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Toward Autonomy of Micro Aerial Vehicles in
Unknown and Global Positioning System

Denied Environments
Yu Zhou , Shupeng Lai , Huimin Cheng, Abdul Hamid Mohamed Redhwan , Pengfei Wang, Junji Zhu,

Zhi Gao , Zhengtian Ma, Yingcai Bi, Feng Lin, and Ben M. Chen, Fellow, IEEE

Abstract—In this article, we present a comprehensive
design and implementation for a micro aerial vehicle (MAV)
that is able to perform 3-D autonomous navigation and
obstacle avoidance in cluttered and realistic unknown en-
vironments without the aid of global positioning system
and other external sensors or markers. To achieve these
autonomous missions, modularized components are devel-
oped for the MAV, including visual–inertial odometry, 3-D
occupancy mapping, and motion planning. The proposed
system is implemented to run on a small embedded com-
puter in real time. It is demonstrated to be robust in both
simulation and real flight experiments. The demonstration
video is available at: https://youtu.be/KUKzsnORm-4.

Index Terms—Micro aerial vehicles (MAVs), motion plan-
ning, trajectory generation, three-dimensional (3-D) map-
ping, visual–inertial odometry (VIO).

I. INTRODUCTION

IN RECENT years, micro aerial vehicles (MAVs) have been
used in various fields such as agriculture, industrial in-

spection, civilian disaster management, surveillance, and so
on [1]–[3]. Among those applications, one critical capability
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for an MAV is to navigate in challenging scenarios, especially
unknown, global positioning system (GPS) denied and obstacle-
cluttered environments. In many applications, it is difficult to
deploy external sensors such as radio-frequency identification
[4], ultra-wideband [5], or fiducial marker systems [6], and it is
necessary to develop fully autonomous navigation systems that
rely only on onboard sensing and computation.

Stereo camera-based methods for state estimation in consider-
ation of both efficiency and performance have gained popularity
recently. However, with only the visual information, the state
may drift significantly especially during aggressive maneuvers.
Therefore, fusion with an inertial sensor is necessary to increase
its applicability and robustness.

With accurate state estimation, the next step is to build a
3-D map of surrounding obstacles. To this end, a 3-D re-
construction method is proposed, which gives strong sup-
port to the motion planning module. This article presents a
highly efficient approach to update the Euclidean distance
field (EDF) on a 3-D occupancy grid map. The occupancy
map is updated with the voxel projection method [7] and
EDF is accelerated with dimensionality-reduction Voronoi
diagram.

To concatenate with the state estimation and mapping mod-
ules, a 3-D motion planning module is designed for real-time
path and trajectory generation, where a collision-free and dy-
namically feasible reference is generated to guide the vehicle
to maneuver safely toward its desired target. We represent the
trajectory with its boundary state conditions and call it boundary
state constrained primitives (BSCPs). The BSCPs are usually
achieved by solving a boundary value problem numerically.
For real-time responsiveness, we use a neural network (NN)
to approximate the BSCP during online optimization and then
combine it with particle swarm optimization (PSO) to solve the
nonconvex local motion planning problem. NN is used instead
of a lookup table because the latter could become prohibitively
large for high-dimensional systems [8].

The contributions of this article are listed as follows.
1) The state estimation based on visual–inertial sensor fu-

sion is designed to work with off-board camera-integrated
visual odometry data, minimizing the computational
complexity. A lightweight velocity-based fault detection
is demonstrated to withstand challenging feature-sparse
environments.
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2) We propose to solve the nonconvex local motion plan-
ning problem with a gradient-free PSO algorithm. The
approach is made real time by using the NN approximated
BSCP. With this method, discontinuous and nonconvex
problems, such as navigation with a limited field of view,
can be solved easily.

3) We implement the proposed approach on a real quadrotor
which is capable of navigating in 3-D complex environ-
ments and tracking moving references.

This article is organized as follows. We discuss related works
in Section II. An overview of our system is given in Section III.
Section IV describes the state estimation algorithms. Section V
introduces our mapping and motion planning modules. Various
experimental results are given in Section VI. Finally, Section VII
concludes the article, with discussions on the results and di-
rections of future work that would further improve the present
system.

II. RELATED WORKS

A. Stereo Visual–Inertial State Estimation

Many different stereo visual–inertial odometry (VIO) im-
plementations have been integrated into MAV platforms and
could be broadly classified into four approaches: Tightly coupled
optimization [9], tightly coupled filtering [10], loosely coupled
filtering [11], and camera-integrated implementations [12].

Optimization approach jointly optimizes all states and mea-
surement. Monocular visual-inertial systems (VINS-Mono)
(VINS-Fusion) [9] has achieved real-time performance com-
parable to filter-based methods, by imposing sliding window
and limiting the optimization thread to around 10 Hz. Other
implementations such as open keyframe-based visual-inertial
SLAM (OKVIS) [13] exist but are generally slower and less
suitable to implement on real MAV systems. Tightly coupled
filtering approach formulates the estimation problem into a
recursive prediction and update process. Multi-state constraint
kalman filter (MSCKF) [10] augments the states with a sliding
window of camera poses and robust visual inertial odome-
try (ROVIO) [14] augments the states with visual landmarks.
However, tightly coupled methods generally take more effort
considering convergency in practice, which makes the tuning
more complicated. Loosely coupled filtering treats the whole
visual odometry process as a black box and performs Kalman
filter-based state estimation based on visual odometry (VO)
output and inertial measurement unit (IMU) measurements. In
[11], a framework of semi-direct visual odometry (SVO) [15]
with unscented kalman filter (UKF) is demonstrated. However,
the pose output from visual odometry is treated as the global
measurement in UKF; therefore, any drift and failure of the
visual odometry process would result in inconsistent filtered
state estimation. In multi-sensor fusion (MSF) extended Kalman
filter (EKF) framework [16], the drift of the vision pose sen-
sor is explicitly modeled into the states. However, the fully
probabilistic formulation regarding drift and jumps relies on
the careful tuning of the system and measurement covariance
parameters, which may not be intuitive on a real MAV system.
A good practice for real application is to use visual odometry as
a velocity sensor, instead of an absolute or relative pose sensor.

B. 3-D Mapping

Different map representations can be used for planning. Oc-
cupancy map is a typical representation. One of the most popular
3-D occupancy grid maps is Octomap [17], which adopts a
hierarchical octree structure to save occupancy probabilities.
However, occupancy data alone is inadequate for optimization-
based planners, which requires distances to nearest obstacles. It
is usually obtained by building an EDF. Previous methods like
the one in [18] incrementally build Euclidean signed distance
field directly out of truncated signed distance field, which is a
surface representation [19] using projective distance and com-
pute these distances within a short truncation radius around the
surface. These previous methods [18], [20] are mainly central
processing unit (CPU) based as most commercial platforms lack
a programmable parallel computing device. These works are
largely serialized and rely heavily on thread-based synchroniza-
tion when parallelized. The synchronization steps limit their
efficiency as parallel algorithms [21]. In our work, we explore to
perform synchronization-free dense mapping on the MAV with
the graphics processing unit (GPU)-enabled TX2 computer.

C. Motion Planning

The problem of motion planning among obstacles is noncon-
vex by nature. Some previous approaches [22], [23] tried to con-
vexify it by limiting the trajectory to a set of convex subspaces.
However, the reduction of the solution space could affect the
optimality or even the existence of the solution. Other methods
[24] try to solve the nonconvex problem with gradient-based
methods directly. However, the quality of the solution relies
heavily on the initial guess. Reinitialization is needed from time
to time which slows down the overall algorithm. In this article,
we take a different approach by representing the trajectory as
BSCPs, which can be constructed offline without being limited
by solution efficiency [25], motion constraints [26], [27], and
optimization targets [28], [29].

The capability of solving nonconvex problems reliably in
real time is also suitable for problems that cannot be made
convex easily or naturally noncontinuous problems such as safe
navigation with limited field of view (FOV). Many previous
methods often ignore the FOV limitation [22], [23]. The method
in [30] considers this limitation and takes a uniformly random
sampling approach, which is proven to be inferior to a proper
optimization approach [31].

III. SYSTEM OVERVIEW

A. Hardware Design

The platform has to be as compact as possible while retaining a
high thrust-to-weight ratio for sufficient control authority. This
led to selecting an off-the-shelf octo-rotor MAV in a coaxial
configuration as the research platform which would help in-
crease thrust available in relation to the size of the platform for
our attempt at navigating through tight and narrow spaces. The
Pixhawk autopilot was chosen for implementing our previous
work on the model-based controller [32]. The Nvidia Jetson
TX2 was favored as the onboard computer as it is a future-ready
processor with its 256 core GPU processing capabilities which
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Fig. 1. Block diagram of the software system architecture, showing key
components and data flow between different modules.

is a good foundation to build upon for optimizing and improving
vision-based systems. A ZED stereo camera and a lightweight
laser rangefinder were installed to provide information for posi-
tioning and navigation.

B. Software Architecture

Fig. 1 shows the high-level block diagram of our system. The
modules can be categorized into the following main parts: State
estimation, mapping and motion planning, and flight controller
unit. Sensor data consists of velocity from the camera, and
acceleration and angular velocity from IMU are fused into the
error-state (ES) EKF to get state estimation result, which will
be fed into the EKF on Pixhawk with height measurement from
laser to further improve the result. The depth image is used to
generate an occupancy grid map which will be transferred to the
EDF as a cost map. Mission targets from either user interface
(UI) selection or the target tracking results and the cost map are
given to the motion planner to create a valid and obstacle-free
trajectory to control the unmanned aerial vehicle (UAV).

IV. STATE ESTIMATION

Treating visual odometry as a velocity sensor decouples it
from the global pose drift inherited in visual odometry. The
velocity is obtained by dividing the frame-to-frame pose change
by the time lapse between the two frames. Although an optical
flow-based velocity estimator would be more computationally
efficient than a full-fledged visual odometry estimator, most
commercial stereo cameras provide such visual odometry esti-
mator off-the-shelf, which makes visual odometry information
readily available.

The sensor fusion algorithm implements an ES-EKF with
time delay compensation, adapted from [33]. Reformulation of
the filter model has been done to handle body-frame velocity
measurements, which makes fault detection straightforward.
The motivation is that the failure cases of visual odometry
algorithms could hardly be avoided in real missions. Common
causes of failure include: Lack of features in the camera’s
field of view, fast changes in lighting conditions, low texture,
high-frequency vibration, and motion blur. Our state estimation

Fig. 2. VIO reliability evaluation in challenging 13.5-by-10 m environ-
ments, where the triangle is the starting position, and respective crosses
are the estimated loops’ end points: Original sensor VO output in gray,
our state estimation in red, and VINS and MSCKF frameworks in blue
and green, respectively; significant glitches are observed in the latter
framework, while VINS, the optimization-based method, is more prone
to divergence.

system is designed to detect such failures and prevent those erro-
neous measurements from polluting the state estimation process.

The comparisons with other VIO frameworks are shown in
Fig. 2. The proposed approach is not drift-free as the position
is in theory not observable from the velocity measurement. The
system tolerates drift over time by utilizing only the local map,
which is not affected by the drift. The focus of work in this
system is to handle the fault in the position estimation under
unfavorable vision conditions.

1) Velocity-Based Visual Odometry and Fault Detection: For
each VO measurement, two fault detection criteria are applied.
First, a large discrepancy between the state velocity and the
measured velocity would indicate a fault, subject to a scaled (s)
sum of standard deviation (σ) of both the measurement and the
state. Second, a large difference between the IMU’s measured
rotation vector and the measured rotation would indicate a fault,
subject to a scaled constant. The scale factor s is tunable to obtain
an optimal rejection, and c is a constant which is empirically set
to 0.1 ∣∣vV O − viw

∣∣ > s ∗ (σVO + σvi
w
), (1)

∣∣ωVO − ωi
w

∣∣ > s ∗ c. (2)

2) ES-EKF System States: The system states include IMU
body pose and velocity, IMU biases, VO scale factor, and ex-
trinsic calibrations between sensors (camera-IMU), represented
as follows:

x = {piw, viw, qiw, bw, ba, λ, qci , pci} ∈ R24×1. (3)

The notation piw indicates IMU position in world frame, and
similarly for the rest. To improve numerical stability and reduce
quaternion representation to its minimum (3 number instead of
4), we represent the states in its error domain [33].

3) ES-EKF Measurement Model: The measurement model
assumes the visual odometry system to be a body-velocity
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observer, decoupling the visual odometry from its past states,
which might be corrupted if there are any tracking failures within
the visual odometry algorithm. We propose the body-velocity
observer’s measurement as

z =
[
zv zq

]T
∈ R7×1. (4)

The velocity measurement zv could be obtained from full states,
by assuming displacement between IMU and camera mounting
negligible

zv = λRT
qci
RT

qiw
vcw ≈ λRT

qci
RT

qiw
viw. (5)

If the displacement is not negligible (camera is mounted far away
from IMU sensor), then the expression would become

zv = vcc = vic − ωc × pic, (6)

zv = λ[wc]×RT
(qci )

pci + λRT
(qci )

RT
(qiw)v

i
w. (7)

The optional attitude measurement from IMU could be directly
obtained from the full states: zq = qiw.

4) Time Delay Compensation: Since velocity measurement
is highly dynamic on a MAV platform, synchronization of
measurement and state is required at the time of sensor fusion
update step. Our implementation timestamps the velocity to be
the mid-time between the two consecutive frames and performs
a buffer search for the closest matching state vector, before the
actual update step calculation.

V. MAPPING AND PLANNING

A. Mapping

To construct an environmental map that is later used for online
planning, the mapping process can be categorized into two steps:
First, construct a global occupancy grid (OG) map; second,
perform Euclidean distance transform (EDT). The result is a
grid-based map structure that can be used to query the safety of
a given trajectory.

1) Occupancy Grid Map: Each grid in the OG map contains
an unsigned 8-b integer which describes the probability that the
grid is occupied by an obstacle. In the first step, we update the
OG map using the latest sensor pose P and the captured depth
map D. Let Di,j,w denote the pixel in column i and row j of D
and has depth w, i.e.,

Gx,y,z = M(Di,g,w,P) (8)

with Gx,y,z being the projected point in the global frame. Tradi-
tional methods then perform a ray-cast from the current vehicle’s
position to Gx,y,z . For each grid that is covered by the ray, its
occupancy probability is updated based on its distance to Gx,y,z .
The details can be found in [18]. It is noticed that multiple
rays might pass through the same grid and update its occupancy
probability with different values. Therefore, a synchronization
mechanism is needed during parallel implementation. In our
approach, to avoid this problem, a backward projection similar
to [34] is used

Di,j,w̄ = M−1(Gx,y,z,P). (9)

Here, Gx,y,z is taken as the center position of the grid Rkx,ky,kz
,

and the output Di,j,w̄ is its corresponding depth pixel in the
image frame. We then compare Di,j,w̄ to the true measurement
Di,j,w. There are four different cases.

1) Di,j,w̄ is outside of the depth image, which means we
receive no measurement on location Gx,y,z . Therefore,
the occupancy probability in grid Rkx,ky,kz

shall not be
updated.

2) w̄ is larger than the measurement w, which means Gx,y,z

locates behind a seen obstacle. Therefore, the occupancy
probability in grid Rkx,ky,kz

shall not be updated.
3) w̄ is smaller than the measurement w, which means

Gx,y,z locates in front of a seen obstacle and shall be
obstacle free. Therefore, the occupancy probability in grid
Rkx,ky,kz

shall be reduced.
4) w̄ is very close to the measurementw, which meansGx,y,z

is occupied by an obstacle. Therefore, the occupancy
probability in grid Rkx,ky,kz

shall be increased.
In this manner, the occupancy probability of each grid needs

to be updated only once, and thread synchronization is no longer
needed during parallel implementation.

2) Euclidean Distance Transform: In order to determine
the safety of a trajectory, we would like to measure its distance to
the closest obstacle. This is achieved by measuring the distance
to the closest obstacle for each grid that the trajectory passes
through, and such distance can be acquired through the EDT
process. Previous work calculates EDT by simulating a wave
propagation. It is implemented based on a priority queue and
requires per-thread synchronization while performing modifica-
tion on the queue and its data. In this article, we use the algorithm
in [35] to construct EDT by performing 1-D scanning in the inter-
ested cuboid region. It first scans along the x-axis to determine
each grid’s distance to its closest obstacle on the x-axis. The
second scan is along the y-axis, and it determines each grid’s
distance to its closest obstacle on the x–y plane. The final scan is
along the z-axis, which calculates the Euclidean distance to the
closest obstacle for each grid. Since the computation on each
row of the x-axis (or y, z) is independent of the computation
of other rows of the x-axis (or y, z), the algorithm is naturally
parallelizable on GPU. More details on the algorithm can be
found in [35] and omitted in this article due to the page limit.

We implement the algorithm on a GPU with a total of N
voxels and p processors. The time complexity of the algorithm
isO(N/p). In practice with the onboard TX2 GPU, the EDT over
20 × 20 × 6 m volume with 0.2-m accuracy can be performed
at around 10 ms. The real flight indoor testing result is shown in
Fig. 3. The comparison of computation efficiency between our
method and Voxblox [18] with the same voxel size is shown in
Fig. 4.

B. Motion Planning

The local planning is done in a receding horizon way to guide
the vehicle to maneuver safely in an unknown environment.
Being a local planner, the presented method requires either a
higher level global planner (using algorithms like A*) or a human
operator to provide it with local targets.
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Fig. 3. Map in real indoor flight testing, where the color voxels denote
OG map and white voxels are the EDT map. (a) Our indoor 30 m × 18 m
testing site. (a) Testing environment. (b) Overhead view. (c) Side view.
(d) Side view with EDT.

Fig. 4. Mapping runtime comparison between our method and
Voxblox. As shown, our method is almost ten times faster than the other
one. Batch means the data is sampled in a sequence of a certain time.

1) Problem Description: The local motion can be written as
a model predictive control (MPC) problem that finds the state and
input to minimize the cost and subject to the system dynamics
and certain constraints

min
u(t)

J = cf (x(t0 + T )) +

∫ t0+T

t0

c(x(t),u(t)),

s.t. ẋ = f(x,u),

x(t0) = x0,

h(x,u) = 0,

x /∈ O (10)

where x(t), u(t) represents the state and input. cf and c are
terminal and running costs. x0 is the initial condition. h(x, u)
denotes the invariant constraint. O denotes the environment-
dependent obstacle constraint.

However, searching for valid trajectories directly over maps
renders the optimization problem nonconvex and even discontin-
uous. In this article, we use BSCPs to reformulate the problem.

The invariant constraints such as the vehicle dynamics and
input limitations are separated from the variant ones such as
the obstacles and handled offline during BSCP construction.
The online local motion planning then becomes the process of
selecting the best BSCP, given the environmental constraints. To
handle the nonconvexity and discontinuity, the selection is done
through the PSO.

The boundary value problem can be constructed as

min
x(t),u(t),tf

= G(x(t), u(t), tf ) (11)

subject to all the nonenvironmental-dependent constraints in
(10) and an end state constraint ‖g(x(t, θ)‖ < ε, ∀t > tf , where
ε has a small positive value. G is the cost function and tf and θ
denote the final time and parameters of function g, respectively.

The boundary value problem can be solved through a wide
range of approaches. In this article, we choose to design a
nonlinear controller. Let x̂(t) and û(t), t̂f denote the state and
input trajectories and final time generated by regulating the
system to ‖g(x(t, θ)‖ < ε ∀t > t̂f with an initial state x0. We
obtain the mapping relationship

M : 〈x0, θ〉 →
〈
x̂(t), û(t), t̂f

〉
. (12)

By fixing the x0 as the current state of the vehicle, x̂(t) and û(t)
are then dependent on θ only. The cost function in (10) can be
modified as

min
θ

J = c̃f (θ) +

∫ t0+T

t0

c̃(θ)dt (13)

where c̃ and c̃f represent running and terminal cost, respectively.
2) BSCPs Generation: We model the MAV as a nine de-

grees of freedom system, constructing a triple integrator on each
of its x-, y-, and z-axes. Assuming p,v,a, and j are all 3× 1
vectors representing the position, velocity, acceleration, and jerk
of the quadrotor, respectively, the quadrotor can be simplified
into the following model: ṗ = v, v̇ = a, ȧ = j. According to
[29], the state and input constraints are

v ∈ [vmin,vmax], a ∈ [amin,amax], j ∈ [jmin, jmax]. (14)

On each axis, define x = [p, v, a]ᵀ and u = j, where p, v, a, j
are the single axis equivalent of p,v,a, j. The discrete time
dynamics of the single-axis triple integrator is

x[k + 1] = Ax[k] + bu[k] (15)

where

A =

⎡
⎢⎣1 Δt Δt2

2

0 1 Δt

0 0 1

⎤
⎥⎦ , b =

⎡
⎢⎣

Δt3

6
Δt2

2

Δt

⎤
⎥⎦ .

The target of the controller is to regulate the system from any
initial state to the desired state xd = [θ, 0, 0]ᵀ. Our end state
constraint is

g(x, θ) = x− xd = [p− θ, v, a]ᵀ. (16)

Define the error state dynamic as

δx[k + 1] = Aδx[k] + bu[k] (17)
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where δx = x− xd. Define V (x) as the approximation of the
remaining integrated cost from δx to the origin. We have

V (δx[n]) = C(δx[n], u[n]) + V (δx[n+ 1])) (18)

where C(δx[n], u[n]) is the instantaneous cost. To regulate δx
to zero and satisfy the constraint in (14), we define our cost
function as

C(δx, u) = δxᵀRδx+ ru2 +H(δx, u) + Ct(δx) (19)

where δxᵀRδx represents target deviation; ru2 denotes the input
penalty: We penalize the system from taking aggressive moves

H(δx, u) = ωvη
2(sv, vmin, vmax)

+ ωaη
2(sa, amin, amax)

+ ωjη(j, jmin, jmax)
2

(20)

penalizes the violation of the constraints in (14). In which,
η(κ, κ1, κ2) = max(κ1 − κ, 0) + max(κ− κ2, 0), κ, κ1, κ2 ∈
R and ωa, ωv, ωj are weights. Finally, Ct(δx) equals a constant
Ctime when δx is not at origin and equals 0 when δx is at origin.
It is used to penalize the total time of the trajectory. With the
instantaneous cost, we can solve the Bellman equation

V ∗(δx[n]) = min
u[n]∈J

C(δx[n], u[n]) + V ∗(δx[n+ 1])) (21)

through the value iteration, where J represents all available
input. Once the value iteration has converged, the desired con-
troller is then given as

u∗ = argmin
u[n]∈J

C(δx[n], u[n]) + V ∗(δx[n+ 1])). (22)

The details of the value iteration process can be found in [31].
With the controller, we could perform a forward simulation to
regulate the system from a given initial state to the origin and
record the resulting state trajectory. For an arbitrary state δx, the
real state trajectory can then be recovered through x(t) = xd +
δx. The simulation process here is an instance of the mapping
relationship M in (12).

We propose to use an NN to approximate the mapping pol-
icy M with MNN [36]. With the help of the modern parallel
hardware, it accelerates the evaluation of the mapping M and
makes algorithms such as PSO work in real time. A four-layer
64× 128× 128× 41 multilayer perceptron with rectifier linear
units is applied and trained with Adam optimizer using PyTorch.
The input of this NN only includes the3× 1 vector error position
δp(t) = p− θ instead of the full state δx(t), thus limiting the
size of the network and making it executable in a GPU-free
device. The output contains the future trajectory p(t) of the
system sampled at 2 Hz for 20 s and u, which is a 41× 1 vector.

Regarding the runtime for generating one trajectory, we com-
pare the NN approximation with forward simulating for 20 s.
The results in Table I show that the NN approximation method
helps to increase the efficiency on both CPU and GPU platforms.

The training data can be obtained through forwarding sim-
ulation with the controller in (22) by random sampling δx0.
The samples should be large enough making the generated
trajectories able to cover the state limits in (14). The training
and testing set sizes are 800 000 and 200 000, respectively. The

TABLE I
TIME CONSUMPTION COMPARISON

Fig. 5. PSO algorithm.

batch size is 20 and the epoch is 12. We achieved an average mean
squared error (MSE) of 4.72× 10−4 and a maximum MSE of
0.071. Although a larger and more complex NN could be devised
to further improve the accuracy, the simplified network we chose
can be evaluated efficiently on a CPU-only platform.

3) Motion Planning: The BSCPs and the PSO are combined
for local motion planning, which is achieved by selecting the best
target θp with the PSO algorithm. It allows the θp to be selected
in a continuous space rather than a finite set [28]. The algorithm
is shown in Fig. 5. The inputs are vehicle’s initial state xini and
the environment map M. The particles in the algorithm represent
the end state constraint. A finite number of particles Θ are first
randomly initialized. Each particle θi is also assigned a velocity
υi either randomly or with a special pattern which decides its
future movement in the optimization space. θ∗i represents each
particle’s best value during each iteration with its corresponding
cost value c∗i . NOI represents the number of iterations.

The cost function J is designed as follows:

J(x(t), u(t),M) =

∫ t0+T

t0

H(x(t)) +O(x(t)). (23)

H(x(t)) evaluates the progress of the trajectory, which is calcu-
lated by measuring the remaining distance to the target. This dis-
tance can be the Euclidean distance or calculated by other global
planning algorithms [31]. O(x(t)) denotes penalization on the
obstacles. We could assign each grid a cost value depending on
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Fig. 6. Flight to a rear target. When considering the limited FOV in (a),
the planned future trajectory at each cycle is always constrained in the
current Vf , thereby guaranteeing safety. On the other hand, in (b), the
FOV limit is ignored, the heading and the translational movement are
planned separately, and the future trajectory is no longer guaranteed to
stay inside the current Vf . The MAV might end in a volume that has
never been observed before, thus possibly leading to a collision.

its distance to the obstacle. The smaller the distance, the higher
the cost.O(x(t)) can then be evaluated by adding up the costs of
the grids that are occupied by the vehicle while at certain states.
The MPC is executed at 5 Hz with a 20-s prediction horizon.

In the particle processing iteration, the state trajectories are
obtained through our trained NN mapping MNN. Then the cost
of each particle is evaluated by the cost function J with the
environment information M. The best target θ∗ among all the
particles is recorded after each iteration.

4) Safe Navigation With Limited FOV: Safe navigation
with limited FOV can be achieved by requiring the planned
trajectory to stay inside the volume Vf that is confirmed to be
obstacle-free and inside the camera’s FOV cone. The volume Vf

is highly nonconvex due to the sensor limitation and the presence
of obstacle occlusion, and it also has a noncontinuous boundary.
This implies a noncontinuous and nonconvex problem. The safe
navigation constraints are added to (23) as a soft constraint

Ovisual(x) =

{
μ if x /∈ Vf

0 otherwise
(24)

where μ is just a large penalty cost.
The resulting nonconvex and noncontinuous optimization can

be solved by resorting to the PSO algorithm. With the BSCPs, the
problem can be solved in real time with an average computing
time of 14 ms on the TX2 computer. In Fig. 6(a) and (b),
we compare the results of considering the limited FOV and
not to do so. In both figures, the vehicle is initialized at the
origin at hover condition with the onboard camera facing in
the positive x-direction. The desired goal is behind the vehicle
at [x = −10, y = 0, z = 1.5], and the desired heading is to
always point toward the desired goal. With the additional FOV
constraints, the planned trajectory will always stay inside Vf

and navigate cautiously against unknown volumes.

VI. EXPERIMENTAL RESULTS

The proposed autonomous system has been tested extensively
in multiple real-world environments, for example, at an aban-
doned school shown in Fig. 7. The testing site challenges our

Fig. 7. Testing site of a 30 × 30 m dining hall connected to a 60-m-long
corridor with scattered pillars.

Fig. 8. Position and velocity response of corridor flight testing.

Fig. 9. Map from the simulated environment. In the colored one is the
3-D OG map, and in white is 3-D EDT map. The MAV is able to plan a
trajectory that can successfully avoid all the obstacles on its way to the
final target (shown as a green dot).

system in many ways: First, the relatively long distance, ever-
changing brightness caused by the semiopen space, narrow space
of the corridor, as well as the interference from the environment
to the magnetometer requiring our state estimation algorithm
to be accurate enough and have low-drift during long-range
flight; second, our mapping has to be accurate enough to avoid
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different types of obstacles such as pillars and people in the
hall without any prior information; third, the motion planning
has to work efficiently to choose the optimal local target and
generate obstacle-free trajectory with the given setpoints. In the
corridor flight testing, we set the target in the corridor behind
pillars and a wall, and the proposed method was able to avoid
all the obstacles on the way autonomously with the onboard
sensors and computational power described in Section III. The
performance of corridor flight testing is shown in Fig. 8. The
map from the simulated environment is shown in Fig. 9.

VII. CONCLUSION

In this article, we presented an MAV system that can
navigate autonomously in GPS-denied and obstacle-cluttered
environments while avoiding obstacles on the way. Various
advanced technologies were designed, including a stereo
visual–inertial state estimation that can handle scenarios
without external localization resource, a GPU-based EDF
mapping that significantly improves the real-time performance
without sacrificing accuracy, as well as a model predictive
local motion planning with BSCPs solved by PSO, providing
increased performance for tasks that require precise and timely
maneuver. The results of simulation and real flight testing
in both indoor and semiopen scenarios with various tasks
proved the effectiveness of the proposed system for challenging
practical applications. We believe this system is suitable enough
for various tasks. However, there are still many improvements
that can be achieved to improve the whole system further.
Concerning state estimation, we need to reduce the drift in high
speed flight. The prediction of dynamic obstacles will also be
included in the future extensions of this work.
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