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Unmanned aerial systems provide many applications with the ability to perform flying tasks autonomously, and hence have received
significant research and commercial attention in the past decade. One of the most popular unmanned aerial platforms for such tasks is the
small-scale rotorcraft with multiple rotors, commonly known as multicopters. In order for these platforms to perform fully autonomous
missions and tasks, they require a sophisticated low-level flight control system that is integrated with advanced task and motion planning
modules, which combine together to form the complete unmanned aerial system (UAS). In this paper, the planning module of unmanned
multicopter systems is discussed in detail, and a comprehensive survey on techniques for both motion and task planning reported in
literature and by the Unmanned Systems Research Group at the National University of Singapore is presented.
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1. Introduction

In recent years, research and development of autonomous
unmanned systems have continued to gained momentum in
both theoretical domains and industrial applications. The
areas where such systems can be implemented vary widely,
from space satellites to aerial, terrestrial, and underwater
robots. Developmental trends have shown that autonomous
unmanned systems, such as unmanned aerial vehicles
(UAVs), unmanned ground vehicles (UGVs), unmanned
surface vehicles (USVs), and unmanned underwater vehi-
cles (UUVs), with the integration of intelligent elements and
functions, are set to play significant roles in many applica-
tions and are likely to be increasingly present in human
societies.

An autonomous unmanned vehicle is defined as a me-
chanical machine equipped with the necessary components,
such as data processing units, sensors, automatic control,
and communication systems, to perform autonomous mis-
sions without the interference of a human operator. The
difficulty of performing autonomous operations increases in
complicated environments, such as cluttered surroundings
or places where the Global Positioning System (GPS) is
unavailable. In order to enable full autonomy of an un-
manned platform, it is necessary to fully understand the
dynamic model of the hardware system and integrate the
key components of the model into the overall unmanned
system framework. This includes the systems for mission
and task management (to manage application tasks), mo-
tion planning (to generate feasible motion paths), sensing
and positioning (to detect and sense the surrounding en-
vironment), and automatic control (to control and guide the
vehicle).

The initial development of UAVs was primarily driven by
military applications [1], which involves tasks such as
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surveillance, reconnaissance, and airstrike missions. The
earliest attempt at a powered UAV began in the early 1900s,
where an unmanned aircraft was used to carry an explosive
payload to a predetermined target. Over the years, the de-
velopment of military UAVs has resulted in sophisticated
technologies and systems, with prominent examples such as
the Predator from the United States Air Force (USAF) and
rapid development of small unmanned aircraft systems [2].
In recent years, the use of single and multiple UAVs has also
expanded rapidly in many civilian domains and applications
[3], including agricultural applications [4], entertainment
[5], remote sensing and data collection, aerial manipulation
[6], parcel deliveries, and aerial photography.

One of the most popular civilian aerial platforms is the
small-scale rotorcraft with multiple rotors, commonly
known as the multicopter or multirotor. Based on the
number and configuration of rotors, multicopters can be
further classified as shown in Fig. 1. Compared to their
conventional helicopter counterparts (e.g. [7, 8]), multi-
copters have a simpler mechanical structure and thus re-
quire relatively less effort to stabilize and control.
Compared to the fixed-wing aircraft (e.g. [9]), they possess
the advantage of being able to hover and perform vertical
take-off and landing. The superior maneuverability and
compact size of these vehicles allow them to operate in
constrained spaces. As a result, they have become a popular
choice for various applications such as tunnel inspection
[10], environment exploration [11], and search and rescue
in damaged buildings [12, 13].

A fully autonomous multicopter system is typically
equipped with various avionics including onboard compu-
ters and sensors. An example of such a vehicle is depicted in
Fig. 2, which is an unmanned hexacopter platform devel-
oped by the Unmanned Systems Research Group at the

National University of Singapore (NUS) for GPS-denied
environments [12]. The hexacopter has a tip-to-tip width of
60 cm and a maximum take-off weight of 1.9 kg. It has two
onboard computers: a Pixhawk flight controller, and a
small-scale high-level computer. The Pixhawk flight con-
troller [14] has a main 32-bit 216MHz ARM processor with
only 2MB memory and 512 KB RAM. The Pixhawk also
integrates various onboard sensors such as the accelerom-
eter, gyroscope, magnetometer and barometer which pro-
vide basic measurements for flight control. The small-scale
high-level computer used is the Upboard (Intel Z8350
processor). Weighing just 80 g, the Upboard is mainly re-
sponsible for running complex high-level algorithms for
tasks such as planning, localization and perception. The
platform is integrated with a Hokuyo UTM-30LX laser
scanner, which senses obstacles in the surrounding envi-
ronment within 30m and has a 270� field of view. A camera
is also installed on the platform to provide additional image
information for vision-based algorithms.

The typical framework for an autonomous unmanned
rotorcraft system is shown in Fig. 3. In general, there are
three major sub-systems: measurement and perception,
flight control, and planning. While the main focus of this
paper is the planning module of the system, the following
sections will first introduce each of these modules to pro-
vide a basic background on the complete unmanned system.

1.1. Measurement

The measurement module of the UAS is responsible for
receiving data from the onboard sensors and generating
both state estimates of the vehicle, such as position and
velocity, and those of the environment, such as the location
of geometric obstacles (environment mapping) and targets
of interest (objection detection). Due to the size and pay-
load limit of small-scale multicopters, these platforms typ-
ically adopt a lightweight microelectromechanical system
(MEMS)-based inertial measurement unit (IMU) to provide

Fig. 1. Various common configurations of multicopters. Green
indicates a clockwise rotating rotor while blue indicates a counter-
clockwise rotating rotor.

Fig. 2. A hexacopter developed by the NUS research team.
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the basic state information of the vehicle. A common ex-
ample of such a system is the sensor suite included in the
Pixhawk flight controller. The signal inputs of each sub-
component in the IMU are fused with an extended Kalman
filter (EKF) to provide the attitude, acceleration and height
estimation of the vehicle, allowing the attitude of the mul-
ticopter to be controlled and stabilized through feedback
control.

However, as the low quality MEMS-based accelerometer
typically produces acceleration measurements that are
noisy and commonly with bias, velocity and position esti-
mations based purely on IMU measurements may diverge in
seconds. To regulate and control the velocity and position of
the vehicle, it is possible and sometimes preferred to use
additional sensors such as GPS and Ultra-Wide Band
(UWB)-based technologies to directly measure the velocity
and position of the vehicle. These measurements are then
further fused with the EKF to produce more accurate
readings. In environments where GPS is denied and the
installation of external sensors such as UWB is not feasible,
sensors such as stereo cameras and laser scanners can be
used to provide state estimation through the process of
simultaneous location and mapping (SLAM). The use of
cameras and lasers also allows the vehicle to acquire ad-
ditional information of the environment, such as the loca-
tion of obstacles, and this information can be further
processed by perception algorithms to facilitate other
functional modules such as control and planning.

1.2. Flight control

The basic functions of a flight control module are: (i) to
stabilize the unmanned vehicle; and (ii) to track a reference
trajectory with bounded error in the presence of environ-
mental and model uncertainties. Multicopters are inher-
ently unstable, hence a cascaded control structure, which
consists of inner- and outer-loop control systems, is often
adopted to stabilize the vehicle. The outer-loop position
controller (20–50Hz) tracks the reference trajectory

generated from the motion planning module and outputs
the desired thrust and attitude commands to the inner-loop
attitude controller. The high bandwidth attitude controller
(400–1000Hz) then maps these commands to actual motor
forces and stabilizes the vehicle. To handle uncertainties
and external disturbances, techniques such as robust and
perfect tracking (RPT) control developed in [15] can be
utilized to design the outer-loop controller. The RPT control
makes full use of the reference trajectory and its deriva-
tives, when available, to reduce the tracking error signifi-
cantly. In practice, when the reference trajectory generated
by the motion planning algorithm is dynamically feasible,
the states of the actual vehicle can be bounded inside a tube
centered around the reference (nominal) trajectory. This
bounded tube is useful for high-level planning processes.
For example, in motion planning with obstacles, the tra-
jectory should be at least eþ r away from the obstacle,
where r is the radius of the vehicle, and e is the tube radius
of the corresponding position trajectory. There are methods
[16] to estimate the time-varying tube radius e given the
model of the vehicle and the limits of the uncertainties and
disturbances.

1.3. Planning

In autonomous systems, the primary purpose of planning is
to convert the high-level task specifications from human
operators to low-level instructions for the vehicle. Planning
requires a predictive model that describes the behaviors of
the system of interest. Based on the model, the planner can
reason what will happen if the vehicle takes a particular
action, and then decide what actions should be taken to
fulfill the given tasks. Many planners use a state-based
model, which typically consists of a state space, an input/
action space, a differential/difference equation that
expresses the system dynamics, and a set of initial states.
Usually, there is also a set of constraints over the states and
inputs, and the model describes how the states would
change with the inputs over time. The task specifications, or

Fig. 3. A typical framework for an autonomous unmanned aerial system.
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planning goals, can be understood as a set of additional
constraints. These goals can be a simple boundary state
constraint (i.e. a reachability problem) or something more
complex such as temporally-extended ones. The goal of
planning is to find a set of control inputs by searching in the
parameterized input space of the system such that the
resulted state trajectory satisfies all constraints.

Based on the modeling of the environment, there are
three general types of the planning:

(i) Open loop (nonreactive): The environment is assumed
to be static or the vehicle is the only agent that can
change the states of the environment. In such cases,
the goal of planning is to find an input sequence where
the corresponding state sequence satisfies all the
constraints.

(ii) Iterative: Iterative planning often interleaves with the
execution. For each iteration, a prediction of the en-
vironment is made and nonreactive planning is per-
formed. Re-planning is then triggered periodically or
when the environment changes during the execution.
The final state trajectory over the full execution period
has to be ensured to satisfy all the requirements.
Model predictive control (MPC) can be regarded as a
type of iterative planning.

(iii) Reactive: In reactive planning, the environment un-
certainty is explicitly modeled. The resulting plan is no
longer a sequence of actions but a policy that maps
each state to a set of actions. The goal of reactive
planning is to find a control policy such that under any
modeled environment behavior, the vehicle will take
correct actions according to the policy and satisfy all
the requirements.

Planning can take place at different levels by using models
of different abstraction-levels. For multicopters, there are
two levels of planning in general: motion planning and task
planning. Motion planning usually works with a detailed
dynamic model and focuses on the dynamic and geometric
constraints. On the other hand, task planning works with a
highly abstract discrete model and focuses on handling
task-related constraints. Here, both task and motion

planning are briefly introduced below, and the main dif-
ferences between the two are summarized in Table 1. Al-
though we focus on the planning for a single agent, many of
the techniques are also used in multi-agent scenario [17]
with different types of vehicles [18].

1.3.1. Motion planning

Motion planning is the task of guiding a vehicle from one
place to another while avoiding obstacles. In the context of
multicopters, the goal of motion planning is to compute a
dynamically feasible and collision-free trajectory that starts
from an initial state and ends at a specified target. The
computed state trajectory is later fed into a lower-level
controller as a tracking reference. For traditional motion
planning, the goal specification does not involve any tem-
poral constraints and is fairly straightforward, i.e. reaching
a target state or zone. The terms dynamically feasible and
collision-free specify two major constraints in motion plan-
ning: the dynamics constraints of the vehicle; and the geo-
metric constraints induced by obstacles in the environment.
A recent review of UAV path planning and obstacle avoid-
ance can be found in [19].

The task of motion planning occurs in a continuous do-
main. The planning model is often an extension of the de-
tailed dynamic model of the vehicle itself, which is
described by a set of differential constraints. For example, a
third-order integrator-based model can be used to describe
the dynamics of a quadrotor, in which the state variables are
the positions, velocities, and accelerations in the three axes,
and the inputs are the corresponding jerks (i.e. the deriva-
tives of the acceleration). Besides the differential con-
straints, we can enforce other dynamics-related constraints
by adding extra state and input constraints. For instance, we
can limit the horizontal velocity to be within 2 m/s and the
acceleration to be within 0.5 m/s2. In addition to the dy-
namic constraints, the planning model also has to consider
the geometric constraints of the environment. In traditional
motion planning, the environment states are usually the
positions of obstacles. To describe these features, the model

Table 1. Comparison between traditional motion planning and traditional task planning.

Motion Planning Task Planning

Model Detailed dynamic model of the vehicle;
Environment map

Highly abstract symbolic model of the
vehicle and environment

Goal Reach a target state Temporally extended goals
Main constraints Vehicle dynamics; Geometric constraints

induced by the environment
obstacles;

Task related constraints

Domain Continuous Discrete
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of the environment is often represented by an obstacle map,
which is typically generated by a perception module. The
most common map representation for point cloud based
obstacle data is the occupancy grid map [20, 21]. For
planning purposes, it is beneficial to possess additional
distance information of this map [22]. These geometric
constraints can be represented as a set of (possibly variant)
additional position constraints that the vehicle needs to
satisfy. Figure 4 presents an overview and breakdown of the
various topics on motion planning for unmanned rotorcraft.

1.3.2. Task planning

Many real-world applications require more than simple
vehicular movement from one position to another while
avoiding obstacles along the way. Often, additional planning
is required to be performed on top of the motion planning
discussed previously. Unlike motion planning, where the

goal is to reach a single position, many practical tasks in-
volve temporal constraints, i.e. constraints over the time
domain.

Consider the example shown in Fig. 5, where a drone is
used for a parcel delivery task. The map contains several
areas of interest, such as the warehouse where the UAV can
pick-up parcels, and three drop sites: Sites A, B and C. The
map also contains a few forbidden areas where the UAV
should not enter, which are indicated by red circles. In this
delivery mission, the human operator may impose temporal
constraints on the visiting sequence of each site, e.g. “Site C
should be visited only after visiting Site A or Site B”. These
types of constraints are out of the scope of traditional
motion planning, and are typically considered as task-re-
lated constraints and handled by a task planner.

More importantly, task planning usually works with a
much more abstract model, which is task-dependent rather
than vehicle-dependent. A typical task planning model often
completely ignores the details of the vehicle’s dynamics and

Fig. 4. Topics on motion planning for unmanned multicopters.
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geometric obstacles. It manipulates a set of abstract sym-
bolic actions that can be mapped to a set of existing func-
tionalities of the vehicle and finds a sequence of suitable
actions that fulfills the task requirements at a symbolic
level. For a multicopter, many of these actions involve flying
toward or covering an area of interest, which are handled
by the motion planning module.

For instance, as shown in Fig. 5, we consider a task
where the vehicle is required to deliver three parcels lo-
cated at the warehouse to Sites A, B and C. There are mul-
tiple no-fly zones shown as red circles that the vehicle is
prohibited from entering. At the task level, the detailed
geometric and dynamic information have been abstracted
away. The task plan may be coarsely expressed as “fly to the
warehouse, detect the parcel, pick up the parcel, fly to Site B,
drop the parcel”. The details of tasks such as navigating to
the warehouse, identifying and picking up the parcel are
traditionally not a concern of task planning. It is assumed
that other modules (including but not limited to motion
planning) are responsible for the actual refinement and

Fig. 6. Topics on task planning for unmanned multicopters.

Fig. 5. An example of a task workspace for UAV parcel delivery.
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implementation of these abstract actions. On the other
hand, the motion-level is responsible for actions that in-
volve the movement of the vehicle such as pick up and fly to.
Geometric and dynamic constraints such as obstacles, no-
fly-zones, the vehicle’s maximum velocity, and total thrust
limitations are included in the motion planning phase to
generate a safe and dynamically feasible plan.

In contrast to motion planning which focuses on the
dynamic and geometric constraints in the continuous do-
main, task planning works with a highly abstract model in
the discrete domain and focuses on generating a coarse task
plan. The system dynamics is typically modeled as a dis-
crete transition system at the task level and discrete plan-
ning techniques are often applied to solve the task planning
problem. An overview of the topics related to task planning
for unmanned multicopters are summarized in Fig. 6.

1.4. Outline

Planning is an indispensable part of any autonomous sys-
tem as it is responsible for the decision making and exe-
cution of required actions. As there have been many
developments and proposed approaches on performing
these tasks presented over the years, this paper aims to
present a comprehensive survey on the current state of
motion and task planning techniques for multicopters. In
particular, we limit the scope of this survey to consider only
the case of a single multicopter. The rest of the paper is
organized as follows.

The necessary background information, such as the dy-
namic model of the multicopter used for motion planning,
common graph search algorithms, symbolic representation
of task-level system abstraction models and temporal task
specifications, are first presented in Sec. 2. These provide
the fundamental basis for further discussion on the plan-
ning modules. Next, in Sec. 3 we present a survey of com-
monly used motion planning techniques reported in
literature. We then move from the motion level to task level
planning, and present the general task-level symbolic re-
presentation of the system abstraction in Sec. 2.3. A wide
range of temporal task specifications used to formally de-
scribe the task requirements are subsequently introduced
in Sec. 2.4. Section 4 highlights a survey on task planning
techniques for multicopter applications and the integration
of task planning and motion planning is discussed in Sec. 5.
Lastly, the concluding remarks are presented in Sec. 6.

2. Background and Preliminary Materials

In this section, preliminary information which is essential
for discussion of techniques for motion and task planning
are first presented. These include the dynamic model of the

multicopter used for motion planning, common graph
search algorithms, symbolic representation of task-level
system abstraction models, and temporal task
specifications.

2.1. Dynamic model of a multicopter

In this subsection, a dynamic model of a quadcopter based
on the work in [23] is presented. The basic quadcopter has
highly nonlinear dynamics and high degrees of freedom.
However, it has been proven that the quadcopter is differ-
entially flat [24], in which one can choose a set of flat out-
puts as the positions of the quadcopter in the 3D space
together with its yaw angle. For motion planning, it is a
common practice to use a simplified integrator-based
model. For example, [25] used a double integrator model
and [23, 26] used a third-order model, while a quadruple
integrator model was used in [24, 27]. Following the work
in [23], we show how a third-order integrator-based model
can be used to describe the dynamics of a quadcopter. The
quadcopter is modeled as a rigid body in three-dimensional
space with six degrees of freedom and we use x; y; z to
denote the positions in the three axes, respectively. The
control inputs are the rotational rates about the vehicle
body axes !x; !y; !z respectively as shown in Fig. 7), and F
is the mass normalized collective thrust. It is assumed that
there is a high bandwidth inner-loop controller that can
perfectly track the angular rates and map these commands
to actual motor forces.

We can describe the motion of the quadrotor as

x
::

y
::

z
::

0
B@

1
CA ¼ RG=B

0

0
F

0
@

1
Aþ

0
0
�g

0
@

1
A; ð1Þ

where RG=B denotes the rotational matrix from the body
frame RB of the vehicle to the inertial frame RG, and

Fig. 7. Conventional UAV coordinate systems.
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g represents the gravitational acceleration constant. The
attitude of the vehicle is related to the rotational rates by

R
:
G=B ¼ RG=B

0 �!z !y

!z 0 �!x

�!y !x 0

2
4

3
5: ð2Þ

We define the mass-normalized global force H 2 R3 as

H :¼
x
::

y
::

z
::

0
B@

1
CAmþ

0
0
g

0
@

1
A ¼ RG=B

0
0
F

0
@

1
A; ð3Þ

where m is the mass of the vehicle.
The multicopter is shown as differential flat [24] where

all of its states can be expressed as the combination of the
flat outputs ½x; y; z;  � and their derivatives. Here, the ½x; y;
z;  � indicates the vehicles position ½x; y; z� and yaw  . The
majority of the multi-copter motion planning literature
utilizes the differential flatness to reduce the dimension of
the motion planning problem, and the final trajectory can be
expressed functions of ½x; y; z;  � over time. In practice, it is
desirable to generate a smooth trajectory to minimize
wobbling in the attitude of the vehicle as excessive erratic
movements can compromise both mechanical structure and
onboard sensing activities. This also reduces the undesir-
able pendulum effect when the vehicle is carrying payloads
in the underslung position such as a heavy calligraphy
brush in [28]. To generate a smooth trajectory, we can pe-
nalize the rotational speed about the vehicle body axes
k!xk, k!yk and k!zk. Here, we focus on minimizing k!xk and
k!yk, since we can always make sure that there is no ro-
tation around the body z-axis by fixing the yaw angle.
Moreover, we should also constrain the global force H as the
maximum thrust available is limited by the thrust that can
be provided by the motors. This can be written as

kHk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
:: 2 þ y

:: 2 þ ðx:: þ gÞ2
q

> Hmin;

kHk < Hmax:
ð4Þ

As shown in [23], we can satisfy the constraints expressed
in Eq. (4) by limiting the accelerations of the vehicle

jx::j � x
::
max; jy::j � y

::
max; jz::j � z

::
max: ð5Þ

In addition, for rotational speeds k!xk and k!yk, the upper
bounds are set as

k!x;yk � kH:k
kHk : ð6Þ

Since we have already constrained the denominator kHk
(see Eq. (4)), we can indirectly penalize k!xk and k!yk by
limiting or penalizingZ

ð x:::2 þ y
:::2 þ z

:::2Þdt: ð7Þ

The quadrotor model presented above can also be applied
to other multicopters such as octocopters for the trajectory
generation process. This is because at the lower control
level, the inner loop attitude controller has a much higher
bandwidth than the outer-loop position controller. Thus the
number and location of the propellers can be safely ignored
during higher-level planning.

2.2. Graph search algorithms

Graph search serves as the backbone for various motion
and task planning algorithms, and here we briefly present
an outline of a general serialized graph search algorithm, as
shown in Fig. 8.

First, a storage space Q, usually a type of queue struc-
ture, is used to store and order the states that need to be
examined. The properties of Q vary depending on the
specific algorithm. If Q is ordered with a given priority
function, the states stored by Q forms a search wavefront.
For instance, breadth-first search uses a first-in-first-out
(FIFO) queue while the depth-first search uses a stack (last-
in-first-out LIFO). The optimal search algorithm Dijkstra
sorts the queue by the cost-to-come of the state. A* extends
the Dijkstra by considering an additional cost-to-go
heuristics.

Q starts as an empty container and is initialized with the
initial state s0 (Line 1). While Q is not empty, we pop out an
element of the queue, s, based on the assigned priority (Line
2–3). If the given termination condition has been satisfied,
for example state if s is already in the goal set SG, then the
solution has been found (Line 4–5). Otherwise, we continue
to expand the state s by applying all possible actions a (Line
6). For each successor state s 0, we check whether the cost of
s 0 can be improved by changing its parent to s (Line 7– 8).
Here, cost(s) and cost(s 0) are the costs of state s and s 0

respectively, and cost(s; s 0) is the edge cost between states s
and s 0. If it can be improved, we assign s as the parent of s 0.

Fig. 8. A general abstract template of the graph search algorithm.
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If state s 0 already has a parent, it is replaced by s. Then, if s 0

is not inside Q, we insert s 0 into Q. Otherwise, the dupli-
cation is handled typically by adjusting the priority of s 0 in
Q. If the goal set is never reached, we then fail to find a
solution. The plan result can be obtained by simply tracing
back the parents of the goal toward the initial state. The
above algorithm provides a very brief outline and omits
implementation details.

2.3. Symbolic representation of task-level system
abstraction models

The symbolic representation for the system abstraction
model, which is often used in task-level symbolic planning,
will be introduced in this section.

Definition 1 (Labeled transition system). A labeled
transition system TS is a tuple TS ¼ ðS; S0;Act;!TS;¦; LÞ
defined by

(i) A set of states S
(ii) A set of initial states S0 � S
(iii) A set of actions Act
(iv) A transition relation !TS � S � Act � S
(v) A set of atomic propositions ¦
(vi) A labeling function L : S ! 2¦

The sets S and Act can be finite or infinite. TS is a finite
transition system if the cardinalities of S and Act are finite.
The TS is called a deterministic transition system if it has
only one initial state s0 and the transition relation !TS is
also deterministic.

We often write s!a
TS s

0 to denote ðs; a; s 0Þ 2 !TS, where
a 2 Act and s; s 0 2 S. Let postaðsÞ denote the set of all
possible successor states after applying an action a 2 Act
from s, i.e. postaðsÞ ¼ fs 0jðs; a; s 0Þ 2 !TSg. The set of all
successor states of s is then given by

postðsÞ ¼
[
a2A

postaðsÞ: ð8Þ

An execution of a transition system TS is a sequence of
� ¼ ðs0; a0Þ; ðs1; a1Þ; ðs2; a2Þ; . . . ; where s0 2 S0 and ðsi; ai;
siþ1Þ 2 !TS for all i � 0. A control strategy is a partial
function � : ðs0; a0; . . . ; si�1; ai�1; siÞ ! ai that maps the ex-
ecution history to the next action. A sequence of states s :
s0; s1; s2; . . . from the execution � is called a path. For a
transition system TS, traceð�Þ 2 ð2¦Þ!, the trace of an in-
finite path � , is an infinite word emitted from the path, i.e.
traceðsÞ :¼ Lðs0Þ; Lðs1Þ; . . .

In the literature, the above labeled transition system is
sometimes also referred to as a Kripke structure defined over
the atomic proposition set¦. For convenience, the action set
Act is often omitted, and the transition relation is simplified
as !TS � S � S, resulting in a tuple K ¼ ðS; S0;!TS; LÞ.

We next show how to represent a discrete-time system
as a transition system. Consider a discrete-time dynamical
system with dynamics governed by

xþ ¼ gðx; uÞ; ð9Þ
where x 2 X � Rn is the state variable of the system with
some constraints, u 2 U � Rm is the control input, and xþ is
the next state. We can formulate the above discrete-time
system as a transition system

TSd ¼ ðS; S0;Act;!TSd ;¦; LÞ; ð10Þ
where

(i) S ¼ X and S0 ¼ X0
(ii) Act ¼ U (each action in Act is a control input in U)
(iii) ðs; u; s 0Þ 2 !TSd if and only if there exists s 0 ¼ gðs; uÞ
(iv) ¦ is the set of atomic propositions on S
(v) L : S ! 2¦ is the labeling function

We can also represent a continuous-time dynamical system
as a transition system. Consider a continuous-time system
characterized by

x
: ¼ f ðx; uÞ; ð11Þ

where x 2 X � Rn is the state variable with some con-
straints and u 2 U � Rm is the control input. We can re-
write the above system as the following transition system:

TSc ¼ ðS; S0;Act;!TSc ;¦; LÞ; ð12Þ
where

(i) S ¼ X and S0 ¼ X0
(ii) Act ¼ [�2RþU½0; � �
(iii) ðs;u; s 0Þ 2 !TSc if and only if there exists � : ½0; � � !

Rn such that �ð0Þ ¼ s, �ð�Þ ¼ s 0, and

�ðtÞ ¼ sþ
Z t

~h¼0
f ðxð~hÞ;uð~hÞÞd~h ð13Þ

for all t 2 ½0; � � where u 2 U½0; � � � Act
(iv) ¦ is the set of atomic propositions on S
(v) L : S ! 2¦ is the labeling function

We note that both TSc and TSd have infinitely many actions
and states. For some linear systems, there are efficient
control-based methods to directly work with the continu-
ous-time dynamics without converting it to a discrete-time
counterpart. There also exist analytic solutions for some
systems, such as the double integrator model. However, for
a general dynamical system, we often need to create many
finite abstractions and plan with the abstract model. In
theory, such abstractions should fulfill the so-called simu-
lation relationship, i.e. the abstract system can be simulated
by the original system. In other words, the abstractions can
be created in such a way that as long as we can find a
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feasible solution in the abstract system, we can always find
a corresponding continuous and feasible trajectory in the
original system.

We formally define the simulation relationship between
two transition systems as follows:

Definition 2 (Simulation relation). Let

TSi ¼ ðSi; S 0
i ;!i;¦; LiÞ; i ¼ 1; 2 ð14Þ

be two transition systems. We note that these two transition
systems have the same set of atomic proposition ¦. A
relationship R 	 S1 � S2 is said to be a simulation relation-
ship from TS1 to TS2 if the following properties hold:

(i) For any pair ðs1; s2Þ 2 R, we have L1ðs1Þ ¼ L2ðs2Þ
(ii) For any initial state s1 2 S 0

1, their exists s2 2 S 0
2 such

that ðs1; s2Þ 2 R
(iii) For any pair ðs1; s2Þ 2 R, if s 01 2 postðs1Þ in TS1 then

there exists s 02 2 postðs2Þ in TS2 and ðs 01; s 02Þ 2 R

If there exists a simulation relationship R from TS1 to TS2,
we say that TS1 is simulated by TS2, which is denoted as
TS1
RTS2. In other words, for any trace in TS1, we can find
a corresponding equivalent trace in TS2. Relation R is said to
be a bi-simulation relation between TS1 and TS2 if TS1
R

TS2 and TS2
R�1 TS1, which is also denoted as TS1 ffi TS2.

The main challenge of this process is that we are not always
able to find a correct abstraction model that guarantees the
original system to have a corresponding solution, especially
when handling uncertain environments. One possible solu-
tion is to handle the problem by reactive synthesis. The idea
is to consider all possible environment changes beforehand
and generate a policy, which the robot reacts according to,
during the online execution. Normally, the reactive synthe-
sis problem is reformulated into a two-player game where
the robot and environment take turns to play. Provided that
the environment plays fairly, the policy generated guaran-
tees correct behaviors. The logic specification into the GR(1)
formulae (Definition 5) is often restricted since there are
efficient solutions available.

Nevertheless, in some applications it is simply impossi-
ble and unnecessary to consider all the possible environ-
mental changes. As such, some iterative planning
techniques are often the preferred solution. The basic idea
is to start with a guessed abstraction. During the execution,
the robot will sense the environment, update the abstrac-
tion repeatedly and then perform re-planning when nec-
essary. The robot is often assuming that the unknown space
is obstacle-free and calculates a motion plan based on
such an assumption. When the robot discovers that the
reality differs from this assumption, it will modify the en-
vironment map and perform re-planning based on the
updated information.

2.4. Temporal task specifications

Task requirements, i.e. the desired behaviors of the robot,
can be viewed as a set of constraints over the system, which
has to be formally described in a precise and unambiguous
way. There are various different approaches to formalize
these system properties. For complex requirements, tem-
poral logics are often used to formally describe the task
specifications. Temporal logics can be regarded as extended
Boolean logics with temporal operators, which allow the
user to reason the temporal changes of the propositions.
There are various types of temporal logics, including but not
limited to discrete logics, metric logics, and probabilistic
logics. In this subsection, we focus only on the linear tem-
poral logics and their metric variants. Besides temporal
logics, it is also possible to use the automaton to describe
the desired behaviors, which will be presented in the next
subsection together with the relationship between the
temporal logics and the automaton, as well as some
commonly used examples.

2.4.1. Temporal logics

Linear temporal logic (LTL) is one of the most common
discrete logics used to formally specify linear time proper-
ties. The basic concept of LTL and its important fragments,
timed variants and specification patterns are introduced
below.

Definition 3 (LTL syntax). Let ¦ be a set of atomic
propositions. An LTL formula is defined over ¦ in
accordance with the following grammar:

� ::¼ true ðTrueÞ
j a ða 2 ¦Þ
j :� ðNegationÞ
j �1 _ �2 ðDisjunctionÞ
j �� ðNextÞ
j �1 U�2 ðUntilÞ:

ð15Þ

Here we note that the Boolean operator : represents the
standard negation and _ represents the usual disjunction.
From disjunction and negation, we can further define other
Boolean operators such as the conjunction (^), implication
()) and equivalence (,). Besides the Boolean operators,
there are also temporal operators. The operator �
represents the temporal operator Next and U denotes
temporal operator Until. Other temporal operators can be
further defined based on the Next and Until operator. The
temporal operator Eventually is defined as ¸� :¼ true U �.
The temporal operator Always is defined as W� :¼ :¸:�.

The intuitive meaning of some commonly used temporal
modalities are illustrated in Fig. 9.
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Definition 4 (LTL semantics). The semantics of an LTL
formula � is interpreted over a linear structure. Let �
denote an infinite sequence of truth assignments to the
proposition a 2 ¦ and �ðiÞ denote the set of propositions
that are true in position i. For an interpretation �, we
recursively define when an LTL formula � is true at an
instant i (written as �; i � �):

(i) �; i � a iff a 2 �ðiÞ
(ii) �; i � :�, iff �; i 3 �
(iii) �; i � �1 _ �2, iff �; i � �1 or �; i � �2
(iv) �; i � �� iff �; iþ 1 � �
(v) �; i � �1 U �2, there exist k � i such that �; k � �2

and for all i � j < k, we have �; j � �1

Besides the full set of LTL, there is also interest in
fragments of LTL for the sake of higher computational ef-
ficiency. Fragments of LTL are normally less expressive than
the full set of LTL, but there are more efficiently specialized
algorithms that handle such fragments. One important
fragment of LTL is called GR(1) (the general reactivity of
rank 1) fragment [29, 30]. GR(1) is frequently used in re-
active synthesis, in which a whole system consists of some
uncontrollable states, such as the states of the environment.
The controllable plant then needs to react to the environ-
mental changes.

For instance, a user may issue a return home command
to a robot or an unmanned vehicle. Although the vehicle
needs to return home after receiving the command, the
situation may not always be controllable by the vehicle. One
of the major challenges of reactive synthesis is its high
worst-case complexity. For LTL, the complexity is the dou-
ble exponential of the length of the formula. To handle such
issues, [29] proposed a subset of LTL formulae, i.e. GR(1),
which has a polynomial-time synthesis algorithm. The basic
intuition behind GR(1) is that, if the environment satisfies
some assumptions, the controlled system then has to satisfy
the guarantees.

Definition 5 (GR(1) fragment). Let ¦ ¼ ¦X
S
¦Y , where

¦X is the set of propositions defined over the environment
states and ¦Y is the set of propositions defined over the
robot states. The GR(1) formulae are in the form of
’ ¼ ð’e ! ’sÞ, where ’e describes the behavior of the
environment (i.e. the assumption about the environment)
and ’s describes the behavior of the robot. The formula ’e

takes the form of

’e ¼ �e ^W�e ^
^

0<i�j

W¸� i
e:

Similarly, the formula ’s takes the form of

’s ¼ �s ^W�s ^
^

0<i�j

W¸� i
s:

Thus, a GR(1) formula can be expressed as

�e ^W�e ^
^

0<i�j

W¸� i
e

 !
! �s ^W�s ^

^
0<i�j

W¸� i
s

 !
:

ð16Þ
Here, we note that �e and �s are the constraints of the initial
states, �e and �s are the safety properties, and �e and �s are
the justice properties (i.e. the assertions that need to hold
infinitely often) over the environment propositions ¦X and
robot propositions ¦Y , respectively. The formula ’e can
simply be true, meaning that we do not put any
assumptions on the environment.

Besides GR(1), another important fragment is the syn-
tactically co-safe LTL (scLTL) [31].

Definition 6 (scLTL syntax). Let ¦ denote a set of atomic
propositions. The scLTL formula is defined over ¦ in
accordance with the following grammar:

� :: ¼ true jaj:aj�1 _ �2j��j�1U�2; ð17Þ
where a 2 ¦. We note that the key difference is that the
negation : can only appear in front of a proposition. As such,
the temporal operator always W is not a part of the scLTL
formula (W� :¼ :¸:� requires a negation of a general sub-
formula). Though the scLTL formulas are interpreted over
infinite words, it is possible to just check for a finite good
prefix if the infinite word contains this good prefix.

2.4.2. Timed temporal logics

Though LTL is a powerful tool to specify linear time prop-
erties, it can only qualitatively describe temporal relation-
ships. In other words, LTL can describe the ordering of
events but not the precise time intervals between the
events such as the bounded response time. For example,
one may want to specify the deadlines between events and

Fig. 9. The intuitive meanings of some temporal modalities.
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response: when a system receives a request, it has to respond
within 5 time units. Such requirements cannot be properly
captured in LTL. To address this limitation, some timed
specification languages are needed. The survey paper by
Bouyer et al. [32] provides more details and further dis-
cussion on the different types of timed temporal logics and
algorithms. In this section, we introduce the concept of
metric temporal logic (MTL) and its important variants.

Metric temporal logic (MTL) [33] is the most widely
known extension of the LTL. Here, T denotes the time do-
main, which is a set of non-negative real numbers. A time
interval I is a nonempty convex subset in the time domain
T . An interval I where supðIÞ exists is called a bounded
interval. Let jIj ¼ supðIÞ � infðIÞ, and I and J be two inter-
vals over the time domain T , the Minkowski sum of two
intervals is defined as

I  J :¼ fr þ s 2 Tjr 2 I; s 2 Jg
which is illustrated in Table 2. Similarly, the Minkowski
difference of two intervals is given by

I � J :¼ fr � s 2 Tjr 2 I; s 2 Jg:

The syntax and semantics of MTL are defined as follows.

Definition 7 (MTL syntax). Let ¦ denote a set of atomic
propositions. Let UI be the time-constrained versions of the
until operator U, where I � ð0;1Þ is a time interval with
endpoints in Q�0 [ f1g. The unconstrained until operator U
is essentially Uð0;1Þ. The MTL formulae over ¦ are
constructed recursively as

�:: ¼ truejaj:�j�1 ^ �2j�1 UI �2; ð18Þ
where a 2 ¦. The temporal operator constrained eventually
is then defined as ¸I� :¼ true UI � and the operator
constrained always is defined as WI :¼ :¸I:�.

There are two types of semantics for the MTL: the con-
tinuous setting, and the point-wise continuous setting. For
continuous semantics, the executions of the system are
viewed as a signal. For point-wise semantics, the executions
are discrete and viewed as a timed word.

Definition 8 (Signal). Let ¦ be a set of atomic proposi-
tions. A signal over ¦ is a function 	ðtÞ : Rþ ! 2¦ which
maps t 2 Rþ to a set of propositions 	ðtÞ holding at time t.

Definition 9 (MTL continuous semantics). Given a
signal 	 over 2¦, t 2 Rþ, and a formula �, the satisfaction
relation 	; t � � (whether the signal 	 satisfies the formula
� at time t) is recursively defined as:

(i) 	; t � a iff a 2 	ðtÞ
(ii) 	; t � :�, iff 	; i 3�
(iii) 	; t � �1 ^ �2, iff 	; i � �1 and 	; t � �2

(iv) 	; t � �1 U I �2, iff 9t 0 2 t  I, 	; t 0 � �2 and
8t 00 2 ðt; t 0Þ, 	; t 00 � �1

Definition 10 (Time sequence). A time sequence � ¼
�0; �1; �2; . . . is either a finite or infinite sequence of time
values, which satisfies the following conditions:

(i) � i 2 Rþ, and �0 ¼ 0
(ii) � i � � iþ1, 8i < j� j � 1
(iii) If � i is infinite, then f� i : i 2 Ng is unbounded

Definition 11 (Timed word). Let § be a finite alphabet
set. A timed word � over § is a (either finite or infinite)
sequence � ¼ ð�0; �0Þ; ð�1; �1Þ; ð�2; �2Þ; . . . ; where �i 2 §
and � ¼ �0; �1; �2; . . . is the time sequence.

Definition 12 (MTL point-wise semantics). In point-
wise semantics, the MTL is interpreted over a timed word.
Let ¦ be a set of atomic propositions. Given a timed word
� ¼ ð�; �Þ over 2¦ and an MTL formula �, the satisfaction
relation �; i � � (i.e. formula � is true at instant i) is defined
with the standard Boolean operators and constrained until
operator:

(i) �; i � a iff a 2 �i,
(ii) �; i � :�, iff �; i3�,
(iii) �; i � �1 _ �2, iff �; i � �1 or �; i � �2,
(iv) �; i � �1 UI �2, iff there exist k such that i � k < j�j,

�; k � �2, �k � � i 2 I and for all i � j < k, we have
�; j � �1.

We should note that the model checking of the MTL is
nondecidable over the infinite continuous semantics [34].
To address this issue, a metric interval temporal logic
(MITL), which is a fragment of the MTL, was proposed in
[34]. Unlike MTL, the MITL does not allow punctuality, i.e.
the singular time interval for temporal operators is not
allowed in MITL.

Definition 13 (MITL fragment). The metric interval
temporal logic (MITL) is a fragment of the MTL, where
the time interval I � ð0;1Þ is nonsingular with rational
end-points.

There are also many other variants of the MTL such as
the signal temporal logic (STL) [35], which is a special ex-
tension (real-valued signals) of the bounded subset of the
MITL, i.e. MITL½a;b�.

2.4.3. Specification patterns for LTL

Formal specification languages, such as temporal logics, are
precise ways to specify the system requirements [36].
However, writing specifications still require a certain level
of expertise and thus remain challenging for most users
who are not familiar with these formal languages. To
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address this issue, [36] and [37] created a library of spec-
ification patterns by providing a set of commonly used
properties for several different languages, which assists the
users in effectively translating the descriptions of require-
ments into a formal manner. Here, we briefly review the
specification patterns for LTL.

In general, there are two major types of patterns: oc-
currence patterns and order patterns. Occurrence patterns
are concerned with the occurrence (such as existence) of
given events or states during the system execution. There
are four types of occurrence patterns, namely, absence,
universality, existence and bounded existence. On the other
hand, the ordered patterns are concerned with the order
related to the pairs of states or events during a system
execution. The two basic order patterns are precedence and
response. These specification patterns are summarized in
Tables 3–7.

Each pattern has a scope defining the duration of exe-
cution that the pattern must hold. There are five basic types
of scopes. First, the global scope means that the pattern has
to hold over the entire program execution. The before scope
means that the pattern must hold over the execution period
up to a given state or event. Conversely, the after scope
implies that the pattern must hold over the execution after a

given state or event. The between scope means that the
pattern must hold over any part of the execution from one
given state or event to another. Last, the after-until scope is
similar to the between scope, but the execution will continue
even if the second state or event does not occur. The scope
is essentially a left-closed and half-open interval.

2.5. Automata

Automata are alternative mathematical models used to de-
scribe the behaviors of the system [38]. We can use an
automaton to accept the languages represented by temporal
logic. In this section, we introduce the automaton on finite
words (i.e. the finite state automaton) and on infinite words.

Definition 14 (Finite state automaton). A finite state
automaton (FSA) is a tuple A ¼ ðZ; Z0;§;!A; ZFÞ, where

(i) Z is a finite set of states
(ii) Z0 is a set of initial states

Table 2. Minkowski sum of two intervals.

 ½c ðc  dÞ d�

½a ½aþ c ðaþ c bÞ bþ dÞ bþ dÞ
ða ðaþ c ðaþ c b� bþ dÞ bþ d�

Table 3. Specification patterns of Absence for LTL.

Absence (P is false)

Globally Wð:PÞ
Before R ¸R ! ð:PURÞ
After Q WðQ ! Wð:PÞÞ
Between Q and R WððQ ^ :R ^ ¸RÞ ! ð:PURÞÞ
After Q until R WðQ ^ :R ! ð:PWRÞÞ

Table 4. Specification patterns of Existence for LTL.

Existence (P becomes true)

Globally ¸P
Before R :RWðP ^ :RÞ
After Q ðWð:QÞÞ _ ð¸ðQ ^ ¸PÞÞ
Between Q and R WððQ ^ :RÞ ! ð:RWðP ^ :RÞÞÞ
After Q until R WððQ ^ :RÞ ! ð:RUðP ^ :RÞÞÞ

Table 5. Specification patterns of Universality for LTL.

Universality (P is true)

Globally WP
Before R ¸R ! ðPURÞ
After Q WðQ ! WPÞ
Between Q and R WððQ ^ :R ^ ¸RÞ ! ðPURÞÞ
After Q until R WððQ ^ :RÞ ! ðPWRÞÞ

Table 6. Specification patterns of Precedence for LTL.

Precedence (S precedes P)

Globally :PWS
Before R ¸R ! ð:PUðS _ RÞÞ
After Q ðW:QÞ _ ð¸ðQ ^ ð:PWSÞÞÞ
Between Q and R WððQ ^ :R ^ ¸RÞ ! ð:PUðS _ RÞÞÞ
After Q until R WððQ ^ :RÞ ! ð:PWðS _ RÞÞÞ

Table 7. Specification patterns of Response for LTL.

Response (S responds to P)

Globally WðP ! ¸SÞ
Before R ¸R ! ðP ! ð:RUðS ^ :RÞÞÞUR
After Q WðQ ! WðP ! ¸SÞÞ
Between Q and R WððQ ^ :R ^ ¸RÞ ! ð:PUðS _ RÞÞÞ
After Q until R WððQ ^ :RÞ ! ððP ! ð:RUðS ^ :RÞÞÞWRÞÞ
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(iii) § ¼ 2¦ is the input alphabet with ¦ being the atomic
proposition set

(iv) !A � Z � §� Z is a nondeterministic transition
relation

(v) ZF � Z is a set of accepting states

Let §� denote the set consisting of all finite words over
§. The semantics of an FSA are defined over finite input
words in §�. Let w ¼ w1w2 . . .wn denote the input word of
the FSA. A run of the automaton over an input word w is a
sequence of rA ¼ z0; z1; z2; . . . ; zn such that z0 2 Z0, and
ðzi;wi; ziþ1Þ 2 !A for i ¼ 0; 1; 2; . . . ; n� 1. The word w is
accepted by A if and only if the corresponding run ends in a
final automaton state, i.e. zn 2 ZF . The accepted language of
A, denoted LðAÞ, is the set of finite words in §� accepted by
A, i.e.

LðAÞ ¼ fw 2 §�j9 an accepting run for w 2 Ag:
It is worth noting that an scLTL formula can always be
translated into a deterministic finite automaton.

The FSA accepts finite words, i.e. sequences of symbols
of finite length, and can be used to check the regular safety
properties. We now present the nondeterministic Büchi
automata (NBA), which is a variant of the FSA and accepts
infinite words. The NBA can be used to check a wider range
of linear time properties.

There is a closed relationship between LTL and the Büchi
automaton as it has been proven that any LTL formula can
be translated into an equivalent nondeterministic Büchi
automaton [39] which accepts the traces satisfying the LTL
formula.

Definition 15 (Büchi automaton). A Büchi automaton is
a tuple BA� ¼ ðZ; Z0;§;!BA; ZFÞ, where

(i) Z is a finite set of states
(ii) Z0 is a set of initial states
(iii) § ¼ 2¦ is the input alphabet with ¦ being the set of

atomic propositions
(iv) !BA � Z � §� Z is a nondeterministic transition

relation
(v) ZF � Z is a set of accepting states

Let w ¼ w0w1w2 . . . denote the input word of the
automaton. A run of the automaton over an input word w
is a sequence of rBA ¼ z0; z1; z2; . . . such that z0 2 Z0, and
ðzi;wi; ziþ1Þ 2 !BA for i 2 N. A run r is accepted if and
only if limðrÞ \ ZF 6¼ ;, where limðrÞ is the set of states that
occur in r infinitely often, i.e. the run is accepted if and
only if it gets into ZF infinitely many times. In other words,
at least one accepting state has to be visited infinitely
often. This acceptance condition is called the B€uchi
acceptance.

2.6. Examples of specifications

We first present some typical control specifications using
LTL. Assuming we have a set of atomic propositions

¦ ¼ f�A; �B; �Cg; ð19Þ
where �i indicates whether the vehicle is in region i,
i 2 fA;B; Cg. Here, we will first consider the following typ-
ical specification types. More complicated examples can be
found in Sec. 2.4.3.

Reach targets while avoiding obstacles

:�A ^ :�B _ �C
This specification means that “the vehicle should always
avoid the regions A and B, and go to region C”.

Sequencing

¸ð�A¸ð�B¸�CÞÞ
This specification means that “the vehicle should eventually
visit A, B, C in a sequential order”.

Coverage

¸�A ^ ¸�B ^ ¸�C

This specification means that “the vehicle should eventually
visit A, B and C”.

Recurrence

Wð¸�A ^ ¸�B ^ ¸�CÞ
This specification means that “the vehicle should visit A, B
and C infinitely often”.

We now revisit the parcel delivery example shown in
Fig. 5 and see how different temporal logics can be used to
specify the same task. Given an abstract workspace, we can
create a set of atomic propositions such as

¦ ¼ fWarehouse; SiteA; SiteB; SiteC;

ForbiddenAera1; ForbiddenAera2; ForbiddenAera3;

Pickup;Deliver;GetNewRequestg: ð20Þ

Nonreactive co-safe LTL

ð:DeliverÞ U ðDeliver ^ ðSiteB _ SiteCÞÞ
This specification means that “the vehicle should deliver a
parcel to either site B or site C”.

GR (1)

W¸ðGetNewRequestÞ ! ðDeliver ^ ðSiteB _ SiteCÞÞ
This specification means that “if the UAV receives a new de-
livery request, then deliver the parcel to either site B or site C”.
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MITL

¸½0;10�ðDeliver ^ ðSiteB _ SiteCÞÞ
This specification means “deliver the parcel to either site B
or site C within 10 time units”.

Automaton
The automaton in Fig. 10 is converted from co-safe LTL,
meaning that “the vehicle should deliver a parcel to either
site B or site C”.

3. Motion Planning Techniques

This section provides a review of advanced techniques re-
lated to motion planning for small-scale multicopters. The
earlier works in this area typically used techniques from the
guidance and control community, with examples of such
classical approaches including path following, which is
originally designed for large fixed-wing aerial vehicles
[40, 41]. The basic idea of path following consists of two
steps. The first step is to generate a pure geometric path as
the reference. The next step is to directly design a control
law to handle the dynamic constraints of the vehicle so that
it follows the reference path as closely as possible. While
the reference can be easily synthesized using line segments
and splines, it is challenging to design such a control law for
multicopters due to the complex dynamics and state con-
straints. Methods such as those presented in [40, 41] obtain
control laws by simplifying the dynamic model of the air-
craft and/or the constraints at the expense of tracking ac-
curacy. Unfortunately, small-scale multicopters normally
operate at low-altitude and in obstacle-dense environments
which often require greater tracking accuracy.

To address this issue, researchers borrowed ideas from
the robotics research community and proposed a trajectory
tracking approach [24, 42]. A trajectory is a path with an
associated timing function. With the ability to represent
time information, a trajectory can incorporate both the
geometric and vehicle dynamics constraints. Instead of di-
rectly sending a geometric path to a low-level controller, a
collision-free and dynamically feasible trajectory is gener-
ated and sent as the reference signal to the flight control
system. In this way, a simple linear control law would yield
very high tracking accuracy. By tracking a trajectory instead
of a geometric path, we are able to leverage the full vehicle
dynamics and develop a much more aggressive flight plan.

As a result, trajectory tracking soon became a dominant
approach in the rotorcraft motion planning community.

The main purpose of motion planning for small-scale
multicopters is to compute a trajectory to navigate the ve-
hicle from an initial point to a target destination that is both
dynamically feasible and collision-free. Following [43], we
define the trajectory as a time-dependent function or
mapping �ðtÞ : ½0;T� ! X , where X is the configuration
space of the vehicle. Let ¦ðX ;TÞ denote the set of all con-
tinuous functions ½0;T� ! X , xinit denote the initial config-
uration and X freeðtÞ � X denote all collision-free
configurations at time t, where t 2 ½0;T�. The goal region is
denoted as Xgoal 	 X . The differential constraints are
represented by a predicate Dð�ðtÞ; � 0ðtÞ; . . .Þ, and the cost
function is denoted as Jð�Þ : ¦ðX ;TÞ ! R. The optimal
trajectory generation problem can then be stated as follows.

Problem 3.1. Given X free; xinit;Xgoal;D and J, find an
optimal solution �� subject to the following optimization:

argmin Jð�Þ
subj: to �ð0Þ ¼ xinit; �ðTÞ 2 X goal

�ðtÞ 2 X free; 8 t 2 ½0;T�
Dð�ðtÞ; � 0ðtÞ; . . .Þ; 8 t 2 ½0;T�:

Due to the presence of obstacles and the high-order
nature of multicopter dynamics, the problem is nonconvex
in nature and hence difficult to solve. Furthermore, small-
scale multicopters are often restricted in terms of onboard
computational power as the amount of payload it is able to
carry is limited. This adds to the challenge of real-time
onboard motion planning.

As a result, for computational efficiency, geometric and
dynamic constraints are often either handled in different
planning layers or the entire motion planning problem is
decoupled into a global geometric path planning phase and
a local trajectory generation phase. In the path planning
phase, a simplified first-order model of the multicopter is
used to search for a continuous geometric path that con-
nects the initial and goal position. Then in the trajectory
generation phase, this path is used either to simplify the
obstacle free constraint �ðtÞ 2 X free [27, 44, 45] or as an
initial guess to start the gradient descent process [46, 47].

In the rest of this section, as illustrated in Fig. 4, we will
first present the pure geometric path planning problem, and
then discuss common techniques that are used to generate
dynamically feasible trajectories. We will also highlight
techniques for the integration of these two planning layers
to end the motion planning portion of our survey.

3.1. Path planning

The path of a vehicle can be defined as a function
�ð
Þ : ½0; 1� ! X , where X is the configuration space of the

Fig. 10. An example of an automaton.
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vehicle. The path planning problem is to find a collision-free
path that starts from the initial configuration to a target
region while satisfying the given constraints. A path solu-
tion can be either feasible or optimal with respect to certain
criterion.

Let xinit denote the initial configuration and Xfree � X
denote all collision-free configurations. The target or goal
region is denoted as Xgoal 	 X . For an unmanned vehicle,
there are also a set of differential constraints over the path.
For instance, the path of a fixed-wing aircraft should have a
minimal curvature, which can be represented by the pred-
icate Dð�ð
Þ; � 0ð
Þ; . . .Þ. Let §ðXÞ denote the set of all
continuous functions ½0; 1� ! X and let Jð�Þ : §ðXÞ ! R

denote the cost function. The optimal path planning prob-
lem can be formulated as follows.

Problem 3.2 (Optimal path planning). Given Xfree, xinit ,
Xgoal, D and J, the optimal path planning problem is to find
an optimal path �� such that

argmin Jð�Þ
subj: to �ð0Þ ¼ xinit; �ð1Þ 2 Xgoal

�ð
Þ 2 Xfree 8
 2 ½0; 1�
Dð�ð
Þ; � 0ð
Þ; . . .Þ 8
 2 ½0; 1�:

Since multicopters are holonomic, path planning algo-
rithms usually adopt a polyline path model, i.e. the path is
described by a set of connected line segments. There are
two major approaches to discretizing a continuous config-
uration space which relax the related problem to different
levels of completeness. The first approach is to relax it into
a resolution complete problem. The basic idea is to dis-
cretize the space into grids, and then use traditional graph
search algorithms to search through the grid map. The
second approach is to utilize a sampling-based planning
strategy, which is probabilistically complete instead of
resolution complete.

3.1.1. Traditional grid-based graph search

Once the environment map has been discretized into a grid,
we can apply any graph search algorithm over the grid and
find a path from the initial graph node to the target node.
Dijkstra’s algorithm [48] is one of the most commonly used
optimal graph search methods. It performs the best first
search over the entire graph and is able to find the shortest
path from the given initial node to all other nodes. Another
well-known graph search algorithm is the A* [49], which
uses a heuristic function to guide the search and thus boosts
computational efficiency. The resulting search performance
is also dependent on the heuristic function. Both Dijkstra and
A* algorithms run over a static graph. To handle dynamic
graph changes, there are many variants of the original A*
algorithm, such as D*, Focused D*, and D*-Lite [50, 51].

For robotics, robots often work in dynamic environ-
ments, where environmental obstacles are updated using
onboard sensor data. Iterative planning strategies are often
adopted to handle these dynamic obstacles. For each plan-
ning cycle, the environment is considered a static one and a
fresh new path is calculated from scratch. A new planning
cycle can either be triggered by a fixed time interval or by
any environmental change that violates the current plan. In
many applications, the environmental changes often occur
on a small part of the map. Hence to improve search effi-
ciency, it is possible to re-use some information from the
previous search cycle instead of performing an entirely new
one from scratch. Real-time re-planning algorithms such as
the D*, Focused D*, and D*-Lite are thus developed to
handle this issue. These real-time algorithms enhance the
re-planning performance by focusing on the propagation of
the updated environment information.

Furthermore, there are also anytime-search variants of
the A*, such as the anytime A* [52] and anytime repairing
A* (ARA*) [53]. The anytime-search algorithms aim to
quickly find an initial sub-optimal solution and attempt to
improve the quality of the solution over a further search
process. The anytime-search algorithms are very useful in
the field of robotics since a robot usually does not need
to compute the entire optimal trajectory before its exe-
cution. The anytime planner is able to continuously opti-
mize the trajectory when the robot is executing partially
sub-optimal trajectories from time to time. For example,
the anytime A* algorithm [52] can find an initial solution
quickly and use its cost as the upper-bound of the optimal
solution while the lower bound remains as admissible
heuristics.

3.1.2. Sampling-based methods

The major limitation of the above methods, i.e. discretizing
the continuous space into a grid and applying classical
graph search algorithms to search for a suitable path, is the
curse of dimensionality. Graph search algorithms generally
do not scale well with the dimension of the search space. To
address this issue, researchers propose to use sampling-
based techniques to abstract continuous space and conduct
the search over an implicit graph constructed by the sam-
ples. The sampling-based planner is also normally inte-
grated with an extra collision detection module which is
used to examine whether a graph edge is collision-free. Such
a collision checking module is independent of the planner
itself. Unlike grid-based graph search algorithms, which
provide resolution completeness, most sampling-based
planners provide probabilistic completeness. In other words,
as the search time increases, the probability of finding a
valid solution goes to one. Sampling-based planners have
been shown to work well in practice and scale much better
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than traditional graph search planners when handling high
dimensional state spaces.

Pioneer works in sampling-based planning include
techniques such as rapidly-exploring random trees (RRTs)
[54], expansive-spaces tree planner (EST) [55], and proba-
bilistic roadmaps (PRM) [56]. A formal analysis of the
quality of solutions found by sampling-based planners was
first presented in [57]. This work is a major milestone in the
development of sampling-based planners as it formally
connects the sampling-based planning algorithms with the
theory of random geometric graphs, along with proposing
several optimal variants of the pioneer sampling-based
planners such as RRT* and PRM*. In recent years, inspired
by the work in [57], researchers have re-visited traditional
graph search algorithms and successfully integrated graph
search techniques such as heuristics and anytime planning
with traditional sampling-based planners.

(i) Basic structure of sampling-based planners
Various sampling-based planning algorithms have been
proposed to enhance convergence rates and computational
efficiency. Though these algorithms have different features,
they often share the same basic algorithmic structure. Here,
we will present a basic outline of sampling-based algo-
rithms based on the work in [58].

Any sampling-based planner has several main sub-pro-
cedures as shown in Fig. 11. Sampling-based planners es-
sentially construct a graph using a set of samples and then
search for a valid path over the graph, which can be in-
crementally constructed. Let ðV k;EkÞ denote an underlying
graph, where V k represents the set of graph vertices and Ek

is the set of graph edges associated with the kth iteration of
the process. Let V k

sol denote the solution (i.e. the path from
the initial vertex to the goal vertex) at the kth iteration.
During the initialization process (Lines 1–3 in Fig. 11), the
graph contains only the root vertex that represents the initial

state xinit . Note that we explicitly differentiate the state in the
state space and corresponding vertex in the graph. A func-
tion STATETOVERTEX is used to map the state to the vertex (Line
2 in Fig. 11). The procedure in Lines 4–11 in Fig. 11
describes the main body of the algorithm, i.e. the iteration
process. The function NOTERMINATION is used to check for the
stop condition. For instance, we can set a maximum number
of iterations as a termination condition. Alternatively, we can
also assign a timer to limit the process. We first sample a
valid state point xsample from the state space by calling the
function SAMPLE. The variable xsample is then converted to a
graph vertex structure. The details of SAMPLE varies for dif-
ferent planners and will be discussed later.

We note that though the algorithm in Fig. 11 only sam-
ples one state in each iteration, it is also possible to gen-
erate a batch of samples. After generating a new sample
vertex, we can find the neighbors of this new sample from
existing vertices in the graph. More specifically, we search in
the backward reachable area of the state xsamp for a given
time horizon by calling the function FINDNEIGHBORS. Then, the
new sampled vertex is added to the existing graph by
connecting it with the best vertex in the graph (a vertex is
the best if it minimizes the cost-to-come value of vsamp if
vsamp is propagated from this vertex). Since the new vertex
is added into the graph, other graph vertices may have a
better cost-to-come value if they are propagated from this
newly added vertex. In other words, it is necessary to
perform some rewiring to optimize the current graph.
Normally, the rewiring process occurs amongst the neigh-
bors of the newly added vertex. We thus proceed to find the
neighbors of xsamp next within its forward reachable set and
use the function OPTIMIZEANDUPDATEGRAPH to optimize the
current graph and update the current best solution Vsol. We
can then go to the next iteration by calling the function
CONVERTTOTRAJ. Lastly, the path solution Vsol in the graph is
mapped to the state trajectory and the optimized trajectory
is captured and returned after all iterations.

(ii) Sampling strategy
There are various sampling strategies, such as uniform
sampling [56, 57], biased sampling [59, 60] and informed
sampling [61], documented in the literature. Of these, the
most commonly used is the uniform sampling approach,
where a sample or a batch of samples are drawn uniformly
from the state space. However, a large number of useless
samples in uniform sampling may greatly reduce the con-
vergence rate. As such, it is more efficient to generate only
useful samples, i.e. samples that can directly contribute to
the solution.

Biased sampling is a frequently used technique to gen-
erate useful samples, which essentially provides heuristic
information to the planning algorithm. More specifically,
some parts of the state space are assigned higher

Fig. 11. The abstract skeleton of sampling-based planning
algorithms.
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probability to be sampled as compared to other parts. For
example, considering an environment with a narrow pas-
sage, it is often necessary to generate a lot of samples and
perform many iterations before useful samples that connect
the narrow passage are generated. For such applications,
biased sampling techniques such as obstacle-based sam-
pling can be applied. The idea is to guide the sampling
process to generate more samples around the obstacle re-
gion, and thus reduce the time needed by the planner to
find the narrow passage. We note that uniform sampling is
the key element that ensures asymptotic optimality and
probabilistic completeness of the sampling-based planner,
and biased sampling has to be handled with extra care.

Another type of sampling strategy is called informed
sampling. Instead of sampling inside the whole state space,
we can perform uniform sampling inside the reachable set
of the system or subsets of the state space that are con-
firmed to contain a better solution. For instance, consider a
pure geometric path planning case with a shorter-path
optimization objective. As in informed RRT* [62], if the
initial feasible path has been found between the initial and
end state after some iterations, one can safely conclude that
the better path can only be contained inside an ellipsoidal
subset described by the initial feasible path. To generate
samples inside this region of interest, one can either per-
form a direct sampling inside the ellipsoid or use rejection
sampling to reject the samples that are outside the
ellipsoid.

(iii) Branch and bound technique
A common technique used to improve the convergence rate
of sampling-based planners is the branch and bound tech-
nique. The key idea is to discard any computations that
cannot further improve the current solution in order to
obtain higher computational efficiency. In the context of
sampling-based planning, the branch and bound technique
can be, for example, (1) informed sampling, (2) pruning the
tree, (3) rejecting useless samples, or (4) propagating
within a bounded region. Typical examples of applying such
a technique can be found in [61–66].

Heuristics are also frequently used together with the
branch and bound technique. The most common heuristic
used in motion planning is the Euclidean distance from the
current vertex toward the goal vertex. Intuitively, such a
distance is the lower bound of the true trajectory. Assume
we have a graph G, where gGðvÞ denotes the best cost-to-
come of the vertex v. Let ĝðvÞ denote the admissible cost-to-
come heuristic of the vertex v and ĥðvÞ denote the admis-
sible heuristic of the cost-to-go of the vertex. The branch
and bound technique can be represented as

gGðvÞ þ ĥðvÞ � gGðvgoalÞ;
ĝðvÞ þ ĥðvÞ � gGðvgoalÞ:

ð21Þ

(iv) Delayed or lazy computation
Another important technique used to boost the convergence
rate is to avoid or delay more expensive computation. For
instance, if we assume that collision-checking is computa-
tionally more expensive than the steering function, then we
can minimize the number of collision-checking procedures
[66–68] by delaying the computational process. The basic
idea is to build up the graph first, assuming there is no
geometric obstacles, and then order the edges and perform
collision-checking individually. We can order the edges by
some consistent heuristic and integrate it with the branch
and bound technique. The idea is that if the previous edge is
collision-free (the heuristic is equal to the true cost), then
there is no need to process the rest of edges in the ordered
list since their heuristics (lower bound) are already larger
than the true cost of the previous edge.

3.2. Trajectory generation

In the trajectory generation phase, our aim is to solve the
optimization problem shown in Problem 3.1 and obtain the
trajectory �ðtÞ as reference for the lower level controllers.
With the geometric path provided by the path planning
phase, it can either be used as a collision-free initial guess,
or to further simplify the obstacle-free constraint
�ðtÞ 2 X free. More details on the initialization and simplifi-
cation techniques are covered in Sec. 3.3. Therefore, in this
section, we will focus on methods that generate dynamically
feasible trajectories.

In most work on multicopter trajectory generation, the
vehicle is considered as a high-order integrator as shown in
Eq. (1). Moreover, the trajectory’s higher-order derivatives,
like acceleration and jerk, need to be constrained to satisfy
the vehicle’s input and state constraints (see Eqs. (5)
and (7)).

With the vehicle treated as a high-order integrator, a
popular approach of generating a dynamically feasible tra-
jectory is to parameterize the trajectory with polynomials
and splines, and solve the resulting optimization problem
[24, 27, 47, 69]. These polynomials and splines can usually
be differentiated analytically, therefore the high-order
derivatives can be expressed without introducing extra
programming variables. On the other hand, the trajectory
generation problem can also be subdivided into multiple
boundary value problems (BVPs), where the sub-problem
can be solved analytically [70, 71] or where a fast approx-
imated solution exists [72, 73].

3.2.1. Spline-based numerical optimization

A popular approach for generating a dynamically-feasible
trajectory is to represent the trajectory using splines,
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treating the dynamics as a set of constraints, and then for-
mulating it as an optimization problem and solving it using
a numerical solver. A general spline function can usually be
expressed as

SkðsÞ ¼
XM�1

i¼0

ciN
k
i ðsÞ; ci; Sk 2 X ; Nk

i 2 R; ð22Þ

where X 2 Rd is the d-dimensional work space with d 2 N,
SkðsÞ represents the spline, k is the order of the spline, Nk

i ðsÞ
is the ith base function and ci is the corresponding weight
vector. During the motion planning process, we select the
best set of ci to optimize a given cost function. An additional
mapping is needed to connect the path parameter s to the
time t, which can take the form of a simple linear rela-
tionship as shown in [74]:

s
t
¼ 
 ð23Þ

for an appropriate scalar 
 or in the form of a nonlinear
function calculated through further optimization [75].

Common spline representations include polynomials
[24, 69, 76] and B-splines [77, 78]. As an example, we briefly
present the formulation from [24], which adopts piece-wise
polynomials as the base function to approximate the trajec-
tory. Let �ðtÞ denote a polynomial of degree N, such that

�̂ðtÞ ¼ �̂Nt
N þ �̂N�1t

N�1 þ � � � þ �̂0 ¼
XN
i¼0

�̂it
i: ð24Þ

The piece-wise polynomial of order N over m intervals is
given as follows:

�ðtÞ ¼

XN
i¼0

�i1t
i; t0 � t < t1;

XN
i¼0

�i2t
i; t1 � t < t2;

..

.

XN
i¼0

�imt
i; tm�1 � t � tm:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð25Þ

The trajectory of the vehicle in the 3D space can be repre-
sented by three independent single-axis piece-wise poly-
nomials. This will be denoted as ¾ðtÞ ¼ ½�x; �y; �z�>.

To improve the overall smoothness of the trajectory, the
optimization target is set to minimize the following cost
function:

min
Z t¼tm

t¼0
w0¾ðtÞ2 þ w1¾

0ðtÞ2 þ � � � þ wk¾
kðtÞ2dt

s:t: ¾ðtiÞ ¼ ¾i; i ¼ 0; . . . ;m

¾ðtÞ is of at least C 3 continuity

ð26Þ

in which the set of the additional linear constraints forces
the trajectory and its derivatives to pass through a series of
pre-defined key-frames at specific times. This optimization
problem can be solved by an off-the-shelf quadratic pro-
gramming (QP) solver.

3.2.2. Optimal control approach

The trajectory generation problem can also be expressed as
one or multiple BVPs, which can be solved using the various
techniques reported in the literature on optimal control.
The BVPs can be solved either directly or indirectly. In [23],
a two-point BVP (TPBVP) is formulated to generate time-
optimal trajectories for a triple integrator system that is
both input and state bounded. Since the input to a triple
integrator system is the jerk, this method is thus called the
jerk-limited trajectory generation. The BVP is solved ana-
lytically and is used to control the multicopter in real time
with only an ARM-based flight controller. The technique is
later extended in [79, 80] to generate collision-free trajec-
tories in obstacle-strewn environments. The jerk-limited
trajectory generation solves the following problem:

min tend
s:t: pð0Þ ¼ p0; pðtendÞ ¼ pref

vð0Þ ¼ v0; vðtendÞ ¼ 0

að0Þ ¼ a0; aðtendÞ ¼ 0

p
: ðtÞ ¼ vðtÞ
v
: ðtÞ ¼ aðtÞ
a
: ðtÞ ¼ jðtÞ
�vmax � vðtÞ � vmax; 8 t 2 ½0; tend�
�amax � aðtÞ � amax; 8 t 2 ½0; tend�
�jmax � jðtÞ � jmax; 8 t 2 ½0; tend�:

ð27Þ

Unlike the methods in Sec. 3.2.1, it only solves a TPBVP
instead of a multi-point BVP (MPBVP) as in Eq. (26), which
is more computationally demanding. A similar approach can
be found in [81], in which a closed-form solution is con-
structed for a cost function that penalizes the integration of
the square of the jerk and the total time. Multiple segments
of BVP trajectory generation methods can be used to derive
a more complex trajectory as presented in [82]. In [72], the
authors proposed to solve the BVPs offline by constructing a
neural network to estimate online computational burden.
This also opens the door to a wider range of cost functions
and the online efficiency is no longer limited by the exis-
tence of analytical solutions.

3.3. Integration of path and trajectory planning

As discussed earlier, the final goal of motion planning is to
generate a collision-free and dynamically feasible trajectory.
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In order to increase computational efficiency, the overall
problem is often decomposed into the pure geometric path
level and the dynamics level. In other words, one often first
focuses on dealing with the geometric constraints while
ignoring the system dynamics. The obtained solution is then
improved in a second phase where the detailed system
dynamics are considered. There are many ways to integrate
the path and trajectory planning layers, and these are
identified in this section.

3.3.1. Relaxing nonconvex optimization into convex opti-
mization

The most common approach of integrating path-level and
trajectory-level planning is to relax the overall nonconvex
optimization into a convex optimization problem. The core
idea is to use a path planner to find the geometric path and
then try to generate a dynamically feasible trajectory along
the path.

To do so, one can convert a high-level path into a set of
key waypoints and require the trajectory to pass through
the key waypoints at certain specific times (see, e.g. [24]).
For instance, in one of the earliest works on motion plan-
ning for multicopters [24], the authors use a polynomial
spline to represent the trajectory and encode additional
convex position constraints to avoid obstacles. The whole
process is then formulated into a QP problem with an op-
timization objective that aims to minimize the integrals of
the norm of the snap of the trajectory. They demonstrated
the effectiveness of the proposed approach with an im-
pressive real flight test that showed a quadrotor passing
through a narrow window. Though the work presented
significant contributions, it is limited to static and known
environments. It also does not address how geometric
constraints such as key-waypoints can be found automati-
cally. Furthermore, the trajectory was computed offline.

In [27], a sampling-based planner RRT* [57] was used to
find a collision-free geometric path, which was further
pruned into a minimal set of waypoints. Then, a sequence of
polynomial segments was jointly optimized to generate a
smooth trajectory using similar techniques as in [24].
However, the resulted trajectory may again collide with
obstacles even though the geometric path was collision-free.
As a result, an additional waypoint was added halfway be-
tween the two ends and the polynomial was re-optimized.
The process was repeated until a collision-free trajectory
was found. Such an ad hoc solution is effective in a low
obstacle density environment, but without any guarantee
due to Runge’s phenomenon.

An alternative approach is to extend the nominal path
plan into a safe corridor, which consists of a series of con-
nected convex regions. To guarantee that the result is col-
lision-free, [83] used a graph search-based planner on an

Octree-based map [84] and computed a collision-free cor-
ridor, which consisted of a series of axis-aligned cuboids.
These cuboids provided additional linear position con-
straints and were directly formulated into the optimization
process. As a result, the trajectory is guaranteed to stay
inside the safe corridor. Chen et al.[85] and [45] further
extended the idea of safe corridors to general 3D closed
convex polyhedrons, whereas Tang and Kumar [86] ex-
tended the techniques to multi-agent systems.

3.3.2. Direct nonconvex optimization

We can also treat high-level geometric planning as an initial
guess or heuristic for the trajectory generation process and
directly formulate it as a nonconvex optimization problem.
Oleynikova et al. [87] used a geometric planner named in-
formed RRT* [62] to find a straight-line path as an initial
guess and added a collision cost into the optimization ob-
jective, which is similar to the CHOMP technique [88] for
robotic manipulation planning. The collision cost is a
function of a Euclidean signed distance field at a point in the
3D work space. It is noteworthy that in such a formulation,
the geometric constraints are transformed into collision
cost in the optimization objective. The optimization process
is thus essentially performed over the entire state space
with the geometric path as an initial guess. However, due to
the additional term in the objective function, the problem
now becomes nonconvex and highly nonlinear, which is
likely to cause numerical instability. Finding a good topo-
logical path as the initial guess is crucial to obtaining a
resulting trajectory that is optimal and safe. In [89], a
modified PRM method is used to find multiple topologically
different initial guesses and their optimized results are
compared to select the best choice.

3.3.3. Motion primitives

A motion primitive is a segment of a continuous trajectory.
The core idea is to use motion primitives to construct a low-
dimensional parameter space and thus reduce the searching
dimension for the optimization problem. By using motion
primitives, it is also possible to separate the dynamic and
geometric constraints induced by the environment.

Motion primitives can be directly incorporated into a
sampling-based planning framework (i.e. kinodynamic
sampling based planning). The basic idea is to use motion
primitives as the steering function of the sampling-based
planner. Traditionally, such a steering function requires a
TPBVP to be solved. Despite advances in TPBVP solvers, it is
still difficult to achieve real-time performance as the pro-
cess involves numerous calls of the steering function. To
address this issue, one possible approach is to use
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analytically available solutions, which can be found very
efficiently when the problem comprises of certain optimi-
zation targets or state constraints. For example, the work in
[82] extended the geometric RRT* algorithm [57] into a
kinodynamic counterpart and used its analytically derived
solution, which is similar to that in [70], as the steering
function of the RRT*. It ignores state and input constraints
to generate motion primitives in a fast manner, and then
uses an extra checking process to get rid of the infeasible
primitives during the search process. However, this method
suffers from a low convergence rate when the state limits
are tight, which is fairly common in the indoor environment.
Since the constraints are ignored while the primitive is
being generated, a large number of the generated primitives
will turn out to be infeasible, which is a major issue for the
motion planner.

Another way is to perform all possible computational
processes offline and use a look-up table to store all the pre-
computed motion primitives. However, the resulting solu-
tion quality largely depends on the number of the motion
primitives. Furthermore, for a 9 DOF multicopter system,
the corresponding look-up table would have entries in the
order of 1018, which is computationally challenging in both
construction and storage. To address this issue, Lan et al.
[73] proposed the use of a neural network to approximate
the motion primitives, and showed that the evaluation of
the network is much faster than calling a TPBVP solver. This
greatly improved the convergence rate of the searching
process.

In many real-time applications, like the navigation of a
multicopter in an unknown environment, it is still intrac-
table to rely purely on sampling-based kinodynamic plan-
ning due to the high computational load. Therefore, the
divide-and-conquer approach, which separates the planning
problem into multiple layers, is still popular, especially in
practical implementations. For example, when tasked to
generate a dynamically feasible and collision-free trajectory
for a multicopter, Lai et al. [26, 80] first plan a geometric
path made of line segments, which ignores the detailed
dynamics of the vehicle. Then, a third-order jerk-limited
motion primitive is adopted to generate a dynamically
feasible trajectory that stays close to the path. More spe-
cifically, a waypoint is picked from the line segment path.
Multiple primitives that terminate within a certain radius to
the waypoint are then sampled. A cost function is designed
to evaluate each primitive, and the best one is selected for
execution.

Finally, we note that Lai et al. [72] have recently ex-
tended the work of [26, 80] to propose a general framework
for local motion planning with boundary state constrained
motion primitives. To handle environment uncertainties
and dynamic obstacles, the authors integrate the boundary
state constrained motion primitives into a model

predicative control framework. Unlike previous results in
[26, 80] which essentially select the best motion over a set
of discrete samples, Lai et al. [72] perform the optimization
in the continuous domain.

4. Task Planning Techniques

As depicted in Fig. 6, there are two main classes of techni-
ques used for pure task planning: artificial intelligence
(AI)-based planning; and control synthesis using formal
methods, which is the main focus of this section. We will
highlight the key features of integrated task and motion
planning in Sec. 5.

4.1. AI-based planning

Research on AI-based planning mostly studies various
planning techniques that are used in the discrete planning
domain. The main focus is on algorithms for different types
of planning problems such as classical planning (fully de-
terministic and fully observable), fully and partially ob-
servable nondeterministic planning (FOND, POND), and
probabilistic planning (MDP, POMDP). These planning
problems differ from each other in terms of (i) whether the
initial states and actions are deterministic; (ii) type of
sensing; (iii) the presentation of uncertainties (e.g. in MDP
and POMDP, one can represent uncertainties using proba-
bilities while in FOND and POND, one represents uncer-
tainties using sets); and (iv) the planning objective.
Recently, there has been growing interest in handling tem-
porally-extended goals. The planning problem is commonly
formulated into a graph search problem [90, 91], though
there are also planners that formulate the problem into a
constraint satisfaction problem (CSP) [92–94].

It is possible to solve one type of planning problem
using solvers that are created for another type of problem.
For example, one could use a FOND planner to solve
probabilistic planning problems [95], and use classical
planners to solve FOND problems [96]. In AI-based plan-
ning, it is common to specify the planning problem by the
Planning Domain Definition Language (PDDL) and its var-
iants. The popularity of the PDDL is credited to the Inter-
national Planning Competition, in which the PDDL is used
as the standard interface to benchmark the planners. An
excellent introduction to the PDDL can be found in the
recent text by Haslum et al. [97]. In some literature, AI-
based planners with PDDL input interfaces are often
termed as PDDL planners. It should be noted that AI-based
planning techniques have also been extended to handle
hybrid systems.
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4.1.1. Classical planning

Classical planning is the simplest type of AI-based approach.
The problem is modeled as a fully deterministic and fully
observable transition system with a planning goal, which
can be achieved by applying deterministic actions from a
fully known initial state. It is no surprise that the classical
planning problem can be mapped to a graph search prob-
lem and solved by algorithms such as Dijkstra’s and A* as
described in Sec. 2. The challenging part is in scaling up as it
involves an exponential state explosion. To address this
problem, classical planners often aim to find a better heu-
ristic [98–100] to improve the search efficiency.

The heuristic commonly used in the fast forward (FF)
planner [99] is automatically generated by relaxing the plan
from the delete-free relaxation of the original problem
[101]. Another popular way to generate heuristics is by
abstraction such as merge and shrink [102, 103]. Heuristics
can also be derived from landmarks (i.e. sub-goals that we
have to fulfill), as used in the LAMA planner [104]. Recently,
there are classical planners [105] developed on a new
measure, i.e. the width of the planning problem. These
planners give impressive and promising results on some
benchmark problems, which can be solved by the width-
based planner in polynomial time if their goals are a single
atom [106].

Classical planners can also be used as a basis to solve
many nonclassical planning problems. With some special
compilation processes, the classical planner is able to han-
dle problems with soft goals [107] and temporally-extended
goals [108, 109]. In addition, there are also works that use
classical planners to solve partially observable planning
problems [110, 111].

The classical planning model and problem are defined as
follows.

Definition 16 (Classical planning model and problem).
The state space model of classical planning is a tuple

P̂ ¼< S; s0; SG;Act; �; cost >

which consists of

(i) A finite set of states S
(ii) An initial state s0 � S
(iii) A set of goal states SG � S
(iv) A finite set of actions Act with ActðsÞ denoting the sets

of applicable actions to s 2 S
(v) A deterministic state-transition function � : S � Act

with �ðs; aÞ denoting the successor state when applying
action a 2 ActðsÞ to s 2 S

(vi) A cost function cost : S � Act 7! ½0;1Þ
A plan or a solution to a classical planning problem is a
sequence of actions � ¼< a0; a1; . . . ; an > that generates a
state sequence s0; s1; . . . ; snþ1 such that ai 2 ActðsiÞ,

siþ1 ¼ �ðai; siÞ and snþ1 2 SG. Note that if the cost function is
not given explicitly, costðs; aÞ is usually set to be 1 whenever
�ðs; aÞ is defined.

Logic is a convenient way to compactly specify a subset of
the state space where all states in a subset share some
common properties. The discrete planning problem can be
effectively represented by a logic-based representation.
Such logic representations can also be interpreted as a sort
of interface for the underlying discrete-planning problem.
For classical planning, the state based planning problem
and model in Definition 16 can be converted to STRIPS like
logic-based representation in Definition 17. STRIPS-like
representation is one of the most common logic-based re-
presentation of the planning problem, which mainly focuses
on propositional logic, though there are also extensions to
first-order logic. The name STRIPS refers to one of the first
planning algorithm, STanford Research Institute Problem
Solver, developed in the 1970s. In fact, STRIPS representa-
tion remains relevant till today and inspired more

Fig. 12. The domain PDDL file for the warehouse example in
Fig. 5.

186 M. Lan et al.

U
n.

 S
ys

. 2
02

1.
09

:1
65

-1
98

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
03

/1
1/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



comprehensive PDDL representations that were developed
around 1998 for the very first international planning com-
petition. The STRIPS remains the simplest yet most im-
portant subset of the PDDL.

There are several key components of a STRIPS-like re-
presentation. The first is what is known as instances, which
refer to real-life objects such as robots, rooms, cups and
tables. The second component is a predicate or proposition
whose value can either be true or false. For example, a
predicate on (cup, table) can describe a situation that there
is a cup placed on the table if it is true. Similarly, inRoom
(robot, kitchen) can indicate whether the robot is inside the
kitchen. Note that each predicate actually maps to a subset
of underlying continuous state space.

A literal is an atomic formula (positive literal) or the
negation of an atomic formula (negative literal). A state of
the planning problem can then be described by a set of
literals. An operator or action manipulates the states by
adding literals or deleting literals over the current state.
More specifically, an operator has a form of op ¼ ðPre;Eff Þ,
where Pre is the set of literals that have to be true when
applying this action, and is often called the precondition,
and Eff is the set of effects after applying the action. In
STRIPS, Eff can be described in the form Eff :¼ ðAdd;DelÞ,
where Add is the set of literals to be added and Del is the set
of literals to be deleted. There are many variants of the
STRIPS, and additional features include but are not limited
to timed actions, sensor models, and conditional effects.

Definition 17 (Classical planning in logic representa-
tion). The logic representation of the classical planning
model in Definition 16, i.e. P̂ ¼< S; s0; SG;Act; f ; cost >, is

given by

P ¼< F; I;A;G >;

where

(i) Ins is a set of instances.
(ii) F is a finite set of predicates. A predicate is a partial

function of one of more instances, which can be either
true or false. A literal is any predicate (or its negation)
applied to a specific set of instances.

(iii) A is a finite set of operators or actions. Each operator
has 1) preconditions which are set of literals must be
hold when applying this operator; 2) effects which are
a set of literals of the result of this operator.

(iv) I is a set of initial conditions, which is a set of literals
over F

(v) G is the planning goal, which is a set of literals over F.

Here, we revisit the example shown in Fig. 5 and show the
entire planning problem written in standard STRIPS-like
PDDL format (see Figs. 12 and 13). We assume that the
multicopter is originally at siteC and needs to fly to the
warehouse to collect two packages pkg1 and pkg2. These two
packages need to be delivered to siteA and siteB, respectively.
For simplicity, we assume that the multicopter is capable of
executing three abstract actions, namely load, unload and fly.

There are two PDDL files. One is the domain file which
defines the proposition set F and action set A in Defini-
tion 17 (see Fig. 12). The other is the problem file which
defines the initial state I and end goal G of the planning
problem in Definition 17 (see Fig. 13).

The STRIPS representation can also be translated into
linear temporal logic (LTL). As discussed above, STRIPS
actions typically consists of three parts: (i) the action name,
(ii) a set of preconditions that must be true before this action
is applied, and (iii) a set of effects after the action. The effects
of an action a consist of two parts: an add list, AddðaÞ, which
describes a set of states that have to be true after action a; and
a delete list,DelðaÞ, which consists of a set of facts that have to
be deleted (i.e. be false) in the effects.

Let f denote a literal. For an action a 2 A, the effects are^
f2AddðaÞ

f ^
^

f2DelðaÞ
:f :

Let � denote the precondition set. We then have:

(i) The preconditions have to be always satisfied before
the action can be applied, i.e. Wð�a ! �Þ (if the action
is to occur in the next step, the preconditions have to
be satisfied now);

(ii) The effects have to be applied

W �a ! � ^
f2AddðaÞ

f ^
^

f2DelðaÞ
:f

0
@

1
A

0
@

1
A

Fig. 13. The problem PDDL file for the warehouse example in
Fig. 5.
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(iii) The rest of literals have to remain unchanged

Wa !
^

f 62fAddðaÞ
S

DelðaÞg
ðf () �f Þ

(iv) At each step, only one action should be activated, i.e.

W

_
a2A

a

 !
^

^
ai;aj2A;i 6¼j

ai ! :aj

0
@

1
A

0
@

1
A

(v) The initial condition ^
f2I

^
^
f 62I

:f

(vi) The goal has to be eventually reached, i.e. ¸�goal .

The most common way to solve the classical planning
problem is to re-formulate the problem into a graph search
problem. During the planning process, the state transition
graph is often only generated incrementally by applying a
sequence of actions and it is unnecessary to specify the full
transition graph beforehand.

4.2. Control synthesis

Given a system abstraction and a set of formal high-level
task specifications, control synthesis refers to using formal
methods to automatically find a correct-by-construction
controller, i.e. finding a control policy such that at the given
abstraction level, the controller will result in a controlled
system that satisfies all task specifications with respect to a
modeled environment behavior. Usually, these tasks are
formalized using various types of temporal logics. Com-
pared to AI-based planning where most goals are not tem-
porally extended, researchers in the control synthesis
community focus more on handling the temporal specifi-
cations in a formal way. In some works (see e.g. [112]), both
the task specification and the abstract system model are
formalized using temporal logics. In [113, 114], the authors
provide an excellent review on applying formal methods to
robotics systems.

4.2.1. Automata-based control synthesis

One popular approach of synthesizing a controller under
temporal specification is based on the automaton theory
[115–118]. This method often applies to a deterministic
system abstraction model. The basic procedure can be
summarized as follows: first, the temporal logic is trans-
lated into an equivalent automaton, in which the language
satisfying the temporal formula is also accepted by the
automaton. A product automaton is then created between
the system abstraction (which is represented as a labeled

transition system) and the specification automaton. Lastly, it
searches for a satisfying run over the product automaton.

It has been proven that any LTL formula can be mapped
to a Büchi automaton, and there are various open source
tools such as LTL2BA [119] and Spot [120] which are
available for performing such translations. Given a labeled
transition system TS and a Büchi automaton BA, one can
create a product automaton P ¼ TS� BA, which itself is
also a nondeterministic Büchi automaton. Since the Büchi
acceptance condition requires the run to visit one of the
accepting states infinitely often, one can then search for a
prefix-suffix structure over the product automaton. The
prefix starts from an initial state to an accepting state. The
suffix part loops around this accepting state (i.e. starting
from the accepting state, and ending in the exact same
accepting state). The prefix-suffix structure can either be
found by an algorithm that is similar to a nested depth-first
search (DFS), or an algorithm that is based on finding the
strongly connected component (SCC) [121]. On the other
hand, co-safe LTL can be translated into a deterministic
finite automaton. One can then directly search a run that
starts from the initial state and ends in an accepting state
over the product finite automaton.

The synthesis of the automata-based approach is fre-
quently combined with iterative planning techniques to
handle partially unknown environments [117, 118]. There
are also research efforts focusing on partial specification
satisfaction based on the automata-based synthesis ap-
proach [118, 122, 123].

4.2.2. Game-based synthesis

Game-based synthesis is usually used for reactive tasks
where the proposition set contains both the robot and en-
vironment propositions (observable but uncontrollable).
The key idea is to model the synthesis problem as a two-
player game, in which one player is the robot and the other
is the environment. The objective is to find a control
strategy for the robot such that it can react accordingly to
the behavior of the environment model and the resulting
trajectory satisfies the given specifications. Reactive syn-
thesis for the full set of LTL can be computationally chal-
lenging [124]. There is thus a significant amount of research
focusing on the GR(1) subset instead [112, 125–127]. There
are also various efficient solvers for the GR(1) subset, such
as the Slugs (a complete GR (1) synthesizer) [128].

4.2.3. Markov decision processes-based synthesis

Markov decision process (MDP)-based synthesis is mainly
used for two scenarios: to handle the temporal specifications
expressed in probabilistic logics such as probabilistic
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computation tree logic (PCTL) [129]; and to handle the dis-
crete temporal logics such as LTL for the dynamical system
modeled in MDP [130, 131]. The goal of the MDP-based
synthesis is to find a policy that maximizes the probabilities
of fulfilling a temporal specification.

4.2.4. Control synthesis from an optimization perspective

The temporal specification can also be translated directly into
a set of constraints over the dynamic system. Often, the
overall formulation is solved in a mixed integer linear pro-
gramming (MILP) or a mixed integer quadratic programming
(MIQP) framework, assuming that the predicates are linear.
Pioneer work of such approaches can be found in [132],
where the authors encode the LTL formulae into a set of
mixed-integer constraints. There are also various results fo-
cusing on the encoding of signal temporal logics (STL) [133].
Instead of Boolean satisfaction, STL can provide quantitative
satisfaction. For each STL formula, one can assign a robust-
ness score over it to evaluate the robustness of the satisfac-
tion. This robustness score can be seamlessly integrated into
an optimization problem.

In [133], Raman et al. extend the synthesis problem into
a receding horizon control framework. The main drawback
of the MILP approach is its high computational burden due
to the large set of binary variables. Work in [134] adopts an
iterative planning approach, which deals with fewer binary
variables in each iteration. The idea is to guess a trajectory
first and identify any violation points. They then add new
constraints over the violation points and solve the problem
repeatedly. The idea is similar to that in incremental con-
straints solving [135]. In [136], the authors provide a dif-
ferentiable approximation of the robustness function, and
thus formulate it as a sequential quadratic programming
(SQP) problem for higher computational speed. In [137],
Mehdipour et al. went one step further by defining a
new robustness score (i.e. the arithmetic-geometric mean
robustness), with gradient information that is readily
available.

4.3. Bridging the gaps

Recently, there has been an increasing amount of research
that aims to bridge the gap between AI-based planning and
control synthesis approaches. Researchers who used to
work on AI-based planning have begun to investigate the
reformulation of temporal logic synthesis problems into
various types of common planning problems and then solve
them using existing PDDL planners.

For instance, the authors in [109] proposed handling
the nonreactive LTL synthesis problem by compiling it
into a standard PDDL-based classical planning problem. The

fundamental idea behind this is still converting the LTL
specification into an automaton and searching for a prefix-
suffix structure in the product automaton. More specifically,
the transition system is first modeled into the standard
PDDL format and the specification automaton generated
from the LTL is converted into a PDDL action with condi-
tional effects. The transition of the product automaton is
thus modeled as two successive actions. The first move is
taken by the specification automaton and the second move
is taken by the transition system. To handle the infinite
plan, a special loop action is created. With additional aux-
iliary propositions and actions, the entire search problem
can be represented as a classical planning problem. The
resulting problem can then be solved by any standard PDDL
classical planner such as those in [99, 104].

In [138], the authors propose to handle the full reactive
LTL synthesis problem by compiling the two-player game
into a standard fully observable planning problem (FOND).
Any PDDL FOND planner can thus be adopted to solve the
problem. In [139], the task temporal constraints and the
continuous optimization variables are combined in a hier-
archical structure and solved with a dynamic backtracking
method to achieve activity planning. The system has been
proven highly efficient and reliable with its implementation
on the Mars Rover.

4.4. Direct task plan specified by human operators

In the above sections, we discussed a wide range of tech-
niques used for automated task planning. However, in
practice, it is also important to allow human operators to
directly specify the task plan instead of going through an
automated planner. We identify two reasons for this need.
First of all, automated planning requires a sophisticated
planning model and a properly defined planning goal. For
nonexperts who do not have sufficient understanding in
planning, it is difficult to create a proper planning model
and formally create the task specifications. For instance, in
Sec. 2.4, we presented various temporal logics used to
represent task requirements. We also provided a specifi-
cation pattern for LTL (see Sec. 2.4.3) to assist users in
effectively translating the description requirements into
formalism. For nonexperts, however, it remains challenging
to understand and use these formalisms. More importantly,
in some cases, human operators might simply not wish to
use an automated planner, as they might not be able to
produce specific types of behaviors. For example, a path
planner might always return the shortest path between two
points on a map. The human operator on the other hand
might actually prefer to follow a self-designed nonoptimal
path. If we are forced to use an automated planner, we will
have to modify the optimization target by adding many
additional constraints.
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Currently, the most popular choice for plan representa-
tion is a finite state machine (FSM) [140–142] which is a
well-studied mathematical tool. In [140], the authors create
a powerful graphical user interface (GUI) named RAFCON
which allows the user to specify tasks for mobile robots
using a hierarchical state machine. In fact, many task
planners generate the task policy directly in the form of a
state transition system [112]. The main drawback of the
FSM is that the readability for human operators will de-
crease with the size of state machine. Editing a particular
state or transition manually in the FSM is never straight-
forward since the transition itself is state dependent in
nature. As pointed out by [143], the state transition in FSM
is essentially an on-way transfer of control, which behaves
in a similar way as the outdated programming statement
GoTo [144]. In fact, the low readability is the reason the
GoTo statement has received a wide range criticism and its
usage has been significantly restricted in modern pro-
gramming languages [145]. As pointed out in Edsger Dijk-
stra’s well-known letter “GoTo Statement Considered
Harmful” dated back in 1968 [144], “the GoTo statement as
it stands is just too primitive; it is too much an invitation to
make a mess of one’s program”.

In this survey, we introduce another plan representation,
namely the behavior tree, which partially addresses the
challenges faced by the FSM. The behavior tree is a tree-
based model that organizes a group of modular behaviors
which was originally developed in the game industry to
model the behaviors of nonplayer characters [146]. It
allows the user to easily specify and execute the task plan in
a tree form. Figure 14 depicts a typical behavior tree, in
which the leaf node represents a primitive behavior that
maps to a control command directly executable by an agent.
The internal node groups the primitive behaviors into a
composite one in accordance to a set of rules that are de-
fined. Similar to the hierarchical task network (HTN), the
behavior tree can be regarded as a framework that

represents a set of refinement models. The key difference,
however, is that the behavior tree comes with additional
execution policies. Each node defines a set of rules on how
its children nodes should be traversed. In general, different
node types have different traversal rules. In other words,
the behavior tree not only represents a hierarchy of models,
but also defines a control policy associated with the de-
composition process.

As a type of refinement acting engine (RAE) [147], the
behavior tree gradually refines compound tasks (behaviors)
into a set of executable primitive tasks (behaviors) by tra-
versing the tree. With such an acting feature, it is then
possible to interleave the planning and execution via the
tree [143] [148].

It has been shown in [149] that the behavior tree is able
to generalize other structures such as subsumption archi-
tecture and decision trees. The key advantage of the be-
havior tree is that each tree node essentially behaves like a
two-way function. As a result, it is able to decouple the node
implementation and node usage, which makes the behavior
tree highly modular. The code is thus also re-usable due to
the modular tree node implementation.

Recently, research on the behavior tree has attracted
more attention because of its hierarchical and modular
structure as well as natural execution policy. The concept
has been applied to a wide range of real robotic applica-
tions, such as object manipulation [150], human–robots
collaboration [151], underwater vehicles [152], humanoid
control [143] and even semi-autonomous robotic surgeries
[153]. For instance, in [150], the authors use the behavior
tree as the main architecture to integrate several core
functionalities (e.g. perception, planning, control and audio
processing) of a manipulation task. In [153], the behavior
tree is used to systematically model and implement the
surgical procedure for a brain tumor ablation.

In [151, 154], the authors create a behavior-tree based
system, named CoSTAR, for end-users to specify task plans
to industrial collaborative robots. The main motivation be-
hind the CoSTAR is the observation that many industrial
robots are often underutilized in small manufacturers due
to the high cost and user-unfriendly interface of repro-
gramming the robots for other tasks that are not pre-
specified. The CoSTAR addresses this issue by using a
behavior-tree based framework, which combines the basic
capabilities of the robots in a modular manner. This helps
nonexperts to create new tasks on the fly. The perception
module has been integrated into the system, which allows
users to create a task plan that is more robust to the en-
vironmental changes. SARAFun [155] is another project that
aims to help nonexperts to specify an assembly task from
scratch, where the behavior tree is used as a control ar-
chitecture that combines and executes a set of modular
learned or planned actions.Fig. 14. An example of a behavior tree.
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Due to its high modularity and hierarchical structure,
behavior trees are also used to specify and execute complex
tasks for autonomous multicopters. In [156], a behavior
tree is used as the core underlying structure to construct a
modular mission management system for small-scale mul-
ticopters. This system was successfully demonstrated at the
2017 International Micro Aerial Vehicle Competition (IMAV
17). Specifically, in the competition, the multicopter com-
pleted a series of tasks including moving through a narrow
window, navigating through a set of obstacles, flying in front
of an industrial fan, searching for a target, dropping a
payload and finally landing on a moving platform.

5. Integrated Task and Motion Planning

The integration of task and motion planning is not a trivial
issue due to possible mismatch among the different ab-
straction models at different planning levels. In a common
hierarchical layered planning framework where the task-
level model often completely ignores the dynamics and
geometric details, the high-level task plan may simply be
infeasible for the lower-level motion planner to implement.
The following are some general approaches to properly
integrating the task planning layer and the motion planning
layer.

5.1. Direct optimization with task and motion
constraints

The most straightforward approach to integrating task
planning and motion planning is by directly considering all
constraints (task-related constraints, geometric constraints,
and dynamics constraints) in one planning layer. For ex-
ample, we can use the optimization synthesis technique
presented in Sec. 4.2.4 to directly generate a dynamically
feasible trajectory that fulfills the temporal task con-
straints with a complete dynamics model. The authors in
[157] use signal temporal logic for the formalism of the
task requirement. A polynomial was used to parameterize
the motions of the vehicle and a smooth operator was
further adopted to approximate the original MIQP problem
into an SQP problem. Although this approach is sound and
complete, the main drawback is the high computational
load. For robotics, the fundamental reason for decoupling
task and motion into two layers is to gain computational
efficiency. Although direct optimization can generate
feasible or even an optimal solution in one run, such
an algorithm often requires significantly larger computa-
tional power, which may not be feasible for real-time
applications.

5.2. Enforcement of the simulation relationship

Another possible approach is to ensure that the simulation
relationship holds from the abstract model to the original
system. In other words, we need to design a special system
abstraction strategy and special motion planning or control
algorithms such that the motion and control algorithms can
implement the abstract task plan [158, 159]. The key
challenge is to find a correct abstraction, which in general is
not a straightforward task.

5.3. Sampling-based integration of task and motion
planning

There is a large amount of research interest in applying
sampling-based techniques to solve planning under tem-
poral logic constraints as these techniques are convenient
tools for abstracting the original dynamic system. Pioneer-
ing work on applying sampling-based techniques to solve a
planning task under temporal logic constraints can be found
in [160]. The key idea is to abstract the robot dynamic
system into a discrete counterpart by using a sampling-
based method. More specifically, the rapidly-exploring ran-
dom graph (RRG) is used to create a sampling-based Kripke
structure, which is essentially an approximation of the un-
derlying dynamics. A model checking tool is then used to
check whether this model satisfies the specification
expressed in �-calculus and contains a satisfying trajectory.
A product automaton is created and a cyclic pattern is then
found in the graph by a graph algorithm. If the abstract
model is not rich enough to contain a satisfying run, more
samples are added and the above procedure is repeated.
The main issue with this is that the model checking process
is independent from the graph construction. In other words,
for each checking iteration, a new independent Kripke
structure has to be provided, and a complex graph search
algorithm has to be executed from scratch. In [161], Vasile
and Belta improve the work in [160] by incrementally
building up the RRG and maintaining the product graph,
which only requires incremental searching for a satisfying
run.

This was further extended in [162] to handle reactive
planning. Specifically, a run is first found to satisfy the
global specification, and then a local path is patched to the
global run to handle the reactive local specification. It
should be noted that these algorithms can only handle path
planning. In other words, they can only handle system dy-
namics without differential constraints. In addition, these
algorithms are only capable of producing a feasible path and
not an optimal one.

Both works in [160, 161] require an exact local steering
function to obtain a graph-based Kripke structure, which
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requires a two-point boundary value problem to be solved.
However, for some types of systems, such steering functions
might not be readily available. To address this issue, [163]
extends the work in [160] by adopting a tree-based planner,
which relies on forward simulation instead of steering,
specifically, the SST* from [164]. Multiple tree-based Kripke
structures are propagated by the SST* in parallel from dif-
ferent initial states in the state space. Each initial state is
sampled from a region that corresponds to a positive atomic
proposition appearing in temporal specifications. Later, all
Kripke structures are merged into a single abstract Kripke
structure that contains the solution.

There are also works that use an RRT*-like algorithm to
search for an optimal satisfying run (see e.g. [165]). How-
ever, the work in [165] focuses on applying sampling
techniques to further abstract a large transition system into
a simpler one, instead of abstracting a continuous state
space into a discrete counterpart. The application of [165] is
mainly for large-scale multi-agent task planning, in which it
is assumed that the task dynamics of each robot are already
provided as a transition system. The sampling domain is
then the product of each robot transition system, which is
already in discrete form. As a result, the algorithm in [165]
cannot be directly applied to a continuous dynamical
system.

5.4. Iterative planning with model updating

An increasingly popular approach is to start with a guessed
abstraction and then apply an iterative planning strategy.
More specifically, we can start with a guessed task-level

abstraction and then plan with the guessed model. If the
lower-level motion planner cannot implement the resulting
task plan, we need to find the underlying reasons and up-
date the abstraction accordingly. We then repeat the plan-
ning with the updated task model. Usually, the whole
process is facilitated by an independent task-action layer.
For general tasks which require a wide range of functions,
the term motion is extended to a more general one named
action.

Figure 15 presents a general framework for integrating
high-level planning with lower-level planning using a task-
action interface. The task specification interface, as shown
graphically in pink, allows the user to properly specify the
task requirements. The yellow sections represent the
model-related modules. This consists of two major sub-
modules. The first one is the symbolic abstract model used
for the planning process, and it is possible for the planning
model to have different levels of abstraction. Besides the
symbolic model itself, one has to assign meaning to each
symbol, i.e. perform symbol grounding. Specifically, each
symbol used in the abstract model needs to be assigned a
physical meaning and mapped to a subset of the underlying
continuous full state space. It is not a trivial task to ground
the symbols in general and complex algorithms are often
required [166, 167]. In practice, it is also common to di-
rectly channel human knowledge to ground the symbol. For
instance, in the example shown in Fig. 5, to ground the
symbol site A, the human operator can specify the GPS
coordinates of the center of the site, assuming the site area
can be represented as a circle. The blue section in Fig. 15
represents the main high-level task planner, which com-
putes the task-level plan given a task specification and

Fig. 15. A general framework of integrating high-level planning with lower-level planning using a task-action interface.
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planning model. The green section is the task acting engine,
which is the main interface between high-level planning and
low-level implementation.

In [168], the authors use an independent interface to
communicate the geometric details from the motion level to
the task-level in the form of a logical predicate. In [118, 169,
170], the state space is partitioned into several regions to
form an abstraction. The discrete plan helps the lower-level
sampling-based motion tree to identify the best possible
region to explore. The motion tree also sends back utility
information to the discrete planner, i.e. updates the discrete
abstraction by adjusting region weights. The work in [171]
unifies sampling-based planning for integrated task and
motion planning by abstracting the motion planner into
PDDL actions. By performing conditional sampling in the
task-motion space, a sampling-based abstraction is con-
structed. Discrete planning is then performed on this ab-
straction. If it fails to find a solution, more samples will be
drawn to provide a denser abstraction.

In [172], the authors used the behavior tree discussed
in Sec. 4.4 as the main task-action interface. The behavior
tree is responsible for refining the high-level task plan into
primitive actions, executing the actions, providing neces-
sary execution feedbacks, updating the task-level model
and facilitating the re-planning process. Although the sys-
tem used a PDDL-based classical planner as the core high-
level planner, it is also able to handle LTL task specifica-
tions in addition to standard PDDL specifications. The
basic idea involves applying the techniques mentioned in
Sec. 4.3, which compiles the nonreactive LTL synthesis
problem into a classical planning problem. By doing so, the
system is able to use any off-the-shelf classical planner and
easily benefit from the recent advances of the planning
community. The linear task plan is later translated into a
behavior tree form and is further refined into a set of more
primitive actions. With the help of a behavior tree-based
task-action interface, it is able to perform iterative plan-
ning and thus handle the reactive LTL task specifications
by assuming a determined task planning model for each
planning cycle. Moreover, by using a behavior tree as the
task-action interface, the system is able to directly handle a
human specified behavior tree plan without going through
an automated planner.

6. Conclusion

In this paper, we presented a survey of the various back-
ground materials and techniques used in task and motion
planning for unmanned multicopters. This includes the
dynamic model of the multicopter, common graph search
algorithms, symbolic representation of task-level system
abstraction models and temporal task specifications, and

commonly used motion planning and task planning tech-
niques. We hope that this survey provides a comprehensive
overview of the area and can serve as a reference for
beginners looking to enter the field of the motion and task
planning.
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