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A Memetic Algorithm for Curvature-Constrained
Path Planning of Messenger UAV

in Air-Ground Coordination
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Abstract— This paper addresses a UAV path planning problem
for a team of cooperating heterogeneous vehicles composed of one
unmanned aerial vehicle (UAV) and multiple unmanned ground
vehicles (UGVs). The UGVs are used as mobile actuators and
scattered in a large area. To achieve multi-UGV communication
and collaboration, the UAV, modeled as a Dubins vehicle, serves
as a messenger to fly over the effective communication range of
all UGVs to relay information. The curvature-constrained path
planning of the messenger UAV is formulated as a Dubins Trav-
eling Salesman Problem with Dynamic Neighborhood (DTSPDN)
which is a complex optimization problem involving coupled
variables and contains dynamic constraints. We design an effec-
tive memetic algorithm to find the shortest route that enables
the messenger UAV to visit all moving UGVs. This algorithm
combines the genetic algorithm procedure, two kinds of local
search operators based on gradient search and uniform sampling
respectively, and a gradient-based repair operator to repair the
solutions violating dynamic constraints. During the evolutionary
process, a special phenomenon may occur that changing some
decision variables (i.e., visiting sequence and location) may not
affect the evaluation function value, but may alter the feasible
region of another decision variable (i.e., visiting time) due to
the encounter constraint between the UAV and UGV. To track
and utilize the change of the feasible region, a transformation
procedure is proposed to change one solution to another with
less visiting time by analyzing the encounter pattern between
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UAV and UGV. The computational results on random instances
with different scales demonstrate that the proposed approach
can effectively generate better curvature-constrained tours to
encounter all moving UGVs when compared to other four
competitive algorithms in the literature.

Note to Practitioners—This paper studies an emerging path
planning problem for a UAV which is used to provide communica-
tion service for multiple moving UGVs. These UGVs are required
to execute tasks (e.g., firefighting, search and rescue) within
a large area. Due to their limited communication capabilities,
they may be unable to obtain necessary information from other
UGVs. The UAV serves as a messenger to fly over the effective
communication range of all moving UGVs to relay information.
We propose a novel memetic algorithm to efficiently search for the
shortest tour that enables the messenger UAV to visit all moving
UGVs. The memetic algorithm combines the parallel global
search virtue of genetic algorithm with efficient local search
procedure to improve the generated tour. A gradient-based repair
procedure is also employed to make sure that the planned tour
can guide the UAV to sequentially encounter each moving UGV.
Simulations exhibit that the proposed approach can effectively
generate high-quality tours for messenger UAV to rapidly visit
all UGVs, which assists UGVs to achieve collaboration in large
area. In future work, the proposed memetic algorithm will be
extended to plan tours for multiple messenger UAVs.

Index Terms— Air-ground coordination, curvature-constrained
path planning, memetic algorithm, Dubins traveling salesman
problem.

NOMENCLATURE

P A UAV’s position (unit: m).
h A UAV heading angle (unit: rad).
P A

0 UAV’s initial position (unit: m).
h A

0 UAV initial heading angle (unit: rad).
v A UAV flight speed (unit: m/s).
rmin UAV’s minimum turning radius (unit: m).
D(·) The length of Dubins path (unit: m).
Dmin(·) The length of the shortest Dubins path

(unit: m).
NG The number of UGVs.
I Set of UGV IDs with I = {1, 2, . . . , NG }.
vG

i The speed of UGV i , i ∈ I (unit: m/s).
vG

max The maximum speed of the UGV
(unit: m/s).

PG
i (t) The location of UGV i , i ∈ I at time t

(unit: m).
r G

i,com The valid communication radius for UGV
i , i ∈ I (unit: m).
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Pi The access location to visit the neighbor-
hood of UGV i with i ∈ I (unit: m).

hi The UAV heading at Pi (unit: rad).
t∗i The encounter time for UGV i , i ∈ I .
s j The index of the j -th UGV.
S The visiting sequence about UGVs,

S = [s1, s2, . . . , sNG ].
�ts j The time span for UAV to travel from UGV

s j−1 to UGV s j with s j ∈ I (unit: s).
�ts j The lower bound of �ts j (unit: s).

I. INTRODUCTION

COOPERATION between unmanned aerial vehicle (UAV)
and unmanned ground vehicle (UGV) provides a new

breakthrough for the effective application of UAVs and UGVs.
The strong complementarities between UAVs and UGVs in
sensing, communication, and payload make a UAV-UGV
coordination system (UAGVS) attractive [1]. UAGVS can
be categorized into four classes according to the number of
UGVs and UAVs in a UAGVS: one UAV with one UGV
(see e.g., [2]–[4]), one UAV with many UGVs (see e.g., [5]),
many UAVs with one UGV (see e.g., [6]), or many UAVs
with many UGVs (see e.g., [7]). Chen et al. [1] reviewed
a number of influential types of UAGVSs, and proposed a
taxonomy for classifying existing UAGVSs. Our recent survey
[8] systematically reviews advances in UAV-UGV coordination
systems from 2015 to 2020, and offers a comprehensive
investigation and analysis of recent research.

A typical UAGVS is shown in Fig. 1, where a UAV
flies over multiple UGVs to provide communication services.
The UGVs, as mobile actuators, are commonly deployed in
application such as risk assessment [9], surveillance [10],
and disaster relief [11]. When UGVs are required to execute
tasks in a collective manner within a large area, they may
be scattered and unable to obtain necessary information from
other UGVs due to their limited communication capabilities.
To address this issue, UAVs can be employed as a messenger
to form a cooperative air-ground network [12]and to assist the
UGVs in an environment where the communication infrastruc-
ture is not available and network connectivity is poor.

The speed and mobility of UAVs expands the effective
communication range of the UGVs by collecting data and
exchanging them with other UGVs or base stations beyond
the transmitting ranges of the UGVs [13]. This messenger
mechanism can broaden the UGV operating range effectively
to enable multi-UGV collaboration in a large area.

In this paper, we investigate the path planning problem for
the messenger UAV in the UAGVS mentioned above, which
can be generally formulated as a Dubins Traveling Salesman
Problem with Dynamic Neighborhood (DTSPDN).

A. Related Work

As mentioned above, the DTSPDN can be regarded as a
generalized variant of the classic traveling salesman problem.
If we fix each UGV to a certain local position, DTSPDN will
be degenerated to the Dubins Traveling Salesman Problem

Fig. 1. A scenario for a UAGVS operating in a large area.

with Neighborhood (DTSPN) described in [14], which is
NP-hard [15].

The existing methods for solving DTSPN can be mainly
grouped into four categories [16]: decoupling methods,
transformation methods, unsupervised learning methods, and
direct search methods. In the decoupling methods (see
e.g., [17], [18]), the mixed variables, including the visit-
ing sequence and the access location, are optimized sepa-
rately. In the transformation methods (see e.g., [19], [20]),
the UAV’s positions and headings are uniformly sampled to
construct a generalized traveling salesman problem (GTSP)
firstly, and then the GTSP is effectively resolved by the
existing techniques. In the unsupervised learning methods
(see e.g., [21], [22]), the solution of the sequencing part of the
problem is combined with the online sampling of the suitable
positions and headings. In the direct search methods, the mixed
variables are optimized simultaneously. Many optimization
algorithms (see e.g., the double-loop hybrid algorithm [23], the
variable neighborhood search [24], the memetic algorithm [25]
and descent method [26]) can be used as search engine.

Similar to DTSPN, the DTSPDN is also an NP-hard prob-
lem with mixed variables. However, DTSPDN is more com-
plex than DTSPN. DTSPDN exhibits strong coupling among
the visiting sequence, the access locations and the encounter
time for UGVs. The visiting sequence affects the encounter
time for UAV to visit each UGV and further changes the
access locations that vary with the UGVs’ movements. On the
other hand, DTSPDN contains dynamic constraints. Since the
positions of the UGVs change with time, the UAV needs to
predict the positions of UGVs and then find its appropriate
access locations for all UGVs by solving a sequence of
encounter problems. Therefore, the existing methods to resolve
DTSPN are unsuitable for DTSPDN.

In our previous work [5], a heuristic algorithm is proposed
by using a decoupling strategy to decompose the DTSPDN
into two subproblems: determining the sequence of all UGVs
for the UAV to visit by the receding horizon optimization,
and optimizing the access locations in the neighborhood of
each UGV by boundary sampling or center sampling. Since
the visiting sequence and locations are interdependent, the
heuristic algorithm in [5] does not perform well. Therefore,
a more efficient approach is needed to address DTSPDN.

Note that the DTSPDN problem studied in this paper
is different from the DDTSPN problem studied by
Macharet et al. [27], [28]. The dynamic property in [27], [28]
refers to dynamically arising target regions, instead of
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the neighbourhoods of dynamic UGVs with movement
in DTSPDN.

B. Main Innovations and Contributions

Compared with existing efforts, the main innovations and
contributions of the paper are as follows.

1) The path planning of the messenger UAV that flies over
the communication neighborhood of all moving UGVs is
modeled as the DTSPDN. By analyzing the characters
of the DTSPDN, we design a novel encoding scheme and
a fast decoding scheme. The encoding scheme integrat-
ing the visiting sequence and location information can
effectively maintain population diversity. The decoding
scheme utilizes the theoretical results of the expected
path length of the Dubins vehicle and the path realization
method to achieve rapid decoding.

2) A memetic algorithm tailored to the DTSPDN formu-
lation is proposed, combining a genetic algorithm (GA)
and an efficient local search strategy to achieve a better
tradeoff between exploration and exploitation in the solu-
tion space. In addition, a gradient-based repair strategy
is introduced to repair the individuals violating dynamic
constraints by locating and tracking varying feasible
regions over time.

3) During the evolutionary process, a special phenomenon
may occur that when changing some decision variables
(i.e. visiting sequence and location), evaluation function
value cannot be changed but the feasible region of another
decision variable (i.e., visiting time) may be altered due to
the encounter constraint between UAV and UGV, which
will affect the further optimization of the solution in
local search procedure. To track and utilize the change of
the feasible region when the decision variables change,
a transformation procedure is proposed to improve one
solution to a better one by analyzing the encounter pattern
between UGV and UAV.

4) The proposed method is verified on random instances
with different scales through extensive numerical sim-
ulations, which shows that the proposed approach can
effectively generate better curvature-constrained tours to
encounter all moving UGVs in various DTSPDN cases
when compared with four other competitive algorithms
in the literature.

The paper is organized as follows: Section II provides the
problem formulation and preliminaries. Section III presents
the encoding and decoding scheme. In Section IV, we give
a detailed description of the memetic algorithm. Section V
evaluates the proposed algorithm through a series of computa-
tional experiments and analyses. Finally, Section VI concludes
the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

UGVs scattered in a large area1 execute tasks in an
obstacle-free work space. Each UGV arrives at task points

1A large area means that the distance between UGVs is much larger than
their effective communication range.

Fig. 2. The tour of a messenger UAV traversing the communication
neighbourhoods of UGVs.

along a straight-line path at different speeds, denoted by vG
i

with i ∈ {1, 2, . . . , NG}. Each UGV has a limited communica-
tion range. We specify the communication neighborhood of the
UGV as a disk centered at the UGV. The valid communication
radius for the UGV i with i ∈ {1, 2, . . . , NG} is denoted
by r G

i,com .
One small fixed-wing UAV flying in a 2D plane is chosen

as the messenger UAV. The motion parameters of the UGVs
(e.g., velocity and trajectory) are known by the UAV. Given
the initial locations of the moving UGVs and their motion
parameters, the messenger UAV is responsible for flying over
each moving UGV to acquire this UGV information and
transmit the information about the others. In practice, UGVs
and UAVs generally have a limited communication range.
A messenger UAV can transmit information to a UGV only
if the UAV is located within the effective communication
range (neighborhood) of the UGV, as shown in Fig. 2. It is
assumed that information can be instantaneously transmitted
from the UAV to each UGV since the amount of data
to be transmitted including the location of UGVs is very
small.

The UAV just needs to pass the neighborhoods of all UGVs,
rather than flying over their precise locations. Hence, the
UAV can plan a tour to traverse each UGV’s neighborhood
according to the planned sequence in the shortest time. The
planned sequence of all UGVs for the UAV to visit (briefly
called the visiting sequence of UGVs) is denoted by S =
[s1, s2, . . . , sNG ], where si (i ∈ {1, 2, . . . , NG }) is the index
of the i -th UGV. For instance, S = (3, 1, 2) means that the
UAV needs to visit UGV3, UGV1, and UGV2 in sequence.
The access location, the access heading, and the access time
required to visit the neighborhood of each UGV i (i ∈
{1, 2, . . . , NG}) are denoted by Pi , hi and �ti , respectively.

In order to acquire a smooth and feasible tour for the
messenger UAV, the Dubins model [29] is used to describe
the kinematic characteristics of the UAV in a two-dimensional
plane: ⎧⎨⎨⎨

⎨⎨⎩
ẋ A = v A cos(h A)

ẏ A = v A sin(h A)

ḣ A = v A

rmin
u A, u A ∈ [−1, 1]

(1)
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where u A is the control input, and ω = (x A, y A, h A) represents
the status of the Dubins vehicle (UAV), also called Dubins
configuration.

For the messenger UAV, the travel cost between every pair
of UGVs can be measured by the length of the Dubins path
between them. The objective of the problem is to determine
a tour with the minimum cost for the messenger UAV in a
2D plane when the UAV traverses the valid neighborhood of
each UGV. We model the messenger UAV’s path planning as a
DTSPDN in which each UGV’s location changes dynamically.
Therefore, the DTSPDN optimization model is represented as
follows:

arg min
[S,P,H ]

J = D((P A
0 , h0), (Ps1 , hs1))

+
NG�
i=1

D((Psi , hsi ), (Psi+1 , hsi+1 )) (2)

s.t .

⎧⎨⎨
⎨⎩

ẋ A = v A cos(h A)

ẏ A = v A sin(h A)

ḣ A = v A

rmin
u A, u A ∈ [−1, 1]

(3)

d(Psi , PG
si

(t)) < r G
i,com,∀i ∈ I (4)

where P = [Ps1 , Ps2 , . . . , PsNG
] and H = [hs1 , hs2 , . . . , hsNG

],
P A

0 and h0 are the initial position and heading of UAV, respec-
tively. D((Psi , hsi ), (Psi+1 , hsi+1 )) denotes Dubins distance from
configuration (Psi , hsi ) to (Psi+1 , hsi+1 ) and PG

si
(t) denotes the

location of UGV si at time t . Constraint (4) is a dynamic
constraint that ensures the messenger UAV is located within
the communication range of each moving UGV.

In this paper, Dubins paths with the terminal heading relax-
ation are introduced to simplify the calculation of the Dubins
distance. The Dubins path with terminal heading relaxation,
proposed by Bui and Boissonnat [30], refers to a Dubins
path whose its initial configuration and its endpoint are fixed
but its terminal heading is free. In the sense of the terminal
heading relaxation, the calculation of the Dubins paths can be
simplified [14].

B. The Shortest Path for UAV to Visit a Moving UGV

The problem of a messenger UAV to visit a moving UGV
can be regarded as an encounter problem between the UAV and
the UGV. The following Lemma provides a sufficient condition
to achieve the encounter between the UAV and the UGV.

Lemma 1: (Theorem 1 in [5]) Assume that the UAV can
obtain the UGV’s trajectory PG(t) = (x G(t), yG(t)), and the
maximum speed of the UGV is less than the UAV speed
(vG

max < v A). There exists t∗ ∈ [tmin, tmax ], such that

D((P A
0 , h0), PG(t∗)) = v At∗,

where

tmin = Dmin((Psi−1 , hsi−1), PG (0))

v A + vG
max

tmax = Dmin((Psi−1 , hsi−1), PG (0))

v A − vG
max

.

Our previous study [5] provided a path planning method to
visit a moving UGV, as shown in Algorithm 1. The existence

interval [tmin, tmax ] of visiting time t∗ is determined at first.
A numerical approximation for t∗ ∈ [tmin, tmax ] can then be
obtained by a bisection approach (Lines 1-4 in Algorithm 1).
This also obtains the UAV path to visit a moving UGV
according to t∗ and the rendezvous point Pr (t∗).

Algorithm 1 The Bisection Algorithm for the Shortest Path
of the Messenger UAV to Visit a Moving UGV

Require: Given the UGV’s trajectory PG(t) =
(x G(t), yG(t)), the initial solution interval [tmin, tmax ],
the threshold value �b, and define δ(t) =
Dmin((P A

0 , h0), PG(t))/v A − t .
1: repeat
2: Find the midpoint tc = (tmin+ tmax)/2 and then calculate

δ(tmin), δ(tc).
3: If δ(tmin) · δ(tc) > 0 holds, then the new solution interval

changes to [tc, tmax ], otherwise take [tmin, tc] as a new
interval.

4: until |δ(t)| < �b

5: t∗ = (tmax + tmin)/2
6: According to the numerical solution t∗, the path to visit

a moving UGV is a Dubins path from (P A
0 , h0) to the

rendezvous point Pr (t∗).

C. UAV Path With Expected Length

The UAV needs to solve a sequence of encounter problems
to visit all UGVs. When the UAV uses the shortest path from
the current location to visit each UGV, the obtained tour of
UAV may not be optimal. Therefore, it needs to control the
visiting time for each UGV to obtain the optimal tour. Since
the UAV’s speed is constant, the messenger UAV needs to
control its path length to access UGV at a given time.

Since the path length satisfies the monotonicity conditions
(the monotonicity of the path length functions has been proved
in [31]), the bisection algorithm can be used to solve the proper
parameters for paths with the expected lengths, as presented
in Algorithm 2. The inputs to the bisection algorithm are the
destination points and the expected length; its outputs are the
feasible path pattern and the adjustable parameters. The path
patterns and the adjustable parameters to achieve the UAV
path with the expected length can be found in our previous
work [31].

III. ENCODING AND DECODING SCHEME FOR DTSPDN

A. Encoding Scheme

Using the Dubins paths with terminal heading relaxation,
only the visiting sequence and the visiting point of each UGV
need to be determined. Assume that the visiting sequence is
S = [s1, . . . , sNG ]. The time interval to access from UGV
si−1 to UGV si with i = {2, . . . NG } is denoted as �tsi ,

2

as shown in Fig. 3. Based on the fact that the UAV should
fly through the boundary of communication neighborhood of
UGV, its boundary points are used to encode the visiting points

2�ts1 represents the time interval that accesses from ω0 to UGV s1.
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Algorithm 2 The Bisection Algorithm for Calculating the Path
Parameters With Expected Length
Require: The expected path length d , the location of destina-

tion point P , and the threshold value �e.
Ensure: The parameter x for expected path length.
1: Select one path pattern according to the classification about

P and d , and then determine the adjustable parameter x
and its given bound [a, b], the monotonicity indicator α
and the path length function F(x).

2: xmin = a and xmax = b;
3: x0 = (b + a)/2;
4: while |F(x0)− d| > �e do
5: K = F(x0)− d , η = 1−αsgn(K )

2 ;
6: xmin ← ηx0 + (1− η)xmin ;
7: xmax ← (1− η)x0 + ηxmax ;
8: x0 ← xmax+xmin

2
9: end while

10: return x0;

Fig. 3. Encoding strategy.

for the UGV. Any point on the boundary can be expressed
by the polar angle θi ∈ [0, 2π] with respect to its center
PG

i = [x G
i , yG

i ]. The visiting point Psi of UAV to visit UGV
si can be calculated using �tsi and θi as follows,

Psi (θsi ,�tsi ) = [x G
si
(

i�
k=1

�tsk )+ r G
i,com cos(θsi ),

yG
si
(

i�
k=1

�tsk )+ r G
i,com sin(θsi )]. (5)

Using boundary-based encoding, a solution of the DTSPDN
can be described as⎛

⎝ S



�T

⎞
⎠ =

⎛
⎝ s1

θs1

�ts1

⎞
⎠−

⎛
⎝ s2

θs2

�ts2

⎞
⎠ . . .

⎛
⎝ sNG

θsNG

�tsNG

⎞
⎠ (6)

B. Decoding Scheme

Once an encoded string is generated with the encoding
scheme, a corresponding decoding scheme is required to con-
vert the encoded string into a feasible and appropriate planning
solution. The encoded string only contains the information
about the messenger UAV access to UGVs, and does not

provide tour to visit all UGVs. In the study, a novel decoding
scheme is proposed to generate a valid tour. To generate a
UAV tour to visit all UGVs, it needs to determine the UAV
tour to visit each UGV according to the visiting sequence.
In this decoding scheme, the visiting point Psi for UGV si is
firstly calculated on the basis of the vector (si , θsi ,�tsi )

T in
the individual and eq. (5). The visiting path to UGV si can
be then determined with the following two cases according to
�tsi and Psi :

1) If Dmin
��

Psi−1 , hsi−1

�
, Psi (θsi ,�tsi )

�
< vA�tsi + ε, then

the UAV cannot visit Psi (θsi ,�tsi ) even though using the
shortest Dubins path. ε is a path margin to ensure the
reliable communication between UAV and UGV. In this
case, this solution is an infeasible solution.

2) If Dmin
��

Psi−1 , hsi−1

�
, Psi (θsi ,�tsi )

� ≥ vA�tsi+ε, then the
UAV arrives at Psi (θsi ,�tsi ) with the shortest Dubins path
just right and in advance. In this case, the UAV needs to
plan its path to ensure that the UAV can just arrive at Psi

with path length vA�tsi + ε according to Algorithm 2.

IV. MEMETIC ALGORITHM FOR DTSPDN

The proposed algorithms, named MA, is presented to solve
DTSPDN problem in this section. Firstly, the evaluation func-
tion used in the MA is introduced in subsection IV-A. Then,
the overall framework of MA is described in subsection IV-B.
All major procedures of MA are presented in detail from
subsection IV-C to IV-G. Finally, the computational com-
plexity of MA is analyzed in subsection IV-H.

A. Evaluation Function

The evaluation function of the DTSPDN problem has two
parts: The first part is the total flight tour of the UAV when
visiting all UGVs, that is

NG
i=1 �tsi vA. The second part reflects

the degree of constraint violation.
Remark: Our previous work [31] discovered the realizability

of Dubins path with an expected length in a two-dimensional
plane. It is proved that, when the destination point is located
in a special region, denoted by Dδ , there is a special length
interval, denoted by (λ−, β−), for which no proper Dubins
path exists.

An individual X violates constraints in the following cases:
Case 1. The UAV cannot meet the point Psi with the shortest

Dubins path;
Case 2. Psi is located in the unrealizable area Dδ of the UAV,

and vA�tsi ∈
�
λ−, β−

�
.

The degree of constraint violation is denoted by csi when
the UAV needs to visit Psi with time tsi :

csi =
�

Dmin((Psi−1 , hsi−1 ), Psi )− vA�tsi , Cases I and II

0, otherwise
(7)

Therefore, the evaluation function f of DTSPDN problem
for X is

f (X) = vA

NG�
i=1

�tsi + κ

NG�
i=1

|csi |, (8)

where κ (κ �NG
i=1 �tsi vA) is a penalty parameter.
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As can be seen from Eq. 8, there are three special properties
of f (X) as follows:

Property 1: When X violates constraints, f (X) depends on
si , θsi and �tsi with si ∈ I .

Property 2: When X does not violate constraints, f (X) only
depends on �tsi with si ∈ I .

Property 3: When X does not violate constraints, chang-
ing θsi and si cannot affect f (X) but will
change the location of Psi , and further affect
Dmin(

�
Psi−1 , hsi−1

�
, Psi )/vA, that is the lower

bound of �tsi , denoted by �tsi .

B. Overall Framework

The memetic algorithm proposed by Moscato and
Norman [32] is a powerful framework that combines the
exploration power of a genetic algorithm (GA) and the
exploitation strength of local search. This paper proposes a
memetic algorithm based on GA procedure, repair procedure,
transformation procedure and local search procedure to solve
the DTSPDN problem. Algorithm 3 gives an overview of our
memetic algorithm.

The GA refers to a class of adaptive search procedures based
on the principles derived from natural evolution and genetics,
see lines 4-12 in Algorithm 3. The initial population contains
N P individuals that are constructed by randomly generated
solutions. For each generation, each individual solution Xi

is selected as parent pA and another individual solution is
randomly selected as parent pB .

For each pair of parents, pA and pB , the crossover operator
generates a new offspring solution Xnew. Next, a mutation
operation is performed on Xnew with probability pm . If Xnew

violates constraints, the repair procedure is invoked to try
to repair Xnew. During the evolutionary process, changing
some decision variables (i.e., visiting sequence and location)
may not affect the evaluation function value, but may alter
the feasible region of another decision variable (i.e., visiting
time) due to the encounter constraint between the UAV and
the UGV. To track and utilize the change of the feasible
region, a transformation procedure is proposed to improve one
solution to another one with less visiting time. If Xnew has
a better objective function value than Xi , it will replace the
individual Xi .

The local search procedure is applied to the elite individuals
inherited from populations, see lines 14-19 in Algorithm 3.
In order to reduce the computation time spent on local search,
the local search procedure is performed every Tlp generation.
The local search procedure selects Ngen/Tlp elite individuals
randomly from the top 50% individual to implement local
search.

C. Crossover Operation

The crossover operator plays a critical role in memetic
search and defines the way to transmit the information from
parents to offspring. A meaningful crossover operation should
preserve good properties of parent individuals through its
recombination process. In our case, an auxiliary-vector-based

Algorithm 3 The Memetic Approach for the DTSPDN
1: Initialization: Generate randomly N P individual Xi (i =

1, 2, . . . , N P) and compute f (Xi) for each Xi

2: Ngen = 0.%Ngen is evolutional generation
3: repeat
4: for all Xi do
5: Select randomly another individual X �i and generate a

new individual Xnew by the crossover operator
6: Generate a random number randi (randi ∈ [0, 1]),

if randi < pm , then perform the mutation operator
on the individual Xnew .

7: Operate the repair procedure on Xnew

8: Operate the transformation procedure on Xnew

9: if f (Xnew) < f (Xi ) then
10: Xi ← Xnew

11: end if
12: end for
13: Ngen ← Ngen + 1
14: if mode(Ngen, Tlp) == 0 then
15: for j = 1 to Ngen/Tlp do
16: Select randomly an individual from top 50% individ-

uals
17: Operate the local search procedure on X j

18: end for
19: end if
20: until The stopping criteria is met
21: return the best individual X∗ and f (X∗)

crossover operator is adopted to generate an offspring individ-
ual, which is in the same way as in [25]. Here is an example
of four UGV cases to introduce the crossover operation. The
parent individuals are constituted by the i th individual, denoted
by pA, and another selected from the population randomly,
denoted by pB :

pA =
⎛
⎝ 1

θ1

�t1

⎞
⎠−

⎛
⎝ 3

θ3

�t3

⎞
⎠−

⎛
⎝ 2

θ2

�t2

⎞
⎠−

⎛
⎝ 4

θ4

�t4

⎞
⎠

pB =
⎛
⎝ 4

θ �4
�t �4

⎞
⎠−

⎛
⎝ 2

θ �2
�t �2

⎞
⎠−

⎛
⎝ 3

θ �3
�t �3

⎞
⎠−

⎛
⎝ 1

θ �1
�t �1

⎞
⎠

We randomly generate an auxiliary vector having the
same dimensions as the parent individuals whose elements
are 1 or 2. For example, given v : 1−2−2−1, the value of the
components in the auxiliary vector determines which element
from the two parent individuals will be selected as the element
of the offspring. The first component in the auxiliary vector
is 1, which means that the first gene in parent pA will be
selected to construct the offspring Xnew .

Xnew =
⎛
⎝ 1

θ1

�t1

⎞
⎠

Then, the selected gene will be deleted from both parent
individuals. The components corresponding to UGV 1 from
parents pA and pB are removed, which changes the parent
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individuals to

pA =
⎛
⎝ 3

θ3

�t3

⎞
⎠−

⎛
⎝ 2

θ2

�t2

⎞
⎠−

⎛
⎝ 4

θ4

�t4

⎞
⎠

pB =
⎛
⎝ 4

θ �4
�t �4

⎞
⎠−

⎛
⎝ 2

θ �2
�t �2

⎞
⎠−

⎛
⎝ 3

θ �3
�t �3

⎞
⎠

Repeating these steps constructs the offspring individual:

Xnew =
⎛
⎝ 1

θ1

�t1

⎞
⎠−

⎛
⎝ 4

θ �4
�t �4

⎞
⎠−

⎛
⎝ 2

θ �2
�t �2

⎞
⎠−

⎛
⎝ 3

θ3

�t3

⎞
⎠

D. Mutation Operation

In order to increase the diversity in the population, the new
individual Xnew needs to be mutated according to a certain
probability pm . In this paper, the following three mutation
operators are adopted with equal probability ( pm/3):

Operator 1: Two indices i, j ∈ {1, 2, . . . , NG } with i 	= j
are chosen randomly, and then the corresponding
genes swap their positions in Xnew.

Operator 2: Randomly select a number i ∈ {1, 2, . . . , NG },
and then the polar angle θi in Xnew is reset within
the interval (0, 2π].

Operator 3: Randomly select a number i ∈ {1, 2, . . . , NG },
and then the visiting time �ti in Xnew is reset
within the interval [0,�t], where �t is the upper
bound of �ti .

E. Repair Operation

After the crossover and mutation operations, the generated
individual Xnew may violate the dynamic constraint in Eq. (4).
The dynamics of constraints could cause changes in the shape,
percentage, or structure of feasible/infeasible regions.

To accelerate the process of locating feasible regions,
a gradient-based repair strategy is integrated into the algo-
rithm. Since the messenger UAV can visit UGVs according
to Lemma 1, changing �T in Xnew can relocate the feasible
region of Xnew. The adopted repair method, utilizing the
gradient information of constraints, can locate feasible regions
rapidly.

It can be observed that the dynamic constraint only affects
the current UGV to visit and the UGVs being visited without
affecting the visited UGVs. Therefore, if the visiting time of
one UGV (e.g., UGV s j ) is changed, �ts j with i ≤ j ≤ NG

may violate the dynamic constraint, but �ts j with 1 ≤ j < i
can still satisfy it. Based on this character, the repair operation
can use gradient information to locate the feasible regions of
each UGV in visiting sequence S = [s1, . . . , sNG ].

The degree of constraint violation csi with i ∈
{1, 2, . . . , NG} can be obtained according to Eq. (7).
Its gradient value ∇csi is

∇csi =
1

η

�
csi

�
�tsi + η

�− csi (�tsi )
�
, (9)

Fig. 4. Transformation procedure. The red solid curve represents the path
that is treated by transformation procedure, and the blue dash curves represent
the untreated path.

where η is a small positive value. Therefore, the visiting time
�tsi can be updated according to the following equation:

�tsi := �tsi − ηt csi∇c−1
si

, (10)

where ηt is the step size. The iteration goes on until csi reaches
desired accuracy �r .

F. Transformation Procedure

If Xnew does not violate constraints, f (Xnew) only depends
on �tsi with si ∈ I according to the property 1 of f (X).
In this case, only the changes of �tsi to improve f (Xnew) can
be reserved during the evolutionary process but the changes of
other components in the solution (i.e., S and 
) by crossover
and mutation operations will not affect f (Xnew). However,
�tsi is restricted by its lower bound �tsi . According to the
property 3 of f (X), �tsi is influenced by S and 
. It means
that if Xnew does not violate constraints, changing S and 

cannot alter f (Xnew) but will change the feasible region of
�tsi and affect the further optimization of f (Xnew) in local
search procedure. The variants generated by changing the
decision variables like S and 
 are called silent variants [33],
in which the changes of some specific decision variables do
not directly affect evaluation function value but will determine
some properties of the solution. The evolutionary process con-
taining silent variants can effectively maintain the population
diversity [33] and is more likely to reach a global optimum
without worrying about premature convergence [34].

To track the change of the feasible region with varying S
and 
 and optimize the solution with silent variants, a trans-
formation procedure is proposed to transform one solution to a
better solution by adjusting the access time of UGVs, as shown
in Fig. 4. Since there exists a positive correlation between the
access time �tsi (si ∈ {1, 2, . . . , NG }) and the value of the
evaluation function, the proposed operation adjusts �tsi in the
new individual, affecting the evaluation function value of the
new individual. In addition, since the repair operation is time-
consuming, it needs to ensure that the transformation operation
does not violate the dynamic constraint in Eq. (4).

According to Lemma 1, the UAV can always encounter
the moving UGV. The encounter patterns fall into two cate-
gories according to the relative motion between the UAV and
the UGV: the catch-up pattern and the meeting pattern.
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Definition 1: (Catch-up pattern) If D((P A, h A), PG(t)) ≤
D((P A, h A), PG(t+εt)) where εt is an arbitrary time interval,
then the encounter patterns between UGV and UAV is defined
as catch-up.

Definition 2: (Meeting pattern) If D((P A, h A), PG(t)) >
D((P A, h A), PG(t+εt)), then the encounter patterns is defined
as meeting.

The following proposition provides a sufficient condition
to reduce the encounter time for the two UGVs to visit
successively. The poof is postponed to Appendix A.

Proposition 1: Assume that a messenger UAV needs to
visit UGV si and si+1 successively if the encounter pattern
between UAV and UGV si+1 is catch-up, then reduce �tsi such
that UAV can still encounter UGV si+1 with �tsi+1 . If the UAV
visits UGV si+1 with meeting pattern, then reducing �tsi will
lead to the UAV being unable to encounter si+1 with �tsi+1 .

According to Proposition 1, if the encounter pattern between
UAV and UGV si+1 is catch-up, the access time of the UAV
�tsi for si can be reduced. Therefore, �tsi for UGV si is reset
to �tsi , that is the shortest visiting time. The details of the
transformation procedure are shown in Algorithm 4.

Algorithm 4 Transformation Procedure
1: for all Any adjacent UGVs si and si+1 in the individual

X do
2: if UAV catches up with UGV si+1, then
3: Calculate the shortest time to visit UGV si according

to Algorithm 1, denoted by τsi .
4: �tsi = τsi .
5: end if
6: end for

G. Local Search Operation for Visiting Location

A gradient-based search (GS) operator and a sampling-
based search (SS) operator are introduced to perform the local
search procedure for visiting locations on the boundary of the
UGV’s neighborhood. The two local search operators have
different search logic. The SS operator is a long-distance
search algorithm while the GS operator is a short-distance
search algorithm. The main reason for using two local search
operators is to guide the elite individuals toward more promis-
ing areas in the solution space while avoiding being trapped
in local optimum.

In accordance with the Ockham’s Razor in Monte
Carlo [35], the selected solution is processed either by the
gradient-based or sampling-based search operator with an
equal probability (0.5).

1) GS Operator: A component corresponding to a UGV is
selected randomly in individual X , e.g., gsk = (sk, θsk ,�tsk )

T .
The value of evaluation function of X with respect to θsk is
denoted by f (X |θsk ). The approximate derivative of f depend-
ing on θsk is

∇θsk
f (X) ≈ [ f (X |θsk )− f (X |(θsk +�θ))]/�θ, (11)

where �θ is a small positive value. Note that the individual
added by �θ needs to perform the repair and transformation
procedures.

TABLE I

TIME COMPLEXITY ANALYSIS OF EACH PROCEDURE

After deriving the approximate gradient θsk , the correspond-
ing update equation for θsk is

θsk := θsk − ρl∇θsk
f (X) (12)

where ρl is step size. The iteration continues until the length
of the Dubins paths corresponding to the solution does not
improve. Then a new individual is generated by the above
steps, denoted by X g

L S . If f (X g
L S) < f (X), then X g

L S will be
retained.

2) SS Operator: For solution X , a UGV is selected ran-
domly, and uniform sampling is then implemented on the
boundary of the neighborhood of the UGV (the sampling num-
ber is Ns ). For any sampling point m (m = 1, 2, . . . , Ns ), the
rendezvous point Pr

m(β, t∗m) and its corresponding rendezvous
time t∗m can be obtained by Algorithm 1. Furthermore, set
�tsk = t∗m , perform the repair and transformation procedures
on X , and generate one new individual, denoted by Xm .

For all sampling points, the best solution is reserved and
denoted by Xs

L S ,

Xs
L S = arg min f (Xm). (13)

If f (Xs
L S) < f (X), then Xs

L S will be retained.

H. Computational Complexity Analysis

The time complexity analysis of the memetic algorithm
proposed in this paper is presented in Table I.

For GA process, first it has a computational complexity of
O(N P ·NG) by using crossover and mutation method to gener-
ate new individuals; then, it has a computational complexity of
O(N P ·NG/�r ) to repair the new individuals since the iteration
number of the gradient-based repair procedure for each UGV
is 1/�r . In the transformation procedure, decoding operation
is needed on each UGV and the computational complexity
on each UGV is O(NG ). So the computational complexity of
this procedure is O(N P · N2

G). Therefore, the computational
complexity of GA process is

O[N P · (NG + NG/�r + N2
G + NG )] = O(N P · N2

G). (14)

The local search process for visiting location employs two
operators which consist in GS operator and SS operator. In GS
operator, the upper bound of iteration number is [2π/ρl]
where [·] is down-rounding function according to [25]. So the
computational complexity of GS operator is O(Ngen/Tlp ·
[2π/ρl] · NG). In SS operator, the improved solution is gen-
erated via sampling Ns with a computational complexity of
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O(Ngen/Tlp · Ns · NG ). The computational complexity of local
search process is

O(Ngen/Tlp · [2π/ρl] · NG + Ngen/Tlp · Ns · NG) = O(NG).

(15)

Therefore, the total computational complexity for the pro-
posed memetic algorithm is

O(N P · N2
G + NG ) = O(N P · N2

G) (16)

V. COMPUTATIONAL EXPERIMENT

This section performs experiments to evaluate and test the
proposed algorithm for the DTSPDN, named MA. This algo-
rithm is implemented in MATLAB 2018b, and all experiments
are executed on a PC with Intel Core(TM) i7-7700T 2.9 GHZ
and 16 GB RAM.

To investigate the performance of the proposed algorithm,
MA is compared with five algorithms as follows:

1) The heuristic algorithm with boundary sampling
(HE-B) proposed in [5]. The visiting order of the UAV
is determined by receding horizon optimization and the
access locations are obtained by uniform sampling on the
boundary of each UGV’s communication neighborhood;

2) The heuristic algorithm with center sampling (HE-C)
proposed in [5]. The approach to determine the visiting
order of the UAV is the same with HE-B but the access
location is the center point of each UGV’s communication
neighborhood;

3) A double sampling algorithm (DS). Stieber et al. [36]
modelled a Euclidean version of DTSPDN, called
the traveling salesman problem with moving targets
(TSPMT), as a time-discrete model by discretizing the
UGV trajectory and then used the branch-and-bound
search to solve it. Similarly, for each possible visiting
order, we uniformly discretize the trajectory and the
neighborhood boundary of all UGVs, and find the shortest
reachable tour by using a depth-first branch-and-bound
search [37]. All possible visiting orders are exhausted to
find the shortest reachable tour.

4) MAR is a memetic algorithm proposed by
Zhang et al. [25] and is used for solving DTSPN
in which the UGVs are static. The MAR applies an
encoding scheme integrating the visiting sequence and
location, and combines the GA and a local search
strategy based on the approximate gradient. In this
paper, we modified the algorithm in which the visiting
paths for each UGV are replaced by the encounter paths
with the shortest Dubins path.

5) Variable neighborhood search (VNS) was proposed by
Mladenović and Hansen [38] in 1997. Pěnička et al. [25]
proposed a new VNS for solving DTSPN. The VNS
employs predefined neighborhood operators used for
iterative improvement of the initial solution inside the
shaking and local search procedures. In this paper,
we modified the algorithm in which the initial solution is
generated by HE-B and the visiting paths for each UGV
are replaced by the encounter paths with the shortest
Dubins path.

TABLE II

THE PARAMETERS OF THE PROPOSED MEMETIC ALGORITHM

The parameter settings of the proposed memetic algorithm
are shown in Table II. The parameter settings of MA and MAR
(e.g., mutation probability, population size, maximum number
of generations) refer to those in [25]. For HE-B, the specific
configurations are consistent with those in [5] and also shown
in Table II.

A. Comparative Experiment on Random Instances With
Different Scales

In this part, a series of random instances with different
scales are used to analyze the performance of all tested
algorithms. The test instances are labeled as B-N-i, where
N is the number of UGVs and i is the instance identifier.
For example, B-2-1 indicates the 1st instance with 2 UGVs.
In this part, rmin = 5 and r G

i,com = 5 with i = 1, 2, . . . , NG .
For small-scaled instances, the results calculated by the

four algorithms over a set of the 20 benchmark instances
are reported in Table III. MAR, VNS and MA are executed
25 times independently on each instance. The results are
evaluated using three measures: the mean value (avg), the stan-
dard deviation (std) and the result of the Wilcoxon rank-sum
test. The elapsed time for the computation of each algorithm
recorded in Fig. 5 is the average time of running 25 times. The
average distance among the neighborhood of UGVs, denoted
by ρ, is described as the average distance among the initial
positions of UGVs minus 2r G

i,com . The distribution sparsity of
UGVs for UAV is described as the ratio of ρ to the UAV’s
minimum turning radius rmin , that is

κP = ρ

rmin
.
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TABLE III

COMPUTATIONAL RESULTS OF DS, HE-B, HE-C, MAR AND MA ON SMALL PROBLEM SCALES

Fig. 5. Computational time of HE-C, HE-B, MAR, VNS and MA with the
different number of UGVs.

When κP is large, the distance among UGVs relative to rmin

is large and the distribution of UGVs is regarded as sparse.
As shown in Table III, the MA finds 14 best solutions

out of 20 instances. In most cases, MA obtains the best
Dubins path. The solutions obtained by DS are also very
good. However, the computational complexity of DS is very
high (O(NG !(NN S)

NG (NT S)
NG ), where NN S and NT S are the

sample numbers of the UGV’s neighborhood and trajectory,
respectively. When the number of UGVs is greater than 3,
DS requires more than an hour to obtain a solution. Table III
also shows that MA outperforms HE-C and HE-B for different
instances in terms of the solution quality, no matter how
sparse or dense the distribution of UGVs is. This is because
MA takes advantage of the characteristics of the DTSPDN,
combining individual learning and local search, which enables
MA to better exploit and explore the search space. The optimal

Fig. 6. The shortest UAV tours to visit three UGVs obtained by different
methods for instance B-3-02. (a) DS, (b) HE-B, (c) HE-C, (d) VNS, (e) MAR,
(f) MA.

solutions obtained by MA are slightly inferior to those of MAR
and VNS in some instances, such as with B-2-03, B-2-09 and
B-2-10. For MAR and VNS, it uses the short encounter path
between UGVs and contains local search to further optimize
access locations. Thus, it can occasionally find better solutions.
However, since MAR and VNS cannot adjust the visiting
time for UGVs, they are prone to generate longer tour. For
example, Fig. 6 shows the tours found by DS, HE-B, HE-C,
MAR, VNS and MA on instance B-3-02.3 In this case, for the
tour generated by MAR and VNS, the UAV needs to turn a
major arc along its minimal turning circle to access UGVs by
applying the encounter paths with the shortest Dubins path.
MA, however, can adjust the visiting time for UGVs to avoid
generating major arcs.

3The video is available at https://youtu.be/rsNfggGD3zU
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TABLE IV

COMPUTATIONAL RESULTS OF HE-B, HE-C, MAR AND MA ON MEDIUM AND LARGE PROBLEM SCALES

Table IV shows the performance of the four algorithms
over 60 instances for medium-scale and large-scale instances.
G AP (%) indicates the gap between the best solution T ∗
of the MA and the best solution out of HE-C and HE-B.
It can be seen from the Table IV that MA outperforms its
competitors in the medium-scaled and large-scaled instances.
The G AP increases markedly with the increase in scale,
ranging from 14.30% to 93.29%. Compared with the medium-
scaled instances, the tours found by MA are much longer
than those of HE-C and HE-B on the large instances. This
is because the greedy nature of HE-B and HE-C makes it
difficult to accommodate the complex spatial relationships
among UGVs with the increasing problem scale. However,
HE-C and HE-B have very short computation time since they
use some heuristic rules to obtain solutions, as shown in Fig. 5.

As shown in Table IV, MA is superior to MAR and VNS
on most medium-scaled and large-scaled instances. MAR
and VNS lack effective adjustment for the visiting time,

which results in solutions with lower quality. MA uses the
transformation procedure to improve the visiting time of
solutions by analyzing the encounter pattern between UAV and
UGV. In addition, being equipped with local searches having
different search logics, MA has a sufficient capability to inten-
sify the search and explore the neighborhood of high-quality
solutions more carefully, leading to higher quality solutions.
MAR and VNS occasionally find better solutions when the
distribution of UGVs is very sparse (B-40-01, B-40-02, and
B-40-03 for MAR, and B-40-01, B-40-02, B-40-03 and
B-40-06 for VNS). Since the difference between the Euclidean
path and the Dubins path becomes indiscernible when the
distribution of UGVs for UAV is very sparse (κP is large), the
DTSPDN can be regarded as the Dynamic Euclidean Traveling
Salesman Problem with Neighborhood (DETSPN). In this
case, MAR and VNS directly use the shortest Dubins path,
similar to the Euclidean path, to access all UGVs, reducing
the search space and finding better solutions. However, MAR
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TABLE V

STATISTICAL RESULTS OF FOUR ALGORITHMS FOR B-10-01 AND B-10-10 WITH VARIOUS rG
com AND rmin

and VNS is only slightly superior to MA in the case of sparse
distribution of UGVs. The video about the UAV’s tour to visit
ten UGVs obtained by different methods for instance B-10-02
is available at https://youtu.be/2UsZ10mxR0c.

Computation time of MA is higher than that of MAR. For
small instance-scale, the difference in computation time for
MA and MAR is not very significant. When the number of
UGVs is less than 10, the computation time difference is less
than 15s. However, the time difference tends to widen as the
problem size increases, as shown in Fig. 5. Computation time
for VNS is much higher than that for MA and MAR since the
evaluations of candidate solutions are time-consuming in VNS.

B. Comparative Experiment on Random Instances With
Different Neighborhood and Turning Radii

This subsection investigates the performance of all algo-
rithms in DTSPDN instances with various r G

com ∈ {1, 5, 10}
and rmin ∈ {1, 5, 10}. When r G

com and rmin take a small
value, DTSPDN is approximate to TSPMT. The longer r G

com
and rmin are, they exert greater influence on the tour length.
Increasing the turning radius can enlarge the tour length while
larger neighborhood radius can reduce tour length due to the
distance savings. Both effects can be observed in Tables V
by comparing rmin = 1 and rmin = 10 for the turning radius,
and r G

com = 1 and r G
com = 10 for the neighborhood radius.

As shown in Table V, MA performs better than its com-
petitors. For HE-B, when the turning radius (rmin) of the UAV
is very small with respect to the distance between any two
UGVs, the instance implies a weak coupling effect between
the visiting sequence of the UAV and its visiting locations. The
decoupling strategy used in HE-B fits the instances with the

weak coupling effect. The weak coupling effect will disappear
when rmin increases to a large value. Thus, the performance
gap between MA and HE-B becomes larger with the increase
of rmin . In addition, the method of determining the visiting
sequence in HE-B is based on the Euclidean distance. As rmin

increases, the difference between the Euclidean path and the
Dubins path is significant. As a result, the performance of
HE-B becomes worse with the increase of rmin . The solution
quality of MA is also higher than that of MAR and VNS,
with its advantages mainly reflected in the mean value and the
standard deviation, especially when rmin is large (rmin = 10).
In this case, DTSPDN exhibits strong coupling between visit-
ing sequence, access locations and encounter time. MAR and
VNS relax the coupling relationship between the encounter
time and other decision variables, which results in longer tours.

C. Analysis About the Transformation Procedure

To test the effect of the transformation procedure, more
experiments are carried out. The performance of MA without
transformation procedure (MA-T) and MA is compared with
the same initialization method and constraint handling strategy.
MA outperforms MA-T as shown in Table VI. Thus, MA with
the transformation procedure can improve the quality of solu-
tions and leads to significant improvement in performance.

D. Parametric Sensitivity Analysis

The generation number to perform local search Tlp deter-
mines how frequently the local search procedure is executed.
In the preceding experiments, Tlp is set to 2. In order to
verify the effect of different Tlp on the algorithm performance,
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TABLE VI

RESULTS OF THE COMPARISON BETWEEN MA AND MA-T

Fig. 7. Comparison of the tour length for Tlp ∈ {2, 10, 20} over the
computational time for instances B-10-01 and B-10-10.

set Tlp = {2, 10, 20} to verify the effect on the algorithm
performance.

The variants of instances B-10-01 and B-10-10 with dif-
ferent Tlp = {2, 10, 20} are selected, and each algorithm
runs 300s for 20 executions independently. Within each run,
we store the objective value of the best individual thus
far every 10s. The experiment is repeated under the same
parameter setting with subsection V-A for instances B-10-1
and B-10-10.

Fig. 7 shows how the different Tlp values for instances
B-10-01 and B-10-10 affect the algorithm coverage. The
convergence curves indicate that the values of Tlp do not
significantly affect the performance of MA. This means that
MA is not very sensitive to the local search frequency.

VI. CONCLUSION

In this paper, a path planning problem, modeled as
DTSPDN, that arises in dynamic coordination between UGVs
and a messenger UAV is studied. By analyzing the characters
of the DTSPDN, we introduce a novel encoding scheme and
a corresponding effective decoding scheme. We then propose
a novel memetic algorithm to effectively solve DTSPDN.
In the memetic algorithm, a gradient-based repair strategy
is used to repair individuals that violate dynamic constraints
while a transformation procedure is also employed to find a
better solution by analyzing the changes of feasible region
caused by silent variants. On this basis, the memetic algorithm
framework is used to achieve the exploration-exploitation
trade-off by combining GA and two local search operators with
different search logics. The computational results on random

Fig. 8. Meeting pattern between UAV and UGV si . (a) Meeting pattern
between UAV and UGV si+1; (b) Catch-up pattern between UAV and
UGV si+1.

Fig. 9. Catch-up pattern between UAV and UGV si . (a) Catch-up pat-
tern between UAV and UGV si+1; (b) Meeting pattern between UAV and
UGV si+1.

instances with different scales demonstrate that the proposed
approach offers a high-quality solution in a reasonable time
compared to four other competitive algorithms in the literature.
In future work, we can adapt the memetic algorithm to plan
tours for multiple messenger UAVs, allowing the messenger
UAVs to provide relay services for each UGV with higher
frequency of information update.

APPENDIX A
PROOF OF PROPOSITION 1

Assume that the encounter pattern between UAV and
UGV si is meeting, and the UAV encounters UGV si at the
point Mi (see the curve P A Mi in Fig. 8) and encounters UGV
si+1 at the point Mi+1 (see the curve Mi Mi+1 in Fig. 8).
According to whether the encounter pattern between UAV and
UGV si+1 is meeting pattern or catch-up pattern, two cases are
discussed as follows:

Case 1 (Meeting Pattern Between UAV and UGV si+1):
If �tsi is reduced to �t � with 0 < �t � ≤ �tsi , UAV will
encounter UGV si at ahead of time. In this case, the length
of the encounter path between UAV and UGV si+1 will be
larger than the length |Mi Mi+1| = vA�tsi+1 according to the
definition of the meeting pattern in Definition 2, as shown
in Fig. 8 (a). Therefore, the UAV cannot visit UGV si+1

with �tsi+1 .
Case 2 (Catch-Up Pattern Between UAV and UGV si+1):

If �tsi is reduced to �t �, the length of the encounter path
between UAV and UGV si+1 will be less than |Mi Mi+1| =
vA�tsi+1 according to the definition of catch-up pattern in
Definition 1. Therefore, UAV can still encounter UGV si+1

with �tsi+1 , as shown in Fig. 8 (b).
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In the same way, it can be easily verified that if the UAV
encounters UGV si and UGV si+1 with catch-up pattern and
�tsi is reduced to �t �, then UAV can still encounter UGV si+1

with �tsi+1 , as shown in Fig. 9(a). If the UAV encounters UGV
si with catch-up pattern and UGV si+1 with meeting pattern,
then reducing �tsi will lead to the fact that the UAV cannot
encounter UGV si+1 with �tsi+1 , as shown in Fig. 9(b).
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