset, it provides
more data, refined annotations, and more context compared to GAPs-
v1. Five hundred additional images with a size of 1920 x 1080 are
collected following the regulations developed by FGSV. Altogether
2,468 grey-scale images (8 bit) are further divided into a training set
(1,417 images), a validation set (51 images), a validation-test set (500
images), and a test set (500 images). Based on these images, 692,377
and 6,035,404 image patches are extracted for road distress and intact
road, respectively, to form the entire dataset. The respective proportion
of intact roads, cracks, applied patches, inlaid patches, potholes, and
open joints in the full dataset are 89.71%, 7.28%, 1.72%, 0.75%,
0.30%, and 0.24%. GAPs-v2 also refines annotations by providing a
smaller bounding box for non-damage space and solving conflicting
annotations. Moreover, GAPs-v2 offers multiple patch sizes (64 x 64
to 256 x 256) with more image context since different image patch
sizes will influence the trade-off between damage detection quality and
inference speed of the neural network [14]. In addition to the above
refinements, GAPs-v2 contains a CIFAR-like [42] or MNIST-like [43]
subset consisting of 50,000 patches for training and 10,000 patches
for validation, validation-test, and test. The subset’s proportion of
intact road, cracks, applied patches, inlaid patches, potholes, and open
joints are 60%, 20%, 10%, 5%, 3% and 2% respectively. The publicly
available GAPs-v2 dataset is still dedicated to the binary classification
of pavement distress, i.e., ‘Distress’ or ‘Normal’. GAPs-10 m [15] dataset
provides pixel-level annotation for pavement distress segmentation.
This dataset will be illustrated in Section 3.2 of this survey.

3.1.2. Bridges

Cambridge Bridge Inspection Dataset (CBID) [32] is a dataset for
evaluating the classification performance of different bridge defects.
The dataset contains 1,028 image patches with a resolution of 229 x
229. The dataset is further partitioned into two subsets containing
bridge patches with (337 patches) and without (691 patches) defects.
However, the dataset does not explicitly illustrate the data collection
procedure and defects classes contained in the dataset.

Xu et al. [33] build up a dataset for binary classification of concrete
bridge crack. The original dataset [49] contains 2068 crack images
collected by a UAV equipped with a camera that has a resolution of
1024 x 1024. To improve the classification robustness of the network,
crack images with bridge shadings, strong light, and water stains are
wittingly included in the dataset. Each image in the original dataset is



G. Yang et al.

Table 2
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A summary of network architectures and training strategies adopted by the corresponding classification-oriented datasets.

Dataset Year  Network structure Transfer learning  Trained from scratch ~ Data augmentation
a. ASINVOS Net [13]
APs-v1 [1 201
GAPs-v1 [13] 017" b, ASINVOS-mod Net [13] x v X
a. ASINVOS Net [13] . . . .
- 1
GAPs-v2 [14] 2019 b. ResNet-10, —18, —34, —50 [44] v v Adversarial training, Rotation, Translation
a. Xu’s Net (with ASPP Module) [33]
Xu [33] 2019  b. ResNet-18, —34, —50 [44] X v Cropping, Flipping
c. VGG-16, —19 [45]
Philipp [34] 2019 - Inception V3 [46] 4 X X
KrakN [12] 2020 - KrakN Net [12] v X Cropping
a. AlexNet [47]
b. VGG-16, —19 [45] .
CCIC [36] 2018 c. GoogLeNet [48] v X Cropping
d. ResNet-50, —101, —152 [44]
a. VGG-16, —19 [45] .
¢ — Net [3] 2020 b. ResNet-50 [44] v X Cropping
CSSC [10] 2017 - VGG-16 [45] 4 X Cropping, Picking, Rotation, Sampling
SDNET2018 [37] 2018 - AlexNet [47] v v Cropping

further cropped into multiple 512 x 512 image patches. After filtering
blurred patches, a new dataset containing 6,069 patches is obtained.
The acquired dataset comprises 4,058 crack images and 2,011 back-
ground images. The number of patches for the training and validation
sets is 4,856 and 1,213, respectively. Afterward, Xu et al. [33] further
crop all the patches into smaller 256 x 256 patches and flip the patches
from the training set in order to meet the input requirement of the
network.

Philipp et al. [34] provides the first patch-level-annotated dataset
for multi-classification of concrete bridge defects covering cracks, ef-
florescence, scaling, spalling, and general defects (e.g., graffiti and
moss). To consider possible defect combinations required by inspection
guidelines, they also provide two other datasets for the binary classifi-
cation of the exposed reinforcement and rust staining (corrosion). The
total number of image patches in the multi-classification dataset and
two binary-classification datasets are 3,607. The detailed distribution
of the data volume for each defect type in the corresponding dataset
is clarified in [34]. The patches do not have a consistent resolution
since they are acquired from 38,408 images by slicing and labeling the
defect area, with 21,284 images collected in the on-site experiment and
17,124 images provided by authorities. The image collection procedure
adopts a 42-Mp camera and takes the shooting range, on-surface res-
olution (0.1 mm), camera focus, lighting condition, and surface angle
between the subject surface and the camera optical axis into account
for high-quality images.

KrakN [12] dataset is dedicated to thin crack detection. For the
training set, over 900 pictures with a size of 4248 x 2850 are collected
from a cracked bridge pillar in good lighting conditions and at a close-
up shooting distance (20-30 cm). Image cropping and labeling are
conducted within 4 h by using a self-developed semi-automatic tool.
Only cracks and background surfaces are labeled as two classes. Af-
terward, 8,057 image patches are acquired for cracks and background
classes, respectively. Over 3,000 images are collected from multiple
scenarios and cameras for the validation set.

Drone Captured Tiny Crack Dataset (DCTCD) [35] consists of 250
images with complex textures (scrawls, surface corrosion, and efflo-
rescences). DCTCD concentrates on bridge thin crack detection. All of
the crack images are collected by a drone under bridge beams and
pier inner walls. With controlled camera shooting distance, angles,
and lighting conditions, the range of image pixel resolution is 0.1-
0.2 mm, which is beneficial to thin crack detection. Image color jitter,
ISO noises, defocus blur, and motion blur are involved to imitate real
application scenarios. The whole dataset is further split into five subsets
according to different edge complexity factors defined in [35].

3.1.3. Buildings

Concrete Crack Images for Classification (CCIC) [36] dataset pro-
vides 40,000 image patches with a size of 224 x 224, cropped from
500 high-resolution (4032 x 3024) images. The original images are
collected from walls and floors of multiple concrete buildings, with var-
ious concrete surface finishes (plastering, exposed, and paint). During
the image collection procedure, the camera directly faces the subject
surface, and the data collection is finished in a single day to ensure
consistent image illumination conditions.

Pacific Earthquake Engineering Research (PEER) Hub ImageNet (¢-
Net) [3] provides 36,413 image patches with building defects, which
are collected and cropped from 100,000 images collected from the field
experiment and the Internet. Each image is labeled with 8 attributes re-
lated to local and global building information. Afterward, eight subsets
are extracted for the classification of each attribute respectively.

3.1.4. Aggregated

Concrete Structure Spalling and Crack (CSSC) [10] dataset is the
first released dataset for concrete spalling and crack detection. The
initial dataset consists of 1,232 images totally, with 278 spalling im-
ages and 954 crack images. All of the images are collected from the
Internet through keyword searching. These images cover several types
of infrastructure (e.g., bridges and buildings). Thus, the CSSC dataset is
an aggregated dataset. The dataset also provides two subsets containing
image patches with sizes of 100 x 100 and 130 x 130 for each defect class.
Each patch in the subsets is annotated either as a ‘True’ or ‘False’ label,
where the ‘True’ label stands for the patch with defects and the ‘False’
label represents the patch without defects or the patch with defects
but does not meet the pixel threshold defined in [10]. For concrete
spalling, the number of patches in the two subsets are 19,123 (7,376
for ‘True’, 11,747 for ‘False’) and 19,924 (8,574 for ‘True’, 11,350
for ‘False’) respectively. For concrete crack, the amounts of patches
in the two subsets are 25,140 (13,448 for ‘True’, 11,652 for ‘False’),
25,100 (13,422 for ‘True’, 11,678 for ‘False’) respectively. In addition
to the patch-level annotated subsets, the CSSC dataset also annotates
the initial images at pixel level according to the suggestions from the
experts in civil engineering.

Structural Defects NET (SDNET2018) [37] is a patch-level annotated
dataset for concrete crack classification. Altogether 230 images with
sizes of 4068 x 3456 are acquired through a 16-MP camera. These images
cover reinforced concrete building walls (72 images), bridge decks
(54 images), and unreinforced concrete pavements (104 images). The
working distance between the camera (without zoom) and the subject
is 500 mm during the image acquisition. Each image is partitioned into
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GAPs-v1
GAPs-v2

CBID

Philipp

KrakN

DCTCD

CCIC

Phi-Net

CSSC

SDNET2018

Qurishee

Fig. 2. Exemplary images from datasets for infrastructure defects classification. From
top row to bottom row, they are image patches from GAPs-vl [13] & GAPs-v2 [14],
CBID [32], Xu [33], Philipp [34], KrakN [12], DCTCD [35], CCIC [36], ¢-Net [3],
CSSC [10], SDNET2018 [37], and Qurishee [26] respectively.

multiple 256 x 256 image patches. Each image and patch cover a rough
area of 1000 mm X 850 mm and 60 mm X 60 mm, respectively. Besides,
each patch is annotated as ‘Cracked’ or ‘Uncracked’. After partition
and annotation, the respective amounts of patches for bridge decks,
building walls, and pavements are 13,620 (2,025 for ‘Cracked’, 11,595
for ‘Uncracked’), 18,138 (3,851 for ‘Cracked’, 14,287 for ‘Uncracked”),
and 24,334 (2,608 for ‘Cracked’, 21,276 for ‘Uncracked’). On the whole,
the dataset contains 8,484 patches with crack and 47,608 patches
without crack. In addition to the sufficient data volume, the dataset
also provides the range of crack width (0.06 mm-25 mm) covered,
which will benefit the deep neural network to identify crack with
size variety. Besides, the dataset intentionally incorporates images with
various obstructions, including shadows, stains, edges, rough surface
finishes, inclusions, voids, joints, and surface scaling, improving the
robustness and generalization ability of the deep neural network real
applications.
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Qurishee et al. [26] proposed a dataset about concrete cracks. This
dataset has 1,499 crack images and 589 non-crack images. The data are
with two resolutions, 4032 x 3024 and 5312 x 2988. The resolutions of
the data are relatively high and can show details that are not easily
observed. However, equipment used to collect the data, algorithms
for validating the dataset, and infrastructure type targeted are not
specified.

3.2. Segmentation-oriented datasets

In this subsection, each dataset illustrated is annotated at the pixel
level to conduct defects segmentation. Compared to the bounding-box-
level annotation, pixel-level annotation can localize the defects more
accurately and clearly. Table 3 shows the summary of publicly available
segmentation-oriented defect datasets. These datasets are firstly sorted
by corresponding infrastructure type, and then sorted in chronological
order. Table 4 shows the corresponding algorithms and training strate-
gies adopted for validating the datasets. Fig. 3 show exemplary images
for datasets targeting at different types of infrastructure.

3.2.1. Pavements

There are pixel-level-annotated datasets that are firstly used by
traditional machine learning algorithms. They are Sylvie [50], Crack-
Tree [51], Amhaz [52], and CrackForest Dataset (CFD) [53]. These
datasets are dedicated to the crack segmentation of asphalt pavement.
Due to their positive influence on the subsequent deep learning-based
methods, corresponding attributes are also summarized and listed in
Table 3. Since this paper focuses on datasets for deep learning, readers
can find a more detailed description of the aforementioned datasets in
the corresponding papers [50-53].

For deep learning-based crack segmentation of asphalt pavement,
Yang et al. propose the Crack500 dataset [54,55] which has pixel-
wise annotation and comprises 500 crack images with a resolution of
2000 x 1500. Each image is further cropped into 16 non-overlapping
image patches, whereas patches in which the number of crack pixels is
smaller than a certain threshold are discarded. Furthermore, based on
GAPs-v1 [13] dataset, Yang et al. provide the GAPs384 dataset [55],
in which 384 pavement images (1920 x 1080) containing only crack
distress are selected and annotated at pixel level.

EdmCrack600 [56-58] dataset offers 600 backward-facing images
with pixel-level annotation for pavement crack segmentation. All im-
ages are with a resolution of 1920 x 1080 and extracted from videos
recorded by a sports camera mounted on the rear of a moving vehicle.
The images vary in weather conditions, environmental effects, blurring
effects, and noise.

Based on the GAPs-v1 [13], and GAPs-v2 [14] dataset, Ronny et al.
propose GAPs-10 m [15] dataset annotated at the pixel level. The
original dataset comprises 394 high-resolution downward-facing pave-
ment surface images collected by following government regulations.
All images are taken at different road sections to cover pavement
distresses and object classes. 23 pavement distresses and object classes
are defined by experts. The original dataset is then partitioned into
a training set, a validation set, and a test set. As a subset of the
validation set, the publicly available GAPs-10 m dataset consists of 20
images (complying with German federal regulations) with a consistent
resolution of 5030 x 11505. It is named after GAPs-10 m since a single
image covers 10 m in the image height direction. The dataset offers
certain challenges, such as image artifacts caused by harsh sunlight and
image stitching and the difficulty of distinguishing certain distress from
the intact pavement surface.

Hong et al. [59] propose two datasets for highway crack segmen-
tation. The first dataset is annotated at the pixel level based on the
public dataset Aerial Crack Dataset [85], which is only annotated at the
bounding-box level. After relabeling and cropping, the resulting dataset
contains 4,118 images with a resolution of 512 x 512. To validate
the generalization ability of their proposed model, they constructed a
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Table 3
A summary of publicly available segmentation-oriented defect datasets (first sorted by infrastructure type, then sorted in chronological order).
Dataset Year Num.of image Resolution Data source/Platform Defect Type Structure Type  Material Type Annotation Level Image Context License
patches
Sylvie [50] 2011 42 Multiple Cameras on ground vehicle Crack Pavement Asphalt Pixel Level Pixel Level Not Clarified
CrackTree [51] 2012 206 800 x 600 Not clarified Crack Pavement Asphalt Pixel Level Pixel Level Not Clarified
Ambhaz [52] 2016 68 Multiple Cameras on ground vehicle Crack Pavement Asphalt Pixel Level Pixel Level Not Clarified
CFD [53] 2016 118 480 x 320 Hand-held camera Crack Pavement Asphalt Pixel Level Pixel Level Not Clarified
Crack500 [54,55] 2019 3368 640 x 360 Hand-held camera Crack Pavement Asphalt Pixel Level Pixel Level Not Clarified
GAPs384 [55] 2019 384 1920 x 1080 Cameras on ground vehicle Crack Pavement Asphalt Pixel Level Pixel Level Private License, for
Academic Use Only
EdmCrack600 [56-58] 2020 600 1920 x 1080 Camera on ground vehicle Crack Pavement Asphalt Pixel Level Scene Level CC BY-NC-ND 4.0
License
GAPs-10 m [15] 2021 20 5030 x 11505 Cameras on ground vehicle 23 distresses Pavement Asphalt Pixel Level Scene Level Private License, for
Academic Use Only
Highway-crack [59] 2021 5275 512 x 512 Cameras on UAV Crack Pavement Asphalt Pixel Level Scene Level Not Clarified
CCIC-600 [36] 2019 600 227 x 227 Not clarified Crack Bridge Concrete Pixel Level Pixel Level CC BY 4.0 License
BCL [60] 2021 11000 256 x 256 Hand-held cameras Crack Bridge Concrete, Masonry, and Steel Pixel Level Pixel Level CCO 1.0 License
CCSSS [61] 2021 440 512 x 512 Not clarified Corrosion Bridge Steel Pixel Level Pixel & Object Level CCO 1.0 License
LCW [62] 2021 440 512 x 512 Not clarified Corrosion Bridge Steel Pixel Level Scene Level CCO 1.0 License
DeepCrack [63] 2019 537 544 x 384 Not clarified Crack Building Concrete, Asphalt Pixel Level Pixel Level Private License, for
Academic Use Only
. e o . Pixel Level GNU General Public
Bai-2020 [64] 2020 853 256 x 256 Not clarified Crack Building Concrete Pixel Level Object & Scene Level License v3.0
Masonry [65] 2021 11491 224 x 224 g:;:gl.(}i(ll(fjrzr:r;:;::net Crack Building Masonry Pixel Level Pixel & Object Level ]_G‘ilggls(ze‘r:;fgl Public
Ren [66] 2020 919 512 x 512 Hand-held camera Crack Tunnel Concrete Pixel Level Pixel Level MIT License
Sandra (IRT) [28] 2020 517 320 x 240 Hand-held thermal cameras Crack, Spalling, Dam Concrete Pixel Level Pixel Level Not Clarified
Patches,
Delamination
UAV75 [67] 2019 75 512 x 512 Camera on UAV Crack Not Clarified Not Clarified Pixel Level Pixel Level GNU General Public
License v3.0
CSD [68] 2020 11298 448 x 448 Crawled from internet Crack Multiple Multiple Pixel Level Pixel Level Not Clarified
. . . . o . . Pixel Level .
Bai-2021 [69] 2021 2229 Multiple Crawled from internet Crack, Spalling Building, Bridge Concrete Pixel Level Object & Scene Level MIT License
CCCD [70] 2021 10995 448 x 448 Crawled from internet Crack Multiple Multiple Pixel Level Pixel Level CCO 1.0 License
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Table 4

A summary of network architectures and training strategies adopted by the corresponding segmentation-oriented datasets.

Dataset Year Network structure Transfer learning Trained from scratch Data augmentation
. - Morph [50] (Morphological Analysis) . .
1 2011 Not Applicabl Not Applicabl
Sylvie [50] 0 - GaMM [50] (Multiscale Analysis and Local Crack ot Applicable ot Applicable x
Modeling)
CrackTree 2012 - CrackTree [51] (Minimum Spanning Trees) Not Applicable Not Applicable X
[51]
Ambhaz [52] 2016 - Minimal Path Selection [52] Not Applicable Not Applicable X
CFD [53] 2016 - CrackForest [53] (Random Structured Forests) Not Applicable Not Applicable Re-defined crack tokens
Crack500 2019 - Feature Pyramid and Hierarchical Boosting Network X v Croppin
[54,55] [55] (FPHBN) pping
GAPs384 [55] 2019
EdmCrack600 2020 - ConnCrack [57] (cWGAN-based training) X v Flipping, Cropping
[56-58]
GAPs-10 m a. U-Net [71], U-Net [71] (Xception [72]) Flipping, Patch rotation, Patch
2021 X v .
[15] scaling
Modifying brightness, contrast, noise
b. An Encoder (Resnet-18, —50 [44])-Decoder (PSPNet
[73]) Network
Highway-crack 2021 - U-Net [71] (Lighter Encoder and Attention Module) X v Flipping, Rotation
[59]
a. U-Net [71] (Pruned Version)
BCL [60] 2021 b. FCN [74] (VGG [45]) X v Cropping
c. DeepLab V3 [75]
CCSSS [61] 2021 - DeepLab V3+ [76] X 4 Resizing
LCW [62] 2021 - DeepLab V3+ [76] X v Resizing
DeepCrack 2019 - DeepCrack [63] X 4 Rotation, Cropping, Flipping
[63]
Bai-2020 a. ResNet-152 [44] ..
[64] 2020 b. U-Net [71] v X Resizing
a. VGG-16 [45], ResNet-34, —50 [44]
b. DenseNet-121, —169 [77], Inception V3 [46]
c. MobileNet [78], MobileNet V2 [79] .
Masonry [65] 2021 d. DeepLab V3+ [76], FCN [74] (VGG-16 [45]) / X Cropping
e. U-Net [71] (with various backbones)
f. FPN [80] (with various backbones)
Ren [66] 2020 - CrackSegNet [66] v X Rotation, Translation, Scaling,
Shearing
a. VGG-16 [45]
b. ResNet-18 [44] Cropping, Resizing
?;;1;1 ra (IRT) 2021 c. ResNet-50 [44] X v Reflection, Translation
d. MobileNet V2 [79]
e. Xception [72]
UAV75 [67] 2019 - CrackNausNet [67] v X Resizing, Cropping, Rotation,
Flipping
a. U-Net [71] (VGG-16 [45]) ..
CSD [68] 2020 b. U-Net [71] (ResNet-101 [44]) / x Resizing
Bai-2021 a. Mask R-CNN [81] (Cascade)
[69] 2021 b. Mask R-CNN [81] (APANet [82,83]) X v Flipping, Rotation, Cropping
c. Mask R-CNN [81] (HRNet [84])
CCCD [70] 2021 - DeepLab V3+ [76] X v Resizing
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Fig. 3. Exemplary images from datasets for pavement defects segmentation. From top row to bottom row, they are image patches and corresponding segmentation labels from
Sylvie [50], CrackTree [51], Amhaz [52], CFD [53], Crack500 [54,55], GAPs384 [55], EdmCrack600 [56-58], GAPs-10 m [15], Highway-Crack [59], CCIC-600 [36], BCL [60],
CCSSS [61], LCW [62], DeepCrack [63], Bai-2020 [64], Masonry [65], Ren [66], UAV75 [67], CSD, Bai-2021 [69], CCCD [70], Sandra [28] respectively. Each row represents two

pairs of image patches with corresponding segmentation labels.

second dataset comprising 1,157 highway crack images collected by a
UAV. These images are taken after a 6.4-level earthquake in China and
annotated at the pixel level, with an image resolution of 5 cm and a
UAV flight height of 200 m.

3.2.2. Bridges

CCIC-600? is an extension of the CCIC [36] dataset, aiming at
concrete crack segmentation. Six hundred image patches are selected
from the CCIC dataset and annotated at the pixel level. Bridge Crack
Library (BCL) [60] dataset consists of 11,000 image patches with a
size of 256 x 256 for bridge crack segmentation. This dataset covers
three types of bridge materials, i.e., concrete, masonry, and steel. All
the crack image patches are cropped from 1,180 raw crack images,
with 1,000 nonsteel crack images and 180 steel crack images. Nonsteel
crack images are collected by bridge inspection engineers through field
inspection on 50 in-service bridges in China, with crack width within
millimeters. Steel crack images are provided by the first International
Project Competition for Structural Health Monitoring (IPC-SHM) [86].
The dataset can be divided into three subsets, with 5,769 nonsteel
cracks, 2,036 steel cracks, and 3,195 crack-like motifs (cropped from

2 CCIC-600

25,000 non-crack images for steel structures), respectively. A large pro-
portion of crack-like motifs (such as shadows, stains, and water spots)
are introduced intentionally to resolve the class imbalance between
nonsteel crack and steel crack and improve model robustness.
Corrosion Condition State Semantic Segmentation (CCSSS) [61]
dataset is devoted to the segmentation of bridge condition state. The
dataset comprises 440 high-resolution images with a resolution of 512 x
512. The images are acquired from the bridge inspection reports and
finely annotated at the pixel level by following government guidelines.
This dataset is the first dataset to grade the corrosion state of bridges.
The corrosion state is semantically annotated in four-level, i.e., good,
fair, poor, and severe. The Labeled Cracks in the Wild (LCW) [62]
dataset is dedicated in scene-level bridge crack segmentation. The
dataset consists of 3,817 images collected from bridge inspection re-
ports. For the training purpose, all the images are resized to 512 x 512.
All of the original images and resized images are publicly available.

3.2.3. Buildings, tunnels, and dams

DeepCrack [63] dataset is composed of 537 images for building
surface crack segmentation. All the images are with a resolution of
544 x 384. This dataset covers multiple surface textures (bare, dirty,
and rough), structure materials (concrete and asphalt), and crack scales
(1 pixel to 180 pixels), which makes it be a challenging dataset. Bai-
2020 [64] is a dataset for building crack localization. In addition to
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the images with pixel-level and object-level context information, the
dataset contains some images at the structural (scene) level. The dataset
contains 853 images with a resolution of 256 x 256.

The Masonry [65] dataset pays attention to cracks on the masonry
walls of the buildings. The dataset contains 469 raw images either ac-
quired from the Internet or captured by field experiments from several
buildings in the Netherlands. Each image is divided into multiple image
patches. The dataset includes images with varying scales, resolutions,
crack appearances, and types of noisy backgrounds for more robust
segmentation.

Ren et al. [66] provides a crack segmentation dataset focusing on
tunnel environment. The raw images with a size of 4032 x 3016 are
captured in a tunnel from China. Each raw image is further cropped
into multiple image patches. Data augmentation techniques such as
rotation, translation, scaling, and shearing are adopted to increase data
volume.

Infrared images can be used to reveal subsurface defects. San-
dra [28] proposes a segmentation dataset of white-hot infrared images
containing four defect labels: crack, spalling, patches, and delami-
nation. All images contain delamination and cracks, although some
images do not contain spalling and patches. There are totally 517
images collected by FLIR and the resolution of data is 320 x 240.
All annotations of these infrared images are labeled based on the
corresponding optical images and engineering knowledge.

3.2.4. Aggregated

UAV75 [67] is a crack segmentation dataset emphasizing the images
collected by the UAV. Compared with images captured by hand-held
digital cameras and smartphones, the images acquired by the UAV
may suffer from low resolution, low crack intensity, and re-occurring
planking patterns. The authors notice that planking patterns may result
in false-positive results. The planking class is added to the label space
to distinguish planking patterns from cracks.

Bai-2021 [69] is an extension of the dataset [64]. They all focus on
extreme events such as major earthquakes. Compared with the former
version, Bai-2021 includes more images (2,229 additional images) with
various resolutions from 147 x 288 to 4600 x 3070, more scenes
including buildings and bridges, and more structural failures including
cracks and spalling. Data augmentation is used to increase data volume.

Crack Segmentation Dataset (CSD)® is an aggregate dataset that
merges 300 self-collected images (labeled at the pixel level) with several
other crack segmentation datasets [10,51-55,63]. The dataset contains
11,298 images with a consistent resolution of 448 x 448. These images
taking several cases into account, they are images containing pure
crack, pseudo crack, crack with noise, crack with moss, and crack in
large context. There is a high degree of similarity between CSD and
Concrete Crack Conglomerate Dataset (CCCD) [70], which is also a
conglomeration of several other crack segmentation datasets [10,51—
55,63].

3.3. Detection-oriented datasets

The classification-oriented datasets (see Section 3.1) with images
annotated at the image level can be used to conduct defect detec-
tion based on the sliding window techniques. Besides, there also ex-
ists detection-oriented defect datasets with images annotated at the
bounding-box level to conduct multi-defect detection. Road Damage
Dataset 2018 (RDD-2018) [87], RDD-2019, RDD-2020, and Pavement-
Image-Dataset (PID) [92] are for pavement damage detection, while
COncrete DEfect BRidge IMage (CODEBRIM) dataset [93] focuses on
the multi-defect detection of concrete bridges. Compared to the defect
segmentation, bounding-box-level annotation is beneficial to the real-
time defect detection and deployment. Table 5 shows the summary of
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publicly available detection-oriented defect datasets. These datasets are
firstly sorted by corresponding infrastructure type, and then sorted in
chronological order. Table 6 shows the corresponding algorithms and
training strategies adopted for validating the datasets.

3.3.1. Pavements

Maeda et al. publish Road Damage Dataset 2018 (RDD-2018) [871],
which is the first dataset for large-scale road damage detection. The
dataset comprises 9,053 frontal-facing road images which contains
15,435 damage instances in Japan. All images with a uniform reso-
lution of 600 x 600 are collected by a smartphone installed on the
dashboard of the vehicle. These images have diverse background in
terms of weather and surface conditions, which resembles the real-
world scenarios. This dataset covers 8 damage classes such as cracks
and corrosions, which is defined by government guidelines. A more
detailed illustration of damage type and distribution can be found
in [87]. For each damage in the image, the damage class and corre-
sponding bounding box location are labeled. The number of images in
the training set and validation set is 7,240 and 1,813 respectively. RDD-
2018 was used as the benchmark dataset in Road Damage Detection
and Classification Challenge (RDDCC) [104].

RDD-2019 [88] dataset is an extension and refinement of the RDD-
2018 dataset. Compared to RDD-2018, RDD-2019 increases the number
of annotated frontal-facing road images from 9,053 to 13,135, resulting
in 30,989 road damage instances. All the newly added images with a
resolution of 600 x 600 are still collected in Japan through a vehicle-
mounted smartphone. Besides, all the images contained in RDD-2018
are reviewed, quality-controlled, and reannotated by road managers. A
new class called ’utility hole’ is added into the RDD-2019 dataset to
discriminate the damage class ‘pothole’ from it. To expand the size of
dataset, the authors apply progressive growing Generative Adversarial
Network (PG-GAN) to generate synthetic images with ‘pothole’ damage
class, more results can be found in [88]. However, the RDD-2019
dataset only includes real images.

RDD-2020 [89] is an extension of RDD-2019 [88] by incorporating
additional road images taken in the Czech and India, which makes this
dataset more heterogeneous and conducive to network robustness. It
offers 26,336 frontal-facing road images collected by a vehicle-mounted
smartphone in Japan, Czech, and India. These images contain more
than 31,000 road damage instances with a wide variety of light and
weather conditions. The whole dataset is partitioned into a training
set and two test sets, their respective amounts of images contained
are 21,041, 2,631, and 2,664. Images for Japan and Czech have a
consistent resolution of 600 x 600, while for India, the image resolution
is 720 x 720. This dataset is dedicated to road damage detection, unlike
RDD-2018 and RDD-2019, it only covers 4 damage classes, i.e. potholes,
alligator cracks, longitudinal cracks, and transverse cracks. Some extra
damage classes are included in images collected in Japan for data
consistency, more details can be found in [90]. For each damage in the
image from the training set, the damage class and its corresponding
bounding box coordinates are labeled. RDD-2020 dataset has also been
used as the benchmark dataset by Global Road Damage Detection
Challenge (GRDDC) [105], performance of state-of-the-art solutions can
be found in [91].

Pavement Image Dataset (PID) [92] collects 7,237 images of 22
different pavement sections in the USA from Google street view. The
images, with a 640 x 640 resolution, come from two types of camera
views, including a wide view and a top-down view. Images from the
wide view are used to detect pavement distresses, and top-down view
images are employed to calculate the crack density for automated
pavement rating in the future. The pavement distresses in this dataset
consist of 9 crack types, including reflective, transverse, block, lon-
gitudinal, alligator, sealed transverse, sealed longitudinal, and lane
longitudinal cracking, along with potholes. The numbers of images used
in training and testing are 5,789 and 1,448, respectively, and the tool
used to annotate images is python-based Openlabeling software.
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Table 5

A summary of publicly available detection-oriented defect datasets (first sorted by infrastructure type, then sorted in chronological order).

Dataset

Year

Num.of image
patches

Resolution

Data source/platform

Defect type

Structure type

Material type

Annotation level

Image context

License

RDD-2018 [87]

RDD-2019 [88]

RDD-2020 [89-91]

PID [92]

Qurishee (IRT) [26]

CODEBRIM [93]

GC10-DET [94]

2018

2019

2020

2020

2020

2019

2020

9053

13135

26336

7237

108 (IRT)
2620

1590

3570

600 x 600
600 x 600
600 x 600
720 x 720

640 x 640

up to 1024 x 768
up to 838 x 809

up to 6000 x 4000

up to 2048 x 1000

Camera on ground vehicle
Camera on ground vehicle
Cameras on ground vehicle
Crawled from internet

Not clarified
Hand-held phone and UAV

Hand-held cameras
Cameras on UAV

Hand-held cameras

Cracks and corrosions
(8 damage classes)

Cracks and corrosions
(9 damage classes)
Cracks and potholes
(4 damage classes)
Cracks (9 damage
classes)

Cracks
Cracks (18 damage
classes)

Cracks and corrosions
(5 damage classes)

Cracks and corrosions
(10 damage classes)

Pavement

Pavement

Pavement

Pavement

Pavement

Bridge

Industrial plant

Asphalt

Asphalt

Asphalt

Not clarified

Asphalt

Concrete

Steel

Bounding-box Level

Bounding-box Level

Bounding-box Level

Bounding-box Level

Bounding-box Level

Bounding-box Level

Bounding-box Level

Scene Level

Scene Level

Scene Level

Scene Level

Pixel Level

Pixel level
Object & Scene Level

Pixel Level

CC BY-SA 4.0 License

CC BY-SA 4.0 License

CC BY-SA 4.0 License

Not Clarified

CC BY 4.0 License

Private License, for
Academic Use Only

CC BY 4.0 License
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A summary of network architectures and training strategies adopted by the corresponding detection-oriented datasets.

Dataset Year  Network structure Transfer learning Trained from scratch Data augmentation
a. SSD [95] (Inception V2 [96]) ..
DD-201 201 Fl
RDD-2018 [87] 018 1, SsD [95] (MobileNet [78]) x v PPIS
a. SSD [95] (ResNet-50 [44]) . .
RDD-2019 [88] 2019 b. SSD [95] (MobileNet [78]) X v PG-GAN [97], Poisson blending [98]
RDD-2020 [89-91] 2020 - SSD [95] (MobileNet [78]) v X X
a. YOLO V2 [99]
2
PID [92] 2020 b. Fast R-CNN [100] / x
Qurishee (IRT) [26] 2020 - Faster R-CNN [101] Not clarified Not clarified Not clarified
a. MetaQNN [102] .
CODEBRIM [93] 2019 b. Efficient Neural Architecture Search [93] X / Cropping
a. SSD [95] (VGG-16 [45])
b. Faster R-CNN [101] (ResNet-50 [44])
GC10-DET [94] 2020 c¢. YOLO V2 (DarkNet-19) [99] v X Patches, Scaling
d. YOLO V3 (DarkNet-53) [103]

o

. SSD [95] (VGG-16 [45])

Qurishee et al. [26] propose a pavement crack detection dataset
with 336 test images and 2,284 training images. All the images are
collected by a hand-held mobile phone camera and a drone’s camera.
There is a total of 11 categories of flexible pavement cracks and 7
classes of rigid pavement cracks. These images are labeled by the open-
source tool Labellmg with more than 50 h of manual labor. In addition,
they also propose a very small but high-resolution infrared dataset with
24 test images and 84 training images.

3.3.2. Bridge

COncrete DEfect BRidge IMage (CODEBRIM) dataset [93] focuses
on the defects of concrete bridges. The images with defects are captured
from 30 bridges by UAV and can be divided into five classes: crack,
spallation, exposed reinforcement bar, efflorescence, and corrosion. In
order to detect minor defects from different scales, cameras with high
resolution (up to 6000 x 4000) and large focal lengths are adopted
to collect images. One highlight of this dataset is that the images are
labeled with multi-class, and the defects in the same image can be
overlapped. There are only 1,590 high-resolution images in this dataset,
but the total number of labeling box are 7,806, 5,354 of which are
overlapping defect and 2,506 of which are non-overlapping.

3.3.3. Industrial plant

GC10-DET [94] dataset pays attention to the surface defect in a
real industrial plant. The images with a resolution of 2048 x 1000 are
captured by a set of linear array CCD cameras with a direct current
light source to avoid the presence of stripes produced by an alternating
current. The pixel size of the camera is 7.04 pm X 7.04 pm. Compared
with the NEU-DET dataset [106], GC10-DET has more data and a
greater variety of defect types: punching, weld line, crescent gap, water
spots, oil spot, silk spot, inclusion, rolled pit, crease, and waist folding.
With real scenes, high-precision collection tools, and high-resolution
data, the Al models can be greatly enhanced and highly robust after
training on this dataset.

3.4. Data collection and labeling

The data collection and labeling procedure can be summarized as
follows: they are both labor-intensive and costly procedures. The first
step in data collection is to survey the target site in advance to make the
collection plan and select the collection equipment. Weather, light, and
equipment all affect the quality of the dataset. After collecting the origi-
nal data, it is necessary to clean it and eliminate similar and ambiguous
data artificially. The next step is data labeling. Although some mature
methods have been proposed for the labeling of classification and pixel-
level segmentation [117] tasks, and some commercial software has

12

been deployed on the website for user-friendly labeling, the efficient
labeling strategy for large-scale unlabeled datasets is still in its in-
fancy. This subsection illustrates and summarizes several labeling tools
and their properties, including the annotation level, input data type,
export format, labeling automation level, deployment configuration,
and public accessibility in Table 7. The most commonly used open-
source annotation tool is also compared with another semi-automatic
open-source annotation tool to highlight the efficiency of automatic
labeling.

With the popularity of deep learning-based image processing, many
open-source annotation tools have emerged, including Ybat [107], a
web-based annotation tool specially designed for the YOLO [99,103,
118] series algorithm. And the classic annotation tool Labellmg [108],
the most widely used open-source annotation tool LabelMe [109],
VGG Image Annotator (VIA [110]) developed by VGG [45] network
team that can efficiently annotate faces, and VoTT [111], a web-based
annotation tool developed by Microsoft team. In addition to the above
common open-source manual annotation tools, many semi-automatic
annotation methods are also free-of-charge. PixelAnnotationTool [112]
is a semi-automatic annotation tool for semantic and instance segmen-
tation annotation tasks. CVAT [113] is a powerful and community-
established semi-automatic annotation tool that supports exporting 18
different data formats. During the annotating process, the target needs
to be clicked by several key points, and then CVAT will automatically
annotate the target. Although the functions of open-source annotation
tools can meet our daily needs, they are still inferior to commercial
annotation tools. RectLabel [114] is an annotation tool aiming at ma-
cOS users. RectLabel is unique in its ability to split images into uneven
pieces, which the user can adjust to speed up automatic annotation.
Labelbox [115] and V7 Darwin [116] are commercial annotation tools
that can be used by simply logging into their web pages. Both can
invite teammates to join in for annotation, orchestrate complex work-
flows, visualize annotation results and processes, and optionally train
a specific network to improve the accuracy of automated annotation.
In addition to the open-source and commercial tools, some researchers
attempt to utilize machine learning algorithms for automatic labeling
to get preliminary labeling results which can be then manually refined
for accurate labeling in a much shorter time [119-121].

To compare the efficiency of the purely manual and the semi-
automatic open-source tools, LabelMe (manual) is evaluated against
CVAT (semi-automatic). The efficiency of CVAT is twice that of La-
belMe, especially for some ordinary objects, such as vehicles and
pedestrians. The automatic labeling algorithm identifies the object
in two seconds with adjustable selection box details. The automatic
labeling algorithm is prone to errors for defect datasets, such as cracks
and spalling. However, in our experiment on the self-collected data,
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Table 7

A summary of manual and semi-automatic labeling methods of classification, segmentation and detection (first sorted by the payment situation, then sorted by the degree of automation of the labeling).

Name

Annotation level

Other types of input

Format of the exported dataset

Automatic labeling

Local deployment

Web-based deployment

Free-of-charge

Ybat [107]

Labellmg [108]

LabelMe [109]

VIA [110]

VoTT [111]

PixelAnnotationTool [112]

CVAT [113]

RectLabel [114]

Labelbox [115]

V7 Darwin [116]

Bounding-box Level

Bounding-box Level

Bounding-box Level
Pixel Level

Bounding-box Level

Bounding-box Level
Pixel Level

Pixel Level

Bounding-box Level
Pixel Level

Bounding-box Level
Pixel Level

Bounding-box Level
Pixel Level

Bounding-box Level
Pixel Level

X

v (video)

v (audio, video)

v (video)

v (video)

v (video)

v (audio, video, text)

v (video)

a. Pascal VOC format
b. YOLO format
c. COCO format

a. Pascal VOC format
YOLO format
. CreateML format

o o

. Pascal VOC format
COCO format

. COCO format
b. VIA format
c. CSV format

o

o

a. Pascal VOC format
b. TFrecord format

c. VoTT format
d. CSV format

- Only mask images (PNG files)

a. Pascal VOC format
b. YOLO format

c. COCO format

d. TFrecord format

e. CVAT format

(and other 13 formats)
a. Pascal VOC format
b. YOLO format

c. CreateML format

d. CSV format

- Only JSON files containing labels

a. Pascal VOC format
b. YOLO format

c. CVAT format

d. Darwin format

X

X

v (Win, Linux, macOS)

v (Win, Linux, macOS)

v (Win, Linux, macOS)

v/ (Win, Linux, macOS)

v (Win, Linux, macOS)

v (macOS)

v

v
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Fig. 4. The detailed structure of the attentional module to be integrated into the Swin Transformer [122]. In subfigure (a), we have illustrated the network component of the
original attention-based network. In subfigure (b), we have shown the multi-branch self-attention module we proposed to integrate into the current Swin Transformer [122] to boost
the performance. Summarizing the whole network in the dash-line rectangle as a new module and integrating it into subfigure (c) as a self-attention transformer, the performance

of the original transformer can be improved according to our experiments.
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Fig. 5. The detailed structure of the classification network adopted by us adapted
from the Swin Transformer [122]. The network can achieve SOTA performance with
the fine-tuning.

long cracks are divided into many small parts for labeling and the
boundaries of labeled polygons are modified in a centralized way,
saving about one-third of the time for manually labeling an RGB image
full of cracks with a resolution of 6000 x 4000.

4. Comparison of SOTA algorithms for crack inspection

Before illustrating our algorithm comparison in detail, it is note-
worthy that there exist recently published valuable works performing
crack classification and segmentation tasks in different scenarios com-
paratively. Hallee et al. [123] pay their attention to masonry crack
detection, where they systematically compare the domain adaption
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performance between the convolutional neural network (CNN) and tra-
ditional machine learning methods based on handcrafted features, in-
cluding Support Vector Machine (SVM), Random Forest (RF), Gaussian
Process (GP), Multi-Layer Perceptron (MLP), Naive Bayes (NB), and
Quadratic Discriminant Analysis (QDA). The critical conclusion [123] is
that successful domain adaption is possible in both the CNN and simple
classifiers if trained on a wide range of masonry shapes, colors, and
lighting conditions, complying with our conclusion in Section 5.1.1,
Section 5.2.3, and Section 6.1.

Loverdos et al. [124] are dedicated to automating brick and crack
segmentation of masonry walls. Regarding brick segmentation, ex-
tensive comparison experiments are conducted among networks, in-
cluding U-Net, DeepLab V3+, LinkNet, and Feature Pyramid Network
(FPN), all with various configurations. As to crack segmentation, SOTA
architectures (with multiple backbones, training strategies, and loss
functions) including DeepCrack, DeepLab V3+, Fully Convolutional
Network (FCN), U-Net, and FPN are systematically compared to identify
the best model configuration. The results are impressive when the brick
segmentation and crack detection outputs are coupled. The essential
remarks [124] are that deep learning methods allow for improving
model performance by increasing the dataset used for training and
validation, and the model performance can continually be enhanced
by acquiring additional samples of the classified elements and desired
features. These valuable remarks show the necessity and importance
of our summarized datasets. Rezaie et al. [125] focuses on the crack
segmentation of the stone masonry walls. They systematically compare
a threshold method based on Digital Image Correlation (DIC) results
and a deep learning-based method named TernausNet. The remarks are
on the superiority of the deep learning method and its potential benefits
for DIC methods and predictive models for damage level evaluation.

Based on the previous literature review, it can be found that crack is
the dominant defect category in common structures [1,13]. Its recogni-
tion is significant for a variety of applications such as the fault analysis
and safe operations of public infrastructures such as bridge [126],
building [36], and the electrical power grid [127]. Therefore, this
research further develops a self-established crack classification and
semantic segmentation dataset, based on which SOTA inspection al-
gorithms are compared. We have developed an adapted Swin Trans-
former [122] from previous cutting-edge algorithms for crack classifi-
cation as shown in Fig. 5, and proposed a multi-layer fused attentional
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pyramid network for crack semantic segmentation as shown in Fig. 6,
respectively. Extensive experimental results show that the proposed
approaches achieve comparable performance and efficiency to current
SOTA approaches. Moreover, comprehensive comparisons between ex-
isting SOTA algorithms for crack classification and segmentation are
conducted to provide a comprehensive baseline for future research in
infrastructure defect inspection.

4.1. Our self-established crack classification and semantic segmentation
dataset

A large-scale dataset for both crack classification and segmentation
tasks is first established. Data for the classification task contain more
than 15,000 images with image-level labels (crack or non-crack), while
those for semantic segmentation contain more than 11,000 images with
detailed pixel-level labeling. For crack semantic segmentation, 42%
of images are derived from the internet and the remaining 58% is
collected in our on-site inspection. And the corresponding percentage
for classification is 36% and 64%, respectively. The preliminary version
of our dataset has been released online at the following link to benefit
the research community for defect recognition.” Typical results are also
shown on the website attached. Currently, this dataset can be used to
perform crack recognition on the pavements effectively, and will be
enriched further for building and tunnel inspections. In this way, it can
be used for general UAV-based infrastructure inspections.

4.2. Comparison of SOTA algorithms for crack classification

This subsection focuses on the task of crack classification, predicting
whether a specific image contains a crack or not. Based on our self-
established dataset, the existing SOTAs methods are compared, and
the evaluation metric of the classification efficiency and effectiveness
is detailed. Extensive experiments show that both the adapted Swin
Transformer shown in Fig. 5 and the traditional convolutional network
ResNeSt [128] show the best performance for crack classification. How-
ever, the ResNeSt [128] shows greater performance in the inference
speed, and is more favorable in real industrial applications.

4.2.1. The definition of evaluation metric of crack classification

For the crack classification problem, the accuracy can be simply
defined as follows:
Number of Correct Predictions
Total Number of Predictions

For the binary classification, accuracy can be further defined in
terms of positives and negatives as follows:

TP+TN @
TP+TN+FP+FN

Where TP, TN, FP, FN stand for True Positives, True Negatives,
False Positives, and False Negatives, respectively. Accuracy is the most
direct metric for the one-hot prediction task of image-level crack clas-
sification, and also the fairest. Then, we use the accuracy to make a
comprehensive comparison between the SOTA algorithms for the task
of crack classification. Also, the validation inference time on the tested
images with the resolution of 1500 x 960 is used to evaluate the
efficiency of diverse SOTA methods.

It is noteworthy that the accuracy metric can be misleading if there
exists a class imbalance in the dataset. In our training dataset for
crack classification, crack and non-crack images are balanced with the
proportion of 41.3% and 58.7%, respectively. In the image classifica-
tion task of more than 2,000 images, the indeterminacy caused by the
class imbalance can be neglected if the training set is not extremely
imbalanced. Various techniques [129] can be adopted encountering
class imbalance, such as undersampling, oversampling, merging similar
classes, and data augmentation.

(€Y

Accuracy =

Accuracy =

4 OurEstablishedDatasetsPreliminaryVersion
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4.2.2. Algorithms illustration

The network architectures are depicted and detailed in Figs. 4
and 5 for our crack classification-based crack detection applications.
For the network settings, in this work, we only utilize the Swin
Transformer [122]-based approach as an example. The transform-
ers [122,130] are the most up-to-date transformer-based network ar-
chitectures for the general vision task of image classification. The
transformer [130]-based network architecture has recently surpassed
the CNN network architectures with its massive network architecture
consisting of fully-connected network layers with a huge number of
parameters. We firstly illustrate the basic ideas of our proposed multi-
branch attentional transformers. As shown in Fig. 4, in subfigure (a), we
have illustrated the network component of the original attention-based
network. In subfigure (b), we have shown the proposed multi-branch
self-attention module to leverage the semantic correlation among var-
ious transformed feature representations for image patches. Finally, it
can be integrated into the current Swin Transformer [122] to boost the
performance. Also, the multi-branch self-attention module in subfigure
(b) has the advantages of a larger receptive field and multi-branch
concatenated feature representations, which are both significant to
better modeling the contextual information within the image. After
summarizing the whole network in the dash-line rectangle (subfigure
(b)) as a new module and integrating it into subfigure (c) as a self-
attentional transformer, the performance of the original transformer
can be improved according to our experiments. The sliding window-
based approach is utilized for the final crack classification-based crack
detection.

It should be noted that the original Swin Transformer [122] can-
not handle the high-resolution testing image in training, which will
result in out-of-memory for ordinary GPU devices. Therefore, we have
cropped the original crack images into 60 x 60 sub-images for the ease
of training with transformer [122]. As shown in Fig. 5, our framework
consists of data augmentation, the encoder part for feature embed-
ding, and the final transformer. To deploy the computation-intensive
transformer [122]-based models for crack classification, images should
firstly be split/cropped into sub-patches to make it memory-efficient
and computationally tractable for the original GPU such as NVIDIA
GTX 1080 with 8 GB memory. The data augmentation is also of great
significance to the final performance, for the fact that it can create
more training samples for the better instance discrimination at the
feature level. In this work, we have proposed to use the following
four kinds of data augmentation. The crop and replicate, the edge
enhancement, the rotating, flipping, resizing, and finally, the wavelet
transform. The encoder of the network converts the input image to
a feature embedding. Finally, the sub-images are fed into the Swin
Transformer for the crack classification task.

We have also utilized the current popular architectures such as the
ResNeXt-101 [131], the ResNeSt-101 [128] for doing the crack classi-
fications. Also, the crack classification task takes longer in validation
time as shown in Table 8 because we directly tested on the images
with a large resolution of 1500 x 960. We have also tested and uti-
lized the up-to-date transformer-based network architectures. Table 8
shows the related results. Note that our utilized Swin Transformer
is also based on the widely adopted attentional feature correlation
mining networks [132], which is the fundamental component of all
transformer-based networks.

4.2.3. Detailed partitions of our dataset for crack classification

For the task of crack classification, the training set consists of 10,000
images. Moreover, the validation and test sets are composed of 4,500
and 500 images, respectively. For the large memory consumption of
the transformer and the fairness of comparisons, we have utilized
120 x 100 sub-image for the training, and we have used 500 images
with a resolution of 1500 x 960 for testing.
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Table 8
The comparison of crack classification results between SOTA algorithms for the tested
images with the resolution of 1500 x 960.

Network architecture Accuracy/%  Validation time /ms
AlexNet [47,134] 81.8 698.6
VGG-16 [45] 86.4 678.5
VGG-19 [45] 87.1 689.6
GoogLeNet [48] 83.6 875.5
ResNet-101 [44] 87.2 617.5
ResNeXt-101 [131] 87.9 1213.5
ResNeSt-101 [128] 88.2 1063.8
Swin Transformer-Base [130] [122]  87.7 2382.3
Swin Transformer-MB [130] [122] 88.0 2587.5
ShuffleNet [135] 85.7 1567.7
ShuffleNet V2 [136] 86.3 1645.8

4.2.4. Experimental settings

For the task of crack classification, we train all compared networks
in a unified setting. We train networks for 500 epochs on a single
NVIDIA 2080Ti GPU with a batch size of 32 during training and 16
during testing. The initial learning rate is 5 x 10~3 and decays by five
times every 100 epochs. We select 500 epochs because training for 500
epochs is enough for the convergence of networks. Finally, we select the
network weights that have the best performance on the validation set to
do testing on the test set. We implement it in Tensorflow and optimize it
with Adam optimizer [133]. Training the models to convergence takes
approximately 9.5 h for our self-established dataset with various crack
patterns for the ResNeXt-101 [131] for example. All the models are
trained from scratch for the task of crack classification. Furthermore,
all our results are obtained from the results three times on average.
Therefore, we have guaranteed fairness and robustness in all of our
comparisons. In the future, we will also explore the possibility of large-
scale pre-training and transfer learning-based approaches to achieve the
relatively large-scale crack classification of more than a million images.
However, although the performance of the large-scale pre-training is
very prominent, the efficient network architectures and the efficient
training strategies must be explored to put the large-scale pre-training
into practice. Otherwise, it will remain a complex problem for academic
research without the availability of high computational power.

4.2.5. The optimization loss function

For the optimization loss function, for simplicity and to guarantee
the fairness of comparisons, we have adopted the unified cross-entropy
optimization loss. The cross-entropy loss was used for the network
training of all networks, including the SOTA networks and our proposed
ones, which can be formulated as follows:

L== Y[y - log(p(x") + (1 = y(x™™) - log(1 = p(x'")]

xIn

3)

where p(x!") represents the predicted possibility of whether an input
image x!” is a crack image, and y is the label of the input image. For
crack image, y = 1. For non-crack image, y = 0. The loss can be utilized
for the end-to-end training of the network framework. And finally, we
present our experimental results.

4.2.6. Experiment results of crack classification

We conduct experiments to test the performance of various crack
classification networks. The networks we tested have covered a broad
range, which consists of current SOTA network architectures, including
the classical AlexNet [134], and the newly proposed vision-
transformers [122,130]. As shown in the Table 8, we have also tested
with other SOTA network backbones for crack classification, such as the
vision transformer
(ViT) [122,130] which has the best performance among various meth-
ods in recent vision benchmarks. The results demonstrate that the
recent approach, such as the ResNeSt [128] also has comparable
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performance with ViT, and has a much faster inference speed compared
to the ViT. It can be seen that when using our multi-branch attentional
layer in the Swin Transformer [122] (denoted as Swin Transformer-
MB in Table 8), the performance can be boosted a little with a
merely marginal increase on the computational cost (0.2 s validation
time increase for the inference per image of 1500 x 960). It can
be demonstrated that although the vision transformer-based methods
can achieve remarkable performance, the computational and memory
costs should be considered in the deployment stage. For the robotics
applications with real-time requirements, the faster methods such as
the ResNet-101 [130] or ResNeSt-101 [128] are more preferred for
efficiency considerations. Also, although the Swin Transformer [122]
based methods have comparable or slightly better performance under
various circumstances compared with the typical convolutional net-
work [45], and residual network [128] based methods, it requires a
large inference time, which is unacceptable in real-time applications.
Therefore, taking the efficiency and accuracy of both into considera-
tion, the ResNeSt [128] is the best choice for the crack classification
task.

4.3. Comparison of SOTA algorithms for crack segmentation

This subsection takes crack semantic segmentation as a case study
of defect recognition in modern infrastructures. As mentioned in Sec-
tion 4.1, the images are labeled in pixel levels for segmentation and
summarized into our self-established dataset, based on which per-
formances of various network architectures are compared in detail.
Utilizing our designed network architecture (Fig. 6) combined with
existing SOTA network backbones such as ResNet [44], ResNeXt [131],
and VGG [137], the performance will be enhanced when the domain
gap between the source and target test data is not large. Table 9
presents the comparison results of recent crack segmentation methods
such as the DeepCrack [63].

4.3.1. The definition of evaluation metrics of crack semantic segmentation

We have utilized various metrics for a fair evaluation of the perfor-
mance of different methods, as shown in Table 9. The inference time is
the testing time for an image of resolution in 600 x 480 for the task of
crack segmentation. We define the average precision, mean Intersection
over Union (mIoU), precision, recall, best F-measure on our test set for
a fixed threshold (DS), and the total F-measure on our test set for the
threshold on each image (IS) in the same settings as the [138]. These
evaluation metrics are commonly recognized and adopted evaluation
metrics for comparisons in defect identification. Also, the validation
inference time on the test images is used to evaluate the efficiency of
diverse SOTA methods. Our experimental results are conducted three
times to obtain an average value for fair comparisons.

4.3.2. Algorithms illustration

We have developed algorithms for crack segmentation and the sub-
sequent detection based on non-maximum suppression (NMS). To keep
the paper brief, we will merely take our proposed Attentional Pyramid
Scene Parsing-based network architecture integrated with full resolu-
tion ResNet [139] as an example case for algorithms illustration. As
shown in Fig. 6, the network adopts the typical encoder—decoder-based
basic structure for semantic segmentation. Unlike the transformer-
based model for the task of crack classification, the input image can be
directly fed into the encoder of the network structure based on these
convolutional neural network-based segmentation models. As shown by
the red module linking the intermediate feature output encoder and
the decoder of the network in Fig. 6, we have also incorporated the
attentional transformer for the self-correlated feature extraction of the
image at the pixel level. Utilizing this kind of design, the correlated
features in the embedding space will be effectively enhanced, and the
distinct features will be well separated. The attentional transformer
shown in red in Fig. 6 is used to enhance the feature correlation
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mining capacity of the network. All the decoder features are ultimately
concatenated to give the final predictions. This kind of network design
can make the model focus more on the critical zones of the images and
pay less attention to the insignificant ones. Also, the attention-based
transformer can be beneficial in increasing and enlarging the spatial
contextual information and fusing them with the low-level feature
representations in the encoder. We adapted it based on the SOTA
attention-based [132] transformer and integrated it into our network
structure. Through this kind of network architecture, the low-level
feature cues, such as the edges and corners, and the high-level semantic
cues, such as the crack patterns, can be fully utilized and learned based
on the training data. Moreover, we use selective search-based methods
to do the detection. The selective search-based methods [140] use
the traditional sliding window-based approaches for object detection.
Furthermore, we utilized the efficient nearest neighbor query methods
to find the next sliding window for detection and efficiently do the
final object detection. Finally, as shown in the Algorithm 1, we have
summarized the proposed detailed procedures for NMS-based object
detection. Denote B as the list of the initially obtained detection boxes.
S contains the corresponding detection scores. And N, is the NMS
threshold. The set D is utilized to store the final box. As shown in Fig. 7,
we can utilize NMS to obtain the most typical object detection bounding
boxes obtained from selective search-based methods in the original RGB
images.

4.3.3. Detailed partitions of our dataset for crack semantic segmentation

For the tasks of crack semantic segmentation, we have partitioned
the original dataset into the training set, the validation set, and the test
set. The dataset consists of more than 11,000 images with a resolution
of 600 x 480. We have utilized 6,000 images for training, 3,000 images
for validation, and the remaining 1,650 images for testing.

4.3.4. Experimental settings

We adopt the same setting as crack classification except that the
initial learning rate is 1 x 10~*. Training the model to convergence
takes approximately 17.5 h for our self-established dataset with various
crack patterns. All the models are trained from scratch for the task of
semantic segmentation.

Algorithm 1: The non-maximum suppression based algorithm
for object detection (Simplified Version)

Input: The input initial detection boxes B, the related corresponding
detection scores .S, the related NMS threshold N,
Output: The output final detection boxes D and the corresponding
detection score S.
1D«g
2 while B # empty do
3 Select the maximum value in the set of .S, and give this value to
m. m < argmax(S)
M « bm
D<DuUM
B« B-M
for b, in B do
L if iou(M,b,) > N, then

© ® N o u &

L B« B—-b;S85 «<S-s;

return D, S

4.3.5. The optimization loss functions

In addition to the network architectures illustrated above, we fur-
ther illustrate the optimization functions used for the network training.
In real situations, the crack is usually thin, which means most of
the pixels in the captured images are non-crack. Different from the
traditional cross-entropy loss, we have proposed our class-balanced
loss function to tackle the problem of extreme class imbalance in the
task of crack semantic segmentation. Also, we have also proposed the
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multi-stage fused loss, which can operate well with our proposed multi-
stage fused pyramid network to boost the network performance. The
optimization loss function is detailed as follows. We calculate the total
number of crack and non-crack pixels in the training images are p and
q respectively. The class frequencies of crack and non-crack are erLq
and [f, while the median for the 2 classes is 0.5. Then the median
divided by the class frequency gives the weight of two classes. In our
case, the weights of the loss function for the crack pixels and non-crack
pixels are a; = % and a, = ’? respectively. Then for each side-output
layer, the improved loss function for the h-th side outputs Lﬁ’i 2.(W) can
be formulated as:

Lh, W) =-a, Z log(1 — P(W))

jes-
—a; Y, log(P(W))

jest

4

where h = 1,2---, H respectively are the convolutional stages of the
network. The H denotes the total stages. St and S~ are the total num-
ber of crack pixels and non-crack pixels respectively for an input image.
And P denotes the predicted possibility of each pixel to be a crack one.
The W denotes the weights of the whole proposed transformer-based
network shown in Fig. 5. Next the improved loss function L ;. (W) for
the fused output can be also written as:

LyuseOW) = —ay Y log(1 = P(W))
JjES_

—a; Y log(P(W)

j€S,

)

And then the total optimization loss function L,,,,(W) is written as:

M~

Ltoml(W) = (6)

H
QL LA W) + Ly (W)
j=1 h=1

The multi-stage fused optimization loss functions has the advantages of
considering both the low-level feature in the early stages of the network
such as edges and corners, and the high-level semantic information in
the deeper stages of the network. Thus, the multi-stage hierarchical
information can be extracted and fused in an adapted manner and
this kind of information is further formulated into the network opti-
mizations to boost the final segmentation performance in an explicit
way.

4.3.6. Experiment results of crack semantic segmentation

The results of crack segmentation have been shown in Fig. 7.
We have utilized the characteristics of our proposed network shown
in Fig. 6 to construct multi-stage deep hierarchical feature represen-
tations for each tested network. The feature pyramid network has
been demonstrated to be very effective in the hierarchical and multi-
layer fused feature extraction [148,149]. As mentioned, the proposed
network shown in Fig. 6 adopts the encoder-decoder-based architec-
ture. It is highly effective in feature extraction because we fuse the
representations from diverse network stages to obtain a compound rep-
resentation integrating low-level geometry cues (including edges and
corners) and high-level semantics (including the category and semantic
feature representations). Also, we have successfully integrated our
proposed network with SOTA dilated convolutions network Deeplab
V3+ [76] as shown in the third column of Fig. 7. In the deeper stages
of the network, we choose to use the dilated convolutions instead of
the original classical convolutions because the dilated convolutions
provide a much larger receptive field. And the spatial resolutions can
be well maintained. Also, the dilated convolutions generate the feature
maps of various scales compared with the input data, which further
improves the scale robustness of the proposed network. Moreover, we
have utilized more elaborately designed network architectures such as
the DenseNet [147] and SENet [150]. The densely connected residual
learning is conducted to obtain a better feature representation. The full-
resolution residual networks (FRRNs) [139] utilize the two streams to
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Fig. 6. The proposed Multi-Stage-Fused Attentional Pyramid Network structure. We have proposed an encoder-decoder network architecture with skip-connections enhanced by
the attentional transformer module. The attentional transformer module is added to better enhance the final segmentation performance.

Table 9

The comparison of semantic segmentation results between our proposed and various current SOTA methods.
Methods Inference times/ (ms)  Thres (0-1)  Average precision mloU Precision Recall DS IS
Original Hierarchical Neural Network [141] 165 0.49 82.3 75.9 74.6 76.5 75.6 77.5
SegNet [142] 215 0.52 80.2 75.6 73.3 74.8 74.1 74.7
FCN-8s [143] 176 0.55 81.1 76.9 74.2 75.5 74.8 75.8
U-Net [143] 168 0.53 82.1 77.1 73.7 74.9 74.3 753
DeepLab V2 [144] 192 0.55 83.2 78.7 76.9 75.9 76.4  75.6
DeepLab V3 [144] 226 0.50 83.6 79.3 74.9 74.9 749 757
PSPNet V1 [145] 257 0.49 83.4 79.8 75.5 75.6 75.6  76.3
ASPP-Net [146] 266 0.51 85.2 78.9 75.4 75.7 75.6  76.2
DeepCrack [63] 708 0.50 78.6 76.9 71.2 72.3 71.7 723
CrackNet based DeepLab V3+ [141] [144] (Our) 252 0.45 86.3 77.8 75.3 75.6 75.5 75.8
CrackNet based DenseNet [141] [147] (Our) 502 0.51 86.6 77.6 76.1 75.1 75.6 76.3
CrackNet based Full Res-ResNet [141] [139] (Our) 324 0.56 87.3 76.9 76.6 75.5 76.1 76.6

fuse the multi-scale global contextual information with the pixel-level
local information. The first stream carries information at full resolution
to achieve accurate segmentation of the boundaries of various shapes.
The second stream utilizes a series of max-pooling operations to obtain
the high-level feature for recognition. The FRRNs [139] couples these
two streams and finally provide a hierarchically fused segmentation
map. In our work, we have adapted the original FRRNs [139] for a
better multi-stage fusion of hierarchical features based on our design
shown in Fig. 6. For the crack segmentation, a certain segmenta-
tion threshold (denoted as Thres on Table 9) require to be chosen
for obtaining the final binary segmentation map. We have chosen
the threshold for various tested segmentation methods based on their
original implementation in their original paper.

We have successfully integrated our proposed attentional pyramid
network architecture shown in Fig. 6 with current SOTA deep network
models for semantic segmentation, such as the DeepLab V3+ [144],
DenseNet [147], and FRRNs [139]. As shown in Fig. 7, it can be
demonstrated that integrated with our proposed method [141], the
DeepLab V3+ [144], DenseNet [147], and FRRNs [139] all show su-
perior performance when encountered with the diverse background if
the network training parameters are fine-tuned. We have shown the
typical detection results under diverse complicated circumstances. Our
approach can realize very accurate segmentation of the cracks under
different complex backgrounds, with large shadows, road greenings,
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and roadside bricks. It can be seen that the shadows can be properly
handled. Although shadow pixels do not have sharp contrasts with the
background pixels of road surface, the network will not mistakenly
recognize the high-contrast shadows as cracks. From the last column,
we have also shown the object detection results with the non-maximum
suppression (NMS)-based post-processing approach. The details of the
NMS algorithm are shown in Algorithm 1. It is demonstrated that it
can suppress the redundant bounding boxes obtained from the semantic
segmentation, and select the most typical detection bounding box result
based on selective search for object detection [140]. Also, it can be seen
that the selective search methods can find candidates with excellent
efficiency and robustness. The object detection follows the seman-
tic segmentation results to do more accurate crack object detection,
which demonstrates the effectiveness and robustness of our proposed
method [141]. The final results of crack semantic segmentation perfor-
mance are also summarized in Table 9. It can be demonstrated that our
proposed method can be successfully integrated with SOTA methods
and shows consistently better performance compared with other ones.
The performance increment can be ascribed to the effective network
design of attentional transformer module and effective multi-stage
fusion strategies. We have integrated our proposed network architec-
ture in Fig. 6 with three typical segmentation backbone networks. As
shown in Table 9, it can be seen that the three proposed networks all
achieve SOTAs semantic segmentation performance in terms of mloU.
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Fig. 7. The pixel-level semantic segmentation results of our adapted CrackNet shown in Fig. 6 integrated with SOTA deep convolutional networks for semantic segmentation after
conducting real-site pavement inspection. The black color denotes the background, while the white color denotes the segmented results of various cracks. Our approach can realize
accurate segmentation of the cracks under different complex backgrounds, with large shadows, road greenings, and roadside bricks.

Also, the provided comprehensive comparisons between existing SOTA
algorithms for crack classification and segmentation can provide a
solid baseline for future research in industrial infrastructural defects
inspection.

5. Suggestions on datasets and methodology
5.1. The suggestions on constructing a defect dataset

5.1.1. Classification-oriented dataset

Classification task is the basic building block to the detection and
segmentation task. To build up a high-quality dataset for defect classi-
fication, the defect categories should be firstly defined according to the

1

o

government inspection guidelines. Then, the data collection procedure
should be conducted and recorded in a controlled environment by
strictly following inspection guidelines. The data collection system
should be developed or chosen for specific application scenarios. The
accuracy and robustness of the object classification algorithm face
several challenges posed by object viewpoint variation, intraclass vari-
ation (e.g., the same type of crack but with a different background
or color intensity), the difficulty of identifying fine-grained categories
(e.g., various types of the crack), background clutter, illumination
changes, deformation, and occlusion. The dataset can wittingly incor-
porate images with the challenges mentioned above to improve the
accuracy and robustness. Besides, it should be noticed that there exist
conflicts between the labeling results of different annotators. The effect
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of annotation conflict can be alleviated by introducing a self-checking
mechanism during the labeling process or utilizing label smoothing
techniques during the network training process [15]. Moreover, data
augmentation (e.g., crop and flip) can be adopted to increase the data
volume.

5.1.2. Segmentation- and detection-oriented dataset

The dataset should be recorded in a standardized way. The cor-
responding infrastructure type, material type, defect type, data type,
sensor specifications, data collection procedure, and geometric prop-
erties of the defects should be recorded. The dataset should have
sufficient data and defect diversity to train a superior defect detec-
tor. Traditional data augmentation and GAN-based data augmentation
(e.g., Defect-GAN [151]) can be used to increase the data volume.
The context level of the dataset also matters. The pixel-level context
is conducive to the network training process, while the object-level
context is beneficial to localizing the defects, relating the defects to
the structure, and further evaluating the hazard level of defects. The
scene-level context can increase the generalization ability of the trained
model in real applications. It is promising to build up a multi-modal
defect dataset (e.g., SDNET2021 [30]). RGB images are conducive
to detecting surface defects, while IRT images, IE signals, and GPR
signals reveal subsurface defects. It should be noted that there are
conflicts between different annotation results (even when annotated by
experts) [15], which will influence the training result.

5.2. The suggestions on defect visual inspection methodologies

5.2.1. Developing advanced methods and algorithms

In real industrial applications, the specific infrastructure to be in-
spected cannot be easily accessed. Although intelligent industrial robots
such as UAVs or UGVs with sensing capacity have been developed,
complicated autonomous localization, navigation, and planning algo-
rithms should be developed to collect high-quality data on the target
infrastructure to be inspected. In most cases, merely limited high-
quality data for the inspected target can be collected, and the labeling
process is time-consuming and cumbersome. Therefore, to train and
deploy an effective crack recognition model for modern industrial
applications, firstly, the efficient labeling strategy should be further
explored to achieve highly efficient labeling, which we have discussed
in detail in Table 7. Secondly, the domain gap should be considered
in establishing the dataset. Domain adaptation is a great method that
can expand the applications of the crack recognition model across
different domains. From our experience, effective domain adaptation
in crack detection and segmentation can be achieved if we take the
intrinsic information into consideration and formulate them into the
optimization of the deep network model. The intrinsic information in
the images includes depth and edge information. For crack recognition,
the edges reveal the most likely pixels that belong to cracks. Moreover,
the drastic change in depth information can also indicate the change in
the 3D geometric structures. Therefore, they all play an essential role in
finding the intrinsic feature representations of cracks and can be well
utilized to improve the generalization capacity of the learning-based
deep neural network models.

5.2.2. Using more advanced 3D sensors

Intrinsically, the defects such as crack and spalling are structural
damages. And the geometric patterns of them can be captured very
easily by 3D sensors. Therefore, advanced sensors, such as the 3D
industrial cameras, the advanced high-precision industrial LiDAR sen-
sors, and the industrial laser scans should be incorporated to better
enhance the 3D geometrical information, which is just complementary
to the 2D visual information. Subsequently, to better enhance the
performance in defects recognition, the fusion networks or mechanisms
should be further developed to boost the performance by utilizing the
complementary characteristics of multiple sensors.
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5.2.3. Constructing high-quality database to boost the performance of SOTA
methods

The algorithm design and the database are complementary to each
other. The highly effective algorithms and high-quality datasets can
both boost the final defects recognition performance in a mutually ben-
eficial way. According to our experiments, various SOTA networks have
nearly equal performance in the task of crack semantic segmentation.
From our experience, the issue that matters most in achieving highly
accurate industrial defects recognition lies in two aspects regarding the
constructed dataset. The first is the amount of the training data, and the
second is the quality of the data. To be more specific, firstly, the amount
of the training data should be sufficient enough to support various
types of defects, such as the most typical infrastructural damages with
varying patterns including crack and spalling. Also, the domain gap
between the training set and the on-site captured test images of the
infrastructures to be inspected should be as small as possible. Secondly,
the quality of the training data should also be guaranteed, which means
the geometric patterns of various defects are largely covered in the
established dataset. When faced with real industrial applications, the
quantity and the quality of the dataset should be evaluated carefully
to guarantee robustness in inspections. When evaluating the perfor-
mance, a high-quality large-scale dataset will also be beneficial to the
robust and fair comparisons between diverse learning-based defects
identification approaches.

5.2.4. Algorithms illustration and recommendation for weakly-supervised
defect recognition without sufficient labeling for industrial applications

In real industrial applications, according to our experiments, it can
be seen that the fully supervised defects classification, detection, and
segmentation approaches have an upper bound in recognition accuracy,
even with a fully labeled training set and no domain gap between the
training and test set. Moreover, their actual performance depends more
on the effectiveness of the learned model from limited labeled data. The
detection accuracy may also experience a considerable drop when there
is a large domain gap between the source labeled datasets and target
unlabeled defects to be inspected. Therefore, this subsection discusses
several promising weakly supervised algorithm approaches to alleviate
the data hunger problem in defect recognition.

For semantic segmentation, many weakly or semi-supervised ap-
proaches have been proposed to reduce the demand for large-amount
of annotated datasets, such as weakly supervised image segmentation
methods with image-level labels [152]. Attention mechanism with a
transformer-based network design can be used to extract the semantic
affinity between various contextual objects, using the affinity from
attention (AFA) module to refine and improve the quality of the pseudo
labels. For the semi-supervised semantic segmentation, U2PL [153] has
been proposed to make better use of the unreliable samples in the
unlabeled data. Because a large amount of unlabeled data contains a
great deal of meaningful information in both low-level geometry and
high-level semantics, the U2PL can make full use of the unlabeled data
of low reliability as negative samples to boost the performance of the
semantic segmentation models.

For object detection, the remarkable work Dense-Teacher [154]
with a newly defined teacher-student model can be adopted to improve
the performance of the single-stage object detector. The threshold-
based object detection models also rely on NMS and therefore depend
on accurate semantic segmentation results as shown in our experi-
ments. However, choosing an inappropriate threshold will result in
noisy pseudo labels. The teacher model gives a dense model of the
whole feature map and proposes the quality focal loss to supervise the
output of the student model. Using the mean-teacher scheme, the DTG-
SSOD [155] can provide dense supervision for the teacher model with
iterative NMS clustering and rank match strategies. Therefore, more
abundant features and information on the unlabeled data are utilized.

In addition, a single model of multi-task learning can be utilized to
handle the object classification, semantic segmentation, and object
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detection simultaneously for real applications. It has great potential to
enhance real-time performance and construct memory-efficient learned
models with real-time performance for multiple tasks. In 2D multi-
task learning, classical works have formulated it as a multi-objective
optimization problem and jointly optimized every target with network
training [156]. The cracks and other structural defects can be regarded
as 3D geometric changes, with point clouds captured by LiDAR sensors
or RGB-D cameras. For multi-task learning based on 3D point clouds
in a weakly supervised setting, the approach proposed in [157] can
tackle the 3D scene understanding problem with limited labels, and can
be integrated seamlessly with different neural network backbones to
achieve 3D scene perception with multiple down-streams tasks. There
is still considerable room for improving 2D/3D multi-task learning for
defect recognition given their data characteristics and advantages.

6. Conclusions and outlook

This paper summarizes 40 publicly available defect datasets for deep
learning-based classification, segmentation, and detection tasks. The
architectures are suggested for the task of classification and semantic
segmentation, while multiple deep learning-based models are trained,
validated, and tested, and the performances are compared in a very
detailed way. Critical remarks on the review and comparison results as
well as future research directions are summarized as below.

6.1. Remarks on review and comparison results

Based on the comprehensive review and systematic comparison in
this paper, major findings with deep learning-based defect inspection
are presented as follows:

(1) The quantity of the summarized defect datasets: The volume of
summarized publicly available datasets reaches around 13.38 M,
with approximately 13.25 M, 0.061 M, 0.064 M for classification,
segmentation, and detection respectively. The quantity of the
dataset shrinks dramatically when the inspection task transfers
from classification to high-level segmentation and detection,
because segmentation and detection tasks require further an-
notation exhausting resources of the researchers. Considering
the significant impact of the labor-intensive labeling process on
productivity, SOTA labeling tools are summarized and compared
in Section 3.4. The labeling process with a semi-automatic
labeling tool is found to save about 33% of the time compared
with a manual labeling tool. Furthermore, to alleviate data
scarcity, the inspection research community is enriched with
our self-established defect dataset, which contains more than
15,000 and 11,000 images for defect classification and semantic
segmentation, respectively.

(2) The diversity of the summarized defect datasets: The dataset
diversity lies in the defect type, infrastructure type, material
type, and image context. The reviewed datasets cover more than
5 most common and vital defect types including crack, spalling,
delamination, corrosion, and efflorescence, as well as more than
5 civil infrastructures including the pavement, bridge, building,
tunnel, and dam. 5 material types including concrete, asphalt,
steel, masonry, and wood are targeted with 3 image context
levels (i.e., pixel, object and scene). The diversity in material
types and image context level is essential since deep learning-
based defect inspection algorithms depend highly on the diverse
content and context features to generalize effectively.

The difficulty for constructing a high-quality defect dataset: As

to defect classification, 7 challenges get in the way of developing

accurate and robust classification algorithms, including view-
point variation, intraclass variation, difficulty of identifying fine-
grained categories, background clutter, illumination changes,
defect deformation, and occlusion. The established dataset needs
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to wittingly contain images with the aforementioned features to
adapt the deep learning-based algorithms with higher accuracy
and robustness. Regarding defect segmentation and detection,
an additional main difficulty lies in annotating the defect image
accurately and efficiently. Some attempts to utilize machine
learning algorithms for automatic labeling is identified to get
preliminary labeling results which can be then manually refined
for accurate labeling in a much shorter time [119-121].

(4) The feasibility of the data collection platforms for defect in-
spection: Among the summarized 40 visual defect datasets, 10 of
them are collected via cameras installed on ground vehicles, 6
of them are acquired by cameras on UAV platforms, 13 of them
are obtained via hand-held cameras, and the rest are crawled
from the internet. The ground vehicle is preferred as a data
collection platform for pavement inspection due to its stability,
accessibility, and long-duration ability. The UAV platform is pre-
ferred as a feasible and cost-effective solution to conduct defect
inspection of bridges and high-rise buildings. It is noteworthy
that a valuable dataset collected by the UAV, named “Highway-
crack dataset [59]”, contains highway crack images taken just
after a 6.4-level earthquake in China, revealing UAV’s rapid
response capability. Hand-held cameras are the most common
data collection tools but their field of view (FOV) is limited,
accompanied by image occlusion and perspective distortion, re-
sulting in the incorrect recognition of defects and their geometric
properties.

(5) The scalability for establishing a large-quantity defect dataset:
Data augmentation methods, composed of basic image manipu-
lations (e.g., kernel filters, geometric transformations, random
erasing, and color space transformations) and deep learning
approaches (based on adversarial learning, neural style transfer,
and GAN) [158], are identified to efficiently expand the data
volume of the defect dataset [88,151].

(6) The superiority of our proposed algorithms: We have proposed
the multi-branch self-attention module and multi-stage-fused
attentional pyramid network architecture. As to crack classi-
fication, the multi-branch self-attention module is successfully
integrated into the Swin Transformer [122] to get the adapted
Swin Transformer-MB network, which achieves 88.0% accu-
racy slightly better than the original Swin Transformer with
87.7% accuracy and ranks in the second place out of 11 SOTA
classification networks. For crack semantic segmentation, the
multi-stage-fused attentional pyramid network architecture is
successfully combined with SOTA segmentation networks such
as DeepLab V3+ [144], DenseNet [147], and FRRNs [139].
The resulting models achieve satisfactory performances among
12 SOTA segmentation networks, with 77.8%, 77.6%, 76.9% mloU
respectively and an acceptable efficiency on the modern graphic
processing unit.

(7) The criticality of algorithm comparison results: We have sys-
tematically compared 11 SOTA classification networks in terms
of the accuracy and efficiency and 12 SOTA segmentation net-
works in terms of the widely-accepted accuracy metrics and
efficiency. Based on the comparison results, suggestions are
provided regarding the model deployment on robotic platforms
and the development of semi-supervised algorithms for defect
inspection. A good starting point is set up for the follow-up
researchers and practitioners.

6.2. Outlook for automatic defect inspection

Following concluding marks, potential research topics are proposed
as below for defect inspection:
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(1) Establish a multi-modal benchmark dataset: A large-scale
multi-modal dataset containing data collected from multiple
sensors, such as optical cameras, IRT cameras, depth cameras, IE,
GPR, ultrasonic sensors, and industrial LiDAR, will be conducive
to defect localization and quantifying. One such dataset called
“SDNET-2021 [30]” is identified for detecting the subsurface
defects of the bridge decks and benchmarking advanced deep
learning models. Advanced data fusion methods will be re-
quired to tackle the defect inspection more accurately with the
established multi-modal dataset.

Standardize the summarized visual defect dataset: The re-
search community lacks a widely-accepted large-scale bench-
mark dataset for advancing and fairly comparing deep learning
algorithms for visual defect inspection. Despite the systemati-
cally summarized 40 publicly available defect datasets, enor-
mous efforts are still needed to standardize all the datasets into
a unified benchmark defect dataset.

Develop datasets and algorithms for evaluating defect haz-
ard level and predicting structure deterioration: The core
objective of the defect inspection is to quantify the hazard level
of the defect. Except for the CCSSS [61] dataset, no publicly
available visual dataset is found to evaluate defect hazard levels.
Besides, the prediction of structure deterioration needs more
research attention for the estimation of optimal rehabilitation
measures [159-161].

Develop autonomous robotic platforms: Most robotic plat-
forms for defect data collection still rely on manual or remote
control, requiring at least one operator to be exposed to un-
comfortable and dangerous environments. An autonomous data
collection platform [162,163] can not only enhance the oper-
ation safety, but also accelerate the inspection process with im-
proved objectivity and accuracy, providing a better reference for
follow-up maintenance decisions and rehabilitation measures.
Develop automated defect inspection pipelines: The commu-
nity still lacks an integral defect inspection pipeline, which can
automatically register the corresponding information (e.g., lo-
calization, quantity, hazard level, and tendency) of the defect
to civil infrastructure management systems. Some attempts have
been made in [164,165], where the 2D defect inspection results
are mapped to reconstructed 3D model from LiDAR data and
further registered to the building information modeling (BIM)
system [165] or geographic information system (GIS) [166]. The
digital twin (DT) system can also benefit the data storage and
analysis process [167].

(2)

3
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