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Autonomous underwater vehicles (AUVs) highly depend on the quality of captured underwater images to
perform a variety of tasks. However, compared with everyday images taken in air, underwater images are
hazy, with color shift, and in relatively low quality, posing significant challenges to available mature
vision algorithms to achieve expected performance. There are, currently, two major lines of approaches
to tackle these challenges: the physical image formation model-based and the neural-network-based
approaches. In this paper, we propose an integrated approach, where the revised underwater image for-
mation model, i.e., the Akkaynak-Treibitz model, is embedded into the network design for the benefit of
combining the advantages of these two approaches. The embedded physical model guides for network
learning, and the generative adversarial network (GAN) is adopted for coefficients estimation. We con-
duct extensive experiments and compare with state-of-the-art approaches quantitatively and qualita-
tively on nearly all the available underwater datasets, and our method achieves significant
improvements.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Vision-based autonomous underwater vehicles (AUVs) have
become powerful and widely used tools for many tasks such as
the ship hull inspection [1], coral reefs monitoring [2], pipeline cor-
rosion inspection [3], seabed mapping [4], and mine hunting [5],
etc. To accomplish these tasks, vision algorithms rely heavily on
the quality of the underwater images captured by AUVs. However,
compared with everyday images taken in air, underwater images
are hazy with color shift, and in relatively low quality, making it
challenging for available mature vision algorithms to achieve
expected performance. Therefore, enhancing the quality of under-
water images has become an essential and urgent problem and
been attracting more and more attention from many communities.

For the underwater scenario, the marine image quality degrada-
tion is mostly caused by wavelength-dependent light absorption
and light scattering. In some cases, the red component is with
higher absorption rate, resulting in underwater images appear blu-
ish or greenish, as shown in Fig. 1.

On the other hand, the primary cause of the relatively severe
light scattering effect is the larger suspending particles in water,
which induce the image to appear blurry with limited visibility [6].

This complex degradation process makes it quite challenging to
restore the color and improve the visibility of the underwater
images, and the enhancement of underwater images remains an
open problem. To improve the quality of underwater images to
facilitate the accomplishment of high-level tasks, many pioneering
works have been proposed. The majority of these methods could be
classified into two lines:

1) Physical model-based methods. Some researchers tried to
estimate the clear underwater images from the Retinex model
[7,8]. However, the Retinex model does not encode the physical
description of the image degradation process. Therefore, many
researchers utilized the Jaffe-McGlamery image formation model,
which models the image degradation process with three compo-
nents: the direct transmission, forward scattering, and backscatter.
Usually, forward scattering is omitted due to its less impact on the
image quality. The physical model-based methods, such as those
proposed in [9–14], estimate the clear underwater images from
the image formation model as Eq. (1）, which is considered as the
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Fig. 1. The original underwater image (left) and the result of IPMGAN (right).
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inverse process of image degradation. Due to the ill-posed nature
of this problem, assumptions or priors such as the dark channel
prior or its variants and haze-line prior have to be introduced for
solutions.

However, the aforementioned model is considered as a crude
description of the image degradation process and should be further
refined. Recently, the authors in [15] proposed the revised under-
water image formation procedure as the Akkaynak-Treibitz model.
As pointed out in [15], the coefficients in the attenuation and
backscatter are distinctly different and cannot be considered the
same for simplification. Based on the Akkaynak-Treibitz model,
their following up work [16] has shown the improvements and
achieved state-of-the-art performance for underwater image
enhancement.

2) Neural-network-based (model-free) methods. Neural net-
works have shown the superior capability to learn the latent map-
ping functions [17,18]. Some researchers have made their attempts
to tackle underwater image enhancement with neural networks.
Given the synthesized underwater images, the convolutional neu-
ral network is trained for small image patches in [19]. Later, Li in
[20] introduced the generative adversarial network (GAN) for
paired underwater image synthesis based on indoor RGB-D images.
Then another CNN is designed and trained for depth estimation
and image color correction sequentially based on Euclidean dis-
tance. Inspired by the great success of GAN for image translation
problems, authors in [21] exploited the conditional generative
adversarial network (cGAN) for this task based on the synthesized
dataset. To ease the supervised training requirement for the paired
dataset, CycleGAN is proposed for image style transformation [22].
Later, it is also introduced to handle the underwater image
enhancement in [20,23].

Generally speaking, within the specific datasets, such deep
neural-network-based methods outperform the conventional
model-basedmethods due to its powerful learning capability. How-
ever, the performance would decrease when the domain gap
between the test images and training images is large.What’s worse,
the network would generate unexpected artifacts, which is detri-
mental to image quality and the following-up vision tasks. This
may be partially due to the end-to-end learning design, which lacks
physical model constraints. On the other hand, for model-based
methods, to estimate the image attenuation coefficients in the
model is non-trivial, where the neural network could be a possible
tool to infer parameters and learn the latent related factors. There-
fore, it would be quite beneficial to combine these approaches.
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In this work, we propose the integrated learning framework for
underwater image enhancement. The parameters and coefficients
in the image degradation model are learned through the network
training to reconstruct the clear underwater images. In addition,
the training is under the conditional generative adversarial net-
work framework, where the adversarial loss is helpful in generat-
ing genuine restored images with better details. We conduct
extensive experiments and compare with state-of-the-art
approaches both quantitatively and qualitatively, and our method
achieves significant improvements.

The main contributions of our work are summarized as follows:

1) We propose a novel physical model integrated network
framework for underwater image enhancement based on
the Akkaynak-Treibitz physical model [15] and state-of-
the-art global and local features fusion net [24]. This design
significantly differs from currently existing networks.

2) We conduct extensive experiments for performance evalua-
tion quantitatively and qualitatively. Herein, nearly all avail-
able competitive methods and datasets have been
mentioned and included for comparison, and several major
metrics have been utilized for evaluation. Thus, our work
can be applied as a milestone and benchmark for the
research in this direction. The release of the source code of
our method will facilitate future research on this topic.

2. Related works

2.1. Underwater image formation model

The commonly used underwater image formation model is a
simplified version, which is analogous to the atmospheric dehazing
equation:

Ic ¼ Jce
�bcz þ B1

c 1� e�bcz
� � ð1Þ

where the subscript cstands for red, green, blue color channels, Ic is
the captured underwater image, Jc is the unattenuated image (i.e.
the goal of image restoration). B1

c is the veiling light, bc stands for
the attenuation (including absorption and scattering) coefficients,
z is the imaging range. From the view of Jaffe-McGlamery model,
the first term Jce

�bcz denotes the direct transmission from the scene
radiance. The second term B1

c 1� e�bczð Þ refers to the backscatter.
However, the work [15] showed that using this model to estimate
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Jc for recovery may introduce significant errors, where the attenua-
tion coefficients in direct transmission and those in the backscatter
are wrongly considered to be the same bc .

In fact, the coefficients in direct transmission and backscatter
are distinct and dependent on different factors. Theoretically, bb

c

and bd
c are different (the superscript b and d are used to denote

for backscatter and direct transmission) and can be expressed as
Eqs. (2) and (3) [15]:

bb
c ¼ � ln 1� Bc zð Þ

B1
c

� �
=z ð2Þ
bd
c ¼ � ln

Ic zð Þ � Bc zð Þ
Jc

� �
=z ð3Þ

Bc zð Þ is the backscatterred signal at distance z. Taking this difference
into consideration, the Akkaynak-Treibitz model can be expressed
as [15]:

Ic ¼ Jce
�bdc vdð Þz þ B1

c 1� e�bbc vbð Þz
� �

ð4Þ

where vd ¼ z;q;R; Sc;bf g and vb ¼ R; Sc; s;bf g are the dependent
coefficients for bd

c and bb
c , respectively. q is the scene reflectance,

R is the spectrum of ambient light, Sc is the camera sensor spectral
response, and s and b are the physical scattering coefficient and
beam attenuation coefficient of the water body, respectively.

Though the physical model in Eq. (4) has shown to be the most
accurate physical model, the parameter estimation still requires
modeling and data fitting work [16]. The authors in [16] suggested
employing the supreme learning ability of neural networks for
parameter estimation. Therefore, in this paper, we will design the
network based on the Akkaynak-Treibitz physical model, and the
components and coefficients are adaptively estimated by neural
network modules.
2.2. Generative Adversarial Network (GAN)

In [25], GAN is designed to produce realistic-looking images
given the random noise vector. GAN trains a generator network G
and a discriminator network D via an adversarial process. The
training process alternately optimizes G and D, which compete
against each other. The generator G is trained to produce samples
to fool the discriminator D, and D is trained to distinguish real from
fake images provided by G. The adversarial loss function for this
mini-max game is derived from the standard cross-entropy cost:

LGAN ¼ min
G

;max
D

1
2

EJc logD Jcð Þ þ EIc log 1� D G Icð Þð Þð Þ� � ð5Þ

Eq. (5) is straightforward for mathematical analysis, but it can
not guarantee stable results, causing the network to suffer from
the mode collapse problem. Therefore, many modifications and
improvements on the adversarial loss have been developed, such
as the least square GAN (LSGAN) [26], Wassertein GAN (WGAN)
[27], and Wassertein GAN with gradient penalty (WGAN-GP) [28]
which further enforced the gradient penalty of the discriminator
to satisfy the Lipschitz constraint for better performance.

Different from the basic GAN, the conditional GAN takes condi-
tional variables as input and has been demonstrated beneficial for
image-to-image translation problems, such as night-to-day, edge-
to-object translation tasks [29]. Similarly, underwater image
enhancement could also be formulated as an image-to-image
translation problem. Therefore, for the underwater image enhance-
ment task, the attenuated underwater image Ic is fed into the net-
work as conditional information, as shown in Fig. 2.
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2.3. Neural-network-based underwater image enhancement

Due to the great success of the deep convolution neural net-
works (CNNs) in many computer vision tasks, some researchers
have attempted to apply the neural network to handle the under-
water image enhancement task. Wang et al. [19] trained the CNN
for underwater image color correction for small image patches
32� 32. Later, based on the encoder-decoder network structure,
Li et al. in [20] proposed the two-stage CNN for depth estimation
and color correction sequentially.

To generate more realistic images, the adversarial loss and GAN
framework is introduced recently. In [21], the adversarial loss and
L1 distance loss were adopted to train the GAN, given the paired
underwater images. In [30], the cycle consistency loss was intro-
duced into the GAN framework, and the network was trained on
the unpaired dataset. Lu et al. in [23] added the structural similar-
ity metric (SSIM) loss for end-to-end training on the unpaired data-
set. The con-current work, which is similar to ours, is presented in
[31]. The authors in [31] incorporated the physical model into the
network design as well. However, there still exist significant differ-
ences. First of all, the authors in [31] still utilized the simplified
model instead of the revised one. Secondly, in our work, the com-
ponents in the model are estimated via state-of-the-art global and
local feature fusion network structure [24]. The comparison is
made and presented in Section 4.2, demonstrating the advantages
of our design.

3. Our method: IPMGAN

The overview of the proposed method is shown in Fig. 3. The
Akkaynak-Treibitz physical image degradation model is considered
as the guidance to design the generator. The discriminator is
trained to distinguish the ground-truth images and the restored
ones.

3.1. Network structure

3.1.1. The revised physical model-based generator
Based on Eq. (4), the clear underwater image Jc can be referred

as:

Jc ¼
Ic � B1

c 1� e�bbc vbð Þz
� �
e�bdc vdð Þz ð6Þ

To simplify the notation, we denote T ¼ e�bdc vdð Þz and S ¼ e�bbc vbð Þz.
Therefore, Jc can be reconstructed as:

bJc ¼ Ic � bB1
c 1� bS� �
bT ð7Þ

where we denote bT and bS as the estimations of the transmission

map (e�bdc vdð Þz) and the scattering map (e�bbc vbð Þz). bB1
c denotes the esti-

mation of the veiling light. Therefore, to obtain the estimation of the

clear underwater image bJc; bB1
c ; bT ; bS are required. To this end, the

generator is designed with three branches to estimate the
unknowns, respectively.

To obtain bT and bS, the multi-scale local feature and global fea-
ture extraction and fusion network [24] is adopted. This network
structure is based on the encoder-decoder architecture, where
the global features are dynamically fused to multi-scale local fea-
tures with fusion units, and the hybrid features are fed to the cor-
responding decoder layer with skip connections. The hybrid
features encoding both the low-level knowledge (such as edges
or corners) from the local features and the semantic knowledge
(such as the layout of the scene) from the global features, are



Fig. 3. The overview of the IPMGAN network structure which integrates the Akkaynak-Treibitz model under the generative adversarial network framework.

Fig. 2. cGAN for underwater image enhancement. The generator G is trained to enhance the underwater images Ic . The discriminator D is trained to classify between the
enhanced images G(Ic) and the ground-truth image Jc . Unlike the basic GANs, both the generator and discriminator will observe the input underwater image Ic .
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beneficial for the estimation of the transmission map and scatter-
ing map. Since both T and S are in the range of 0;1ð Þ, the last acti-
vation layer in the network is replaced by Sigmoid layer.

For the estimation of veiling light bB1
c , the up-sample layers in

the decoder are modified as the fully-connected layers. Similarly,
the Sigmoid is utilized as the range of B1

c is within 0;1ð Þ.
As all branches involve the process of feature extraction and

encoding, therefore, the weights for the encoder of all three
branches are shared for memory efficiency. The overview of the
network is shown in Fig. 3. Details of the data flow and generation
in the three branches of the generator is depicted in Fig. 4.

Input and output of the generator network.
In Fig. 4, the input is the original underwater image, outputs are

the estimated scattering map, transmission map, and veiling light
by the three branches, separately. In this paper, all the training
and test images are resized to 256�256 due to memory limitations.
Therefore, the input dimension is 256� 256� 3. The scattering
map S and transmission map T are of the same size as the input
image: 256� 256� 3. The veiling light B1

c is of 1� 3, which repre-
sents different values for three color channels.

Data flow and connections.
The shared encoder consists of 8 convolution layers with

stride = 2, and the final global feature vector with dimension
1� 1� 512 is passed to scattering map branch, transmission
map branch, and the veiling light branch simultaneously. Scatter-
ing map branch and transmission map branch consist of 8
upsample-convolution layers, and veiling light branch consists of
three linear layers. All the parameters in the convolution and linear
layers are provided in Fig. 4. Besides, the shared encoder is also
connected with the scattering map branch and transmission map
branch with feature fusion units via skip connection at each
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resolution, as the hybrid features encoding both global and local
features are beneficial to the pixel-to-pixel estimation tasks [24].
More details about the feature fusion unit can be found in [24].

3.1.2. The discriminator
The discriminator we used is based on the 70� 70 PatchGAN

[29], which classifies the 70� 70 image patches as real or fake.
Then, the judgment for the whole image is obtained based on the
average of all patches. Compared to the conventional full-image
discriminator, the patch-based setting gives more attention to
the high-frequencies content in the image with fewer parameters,
which is favored by many researchers.

3.2. Objective functions

The training objective is to minimize the distances between the
ground-truth and the reconstructed images. In this work, we mea-
sure the distance between the ground-truth and reconstructed
images in three levels: i.e., pixel level, structure level, and image
distribution level.

To measure the per-pixel distance, the L1 distance loss is
adopted:

LL1 Jc;G Icð Þð Þ ¼ EIc ; Jc jjJc � G Icð Þjj1½ � ð8Þ
where Ic is the input image, G Icð Þ is the reconstructed image, Jc
stands for the ground-truth image.

To measure the structural difference between G Icð Þ and Jc , the
structural similarity for each patch is calculated as:

SSIM pð Þ ¼ 2lalb þ C1

l2
a þ l2

b þ C1

2rab þ C2

r2
a þ r2

b þ C2
ð9Þ



Fig. 4. Details of the three branches in the generator to illustrate the data generation. Tensor concatenation, batch normalization layer, feature fusion unit [24], ReLU layer,
upsample layer, Sigmoid layer, convolution layer and linear layer are depicted in different colors. Parameters in convoluation layer are: kernel size, number of output
channels, stride. Parameters in linear layer are number of input and output channels, respectively.
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where a; b are the image patch with the same location centered at
pixel p in G Icð Þ and Jc , respectively. The default patch size is 13.
la;lb are the mean values, ra;rb are the standard deviations, rab

is the covariance of patch a and patch b. C1 and C2 are the parame-
ters for numerical stability, whose default values are 0.02 and 0.03,
respectively. Therefore, the SSIM loss between G Icð Þ and Jc can be
expressed as:

LSSIM Jc;G Icð Þð Þ ¼ 1� 1
N
R SSIM pð Þð Þ ð10Þ

where N is the total number of pixels.
To minimize the distribution gap between the reconstructed

images and the ground-truth images, the adversarial loss is
adopted. In this paper, the WGAN-GP adversarial loss [28] is
adopted in the conditional setting. The adversarial loss conditioned
on the input Ic is denoted as:

LcGAN�GP ¼ EIc ; Jc D Ic; Jcð Þ½ � � EIc D Ic;G Icð Þð Þ½ �

þ kGPEÎ jj5ÎD Î
� �

jj2 � 1
� �2

� 	
ð11Þ

where bI is the sample along the lines between the generated image
G Icð Þ and the ground-truth images Jc . kGP is the weight factor for gra-
dient penalty.

The overall objective function L� is:

L� ¼ minGmaxDkGLcGAN�GP G;Dð Þ þ k1LL1 Gð Þ þ k2LSSIM Gð Þ ð12Þ

where kG; k1 and k2 are the weight factors for the GAN loss, L1 dis-
tance loss and SSIM loss, respectively.
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4. Experiments

In this section, the datasets and the training parameters are pre-
sented first. Then the comparisons against state-of-the-art meth-
ods are conducted on extensive underwater datasets. Lastly, the
ablation study is discussed.

Datasets. To make a fair comparison, we have done a detailed
search for the publicly available datasets with paired images (i.e.,
the ground-truth images are available). To our knowledge, three
datasets are made publicly available, and are suitable for perfor-
mance evaluation. The summary of these datasets are shown in
Table 1.

1) UGAN dataset. The dataset proposed in [21] is synthesized
with CycleGAN. CycleGAN is first trained to learn the image
degradation function. The clear underwater images with
good white balance and visibility were collected from the
ImageNet, which function as the ground-truth images. The
trained CycleGAN downgrades the clear underwater images
to generate the corresponding degraded counterparts. There
are 6128 image pairs in total. In our experiment, we ran-
domly choose 5500 images as the training set and the
remaining 628 images for test.

2) EUVP dataset. The dataset proposed in [32] is synthesized
with a similar procedure as the UGAN dataset. Differently,
it contains three distinct categories: a) synthesized under-
water dark scenes (3081 pairs for training, 483 for test); b)
images collected from ImageNet are degraded (3801 pairs
for training, 459 for test); c) other images from real under-
water scenes (4002 pairs for training, 325 for test).



Table 1
Summary of the number of images for current datasets. EUVP-1, EUVP-2, EUVP-3 denotes the EUVP dark, scenes and ImageNet dataset receptively.

UGAN EUVP-1 EUVP-2 EUVP-3 Li

# Training images 5500 3081 3801 4002 780
# Test images 628 483 459 325 110

Table 2
PSNR for all methods evaluated on all the datasets. EUVP-1, EUVP-2, EUVP-3 denotes the EUVP dark, scenes and ImageNet dataset receptively.

UGAN Dataset Li Dataset EUVP-1 EUVP-2 EUVP-3

EUF 16.3331 22.3296 16.3624 16.2701 17.2915
UVE 15.5490 14.7532 14.6330 15.5743 16.5140
MBIE 14.5422 13.3378 13.1518 14.5320 13.0404
WCID 11.8857 11.6471 11.1719 11.8797 13.2368

UWCNN 15.4190 13.8526 18.3899 17.7377 15.2322
UGAN 18.6562 18.3731 20.2567 19.2276 18.5281

CycleGAN 22.3160 18.1203 19.4939 23.7342 22.1755
WaterGAN 20.7450 16.7586 19.2024 20.8330 20.3246
IPMGAN 23.5439 22.1555 21.4981 28.1323 23.3435

Table 3
SSIM for all methods evaluated on all the datasets.

UGAN Dataset Li Dataset EUVP-1 EUVP-2 EUVP-3

EUF 0.5379 0.8339 0.5328 0.5300 0.6910
UVE 0.4505 0.6703 0.4245 0.4880 0.6246
MBIE 0.4119 0.3457 0.3048 0.4105 0.2610
WCID 0.1955 0.3688 0.0850 0.1916 0.4056

UWCNN 0.6127 0.5258 0.5828 0.6756 0.5964
UGAN 0.5702 0.6804 0.6415 0.6095 0.5597

CycleGAN 0.7464 0.7103 0.6088 0.8157 0.7415
WaterGAN 0.7285 0.5488 0.5917 0.6795 0.7231
IPMGAN 0.8142 0.8146 0.6944 0.9197 0.8029

Table 4
UIQM� for all methods evaluated on all the datasets.

UGAN Dataset Li Dataset EUVP-1 EUVP-2 EUVP-3

EUF 0.4420 0.5519 0.4693 0.3543 0.4695
UVE 0.3600 0.6108 0.5823 0.2442 0.3649
MBIE 1.0000 1.0000 1.0000 1.0000 1.0000
WCID 0.5837 0.5528 0.6484 0.4222 0.5498

UWCNN 0.5157 0.6494 0.5553 0.3632 0.5590
UGAN 0.4683 0.5994 0.5806 0.3552 0.5060

CycleGAN 0.5355 0.5881 0.5631 0.3548 0.5848
WaterGAN 0.5242 0.6734 0.4863 0.4182 0.5748
IPMGAN 0.5857 0.7535 0.6675 0.4520 0.6223

Table 5
UCIQE� for all methods evaluated on all the datasets.

UGAN Dataset Li Dataset EUVP-1 EUVP-2 EUVP-3

EUF 0.9370 0.9588 0.9419 0.9789 0.9363
UVE 0.9104 0.8603 0.9057 0.8929 0.9118
MBIE 1.0000 1.0000 1.0000 1.0000 1.0000
WCID 0.9522 0.8968 0.9682 0.9343 0.9510

UWCNN 0.6180 0.6811 0.7662 0.7239 0.5596
UGAN 0.9309 0.9238 0.8736 0.9366 0.9297

CycleGAN 0.9024 0.8682 0.9315 0.8968 0.9030
WaterGAN 0.8857 0.8357 0.8787 0.8464 0.8764
IPMGAN 0.9169 0.9394 0.8714 0.9253 0.9140
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3) Li dataset. The following procedures construct the dataset
proposed in [33]. The authors firstly evaluated the current
underwater image enhancement methods on many under-
water images. Therein, all the enhanced results were
assessed by humans, whom were required to mark the
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enhanced results. Then, the enhanced image with the high-
est score was selected as the ground-truth. In other words,
based on all the enhanced results of state-of-the-art meth-
ods, the ones, which are favored by human and consistent
with human vision, are chosen as the ground-truth images.



Fig. 5. Samples of UCIQE�/UIQM� evaluation on MBIE [12] and IPMGAN. The
numbers under each image indicate UCIQE�/UIQM� , respectively.

Fig. 6. Evaluation for VGG feature distance for all methods on all datasets.
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This dataset consists of 890 image pairs in total, and we ran-
domly select 780 images as the training set and the remain-
ing 110 as test images.

Training parameters. Our network is implemented with
PyTorch and trained using Adam optimizer with learning rate
lr ¼ 0:0005 and b1 ¼ 0:5. kGP ¼ 10; kG ¼ 0:1; k1 ¼ 10; k2 ¼ 1. These
hyper-parameters are tuned and defined by cross validation. The
network is trained for 50 epochs on one NVIDIA 1080Ti graphic
card. The learning rate is kept the same for the first 25 epochs,
and linearly decayed to zero over the next 25 epochs. All the train-
ing and test images are resized to 256� 256 due to memory
limitation.
4.1. Evaluation

To sufficiently evaluate our method, we make comparisons
against state-of-the-art methods, and evaluate on the existing
datasets both quantitatively and qualitatively. Afterwards, we con-
duct the ablation study to demonstrate the effectiveness and
necessity of the integration of the Akkaynak-Treibitz model, and
the effectiveness of the loss function.
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4.1.1. Evaluation metrics
There are currently two sets of metrics for image quality evalu-

ation: full-reference metrics and non-reference metrics. To suffi-
ciently evaluate our method, we adopt both metrics for
evaluation. In addition, we also utilize the VGG feature distance
as a metric for performance evaluation.

Full-reference metrics. Underwater images with ground-truth
images can be evaluated based on full-reference metrics. For exam-
ple, the peak signal-to-noise ratio (PSNR) and the structural simi-
larity index (SSIM), which are commonly utilized by this
community, can effectively measure the image quality of the
restored image against the ground-truth. For both metrics, a higher
value indicates a more desirable outcome.

Non-reference metrics. On the other hand, there are cases
where the ground-truth images are not available. Under this condi-
tion, it is possible to evaluate the underwater image with non-
reference underwater image quality evaluation metrics, such as
underwater image quality metric (UIQM) [34], and underwater
color image quality evaluation metric (UCIQE) [35]. UIQM mea-
sures image colorfulness (UICM), sharpness (UISM) and contrast
(UIConM), and UIQM is calculated via a linear combination of these
sub-image attribute measures. On the other hand, UCIQE is
designed to measure image chroma, saturation and contrast, which
is a linear combination of those image attribute measure. We made
comparisons based on UIQM and UCIQE metrics, and reported their
limitations in the evaluation part, which are found to be consistent
with [33].

VGG feature distance. In addition, we also include the VGG fea-
ture distance for evaluation. The VGG feature can be extracted by
the pre-trained VGG net and the feature distance lVGG can be calcu-
lated as:

lVGG ¼ 1
Wi;jHi;j

XWi;j

m¼1

XHi;j

n¼1

/i;j Jcð Þ � /i;j G Icð Þð Þ� �2 ð13Þ

where /i;j denote the operation to extract the intermediate feature

map from the jth convolution layer (after activation layer) before the

ith max-pooling layer from the pre-trained VGG16 network.
Wi;j;Hi;jdenote the dimensions of the respective feature maps
within VGG network, G Icð Þ and Jc refer to the restored image and
the ground-truth. Considering CNNs learn feature representation
hierarchically, and feature map from the deeper layers encodes
more semantic content of the image [36], we choose /5;3 to extract
content features for comparison.

4.1.2. Comparisons with state-of-the-art methods
In this section, we make comparisons with state-of-the-art

methods on current existing datasets both quantitatively and
qualitatively.

Methods for comparisons. Comparisons are made with the fol-
lowing state-of-the-art methods: 1) Non-learning-based methods:
1-a) enhancing underwater images by fusion (EUF) [37]. 1-b)
multi-band image enhancement (MBIE) [12]. 1-c) underwater vis-
ibility enhancement (UVE) [11]. 1-d) wavelength compensation
and dehazing for underwater scenes (WCID) [9]. These methods
are implemented and evaluated with the source code provided
by their authors. 2) Learning-based methods: 2-a) Enhancing the
underwater image with GANs (UGAN) [21]. 2-b) Prior inspired
underwater image enhancement (UWCNN) [33]. 2-c) In addition,
as CycleGAN [22] sets a new baseline for image-to-image transla-
tion problems, we also include CycleGAN [22] for comparisons.
2-d) Color correction network in WaterGAN [20]. UGAN [21],
CycleGAN [22] and are trained with the parameters reported in
their papers. For the color correction network in WaterGAN, we
only train the one-stage net based on RGB images from scratch.



Fig. 7. Evaluation on UGAN dataset. Three samples are shown with the original inputs, and the enhancement results are EUF [37], UVE [11], MBIE [12], WCID [9], UWCNN
[33], UGAN [21], CycleGAN [22], WaterGAN [20], ours and the ground-truth images.

Fig. 9. Evaluation on EUVP underwater scenes dataset. From the left to right are the original inputs, and the enhancement results are EUF [37], UVE [11], MBIE [12], WCID [9],
UWCNN [33], UGAN [21], CycleGAN [22], WaterGAN [20], our enhancement results and the ground-truth images.

Fig. 8. Evaluation on the Li dataset. From the left to right are the original inputs, and the enhancement results are EUF [37], UVE [11], MBIE [12], WCID [9], UWCNN [33],
UGAN [21], CycleGAN [22], WaterGAN [20], our enhancement results and the corresponding ground-truth images.
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Fig. 10. Evaluation on EUVP ImageNet dataset. From the left to right are the original inputs, and the enhancement results are EUF [37], UVE [11], MBIE [12], WCID [9],
UWCNN [33], UGAN [21], CycleGAN [22], WaterGAN [20], our enhancement results and the corresponding ground-truth images.

Fig. 11. Evaluation on EUVP underwater dark dataset. From the left to right are the original inputs, and the enhancement results are EUF [37], UVE [11], MBIE [12], WCID [9],
UWCNN [33], UGAN [21], CycleGAN [22], WaterGAN [20], our enhancement results and the ground-truth images.
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Since UWCNN [33] only provides the pre-trained model, it is eval-
uated on the pre-trained model.

Quantitative evaluation on PSNR and SSIM
The evaluation is made on all datasets and the average PSNR

and SSIM for the test images of each dataset are reported in Tables
2 and 3. From Table 2 and Table 3, we find our method nearly
achieve the best results for all datasets except the Li dataset, where
EUF [38] is the best numerically. Quantitatively, our method
achieves comparable results with EUF [38] on the Li dataset. More
specifically, the reason why EUF [38] achieves the highest PSNR
and SSIM score is that the nearly 25% ground-truth images in
the Li dataset are exactly the enhancement results achieved by
EUF [38] as reported in [33].

Quantitative evaluation on UIQM and UCIQE
For non-reference image quality metrics, the average of UCIQE

and UIQM for the test images of each dataset are normalized and
reported in Table 4 and Table 5.

Remark: As the big variance of UCIQE/UIQM exists for different
methods within one dataset, we normalize all the reported UCIQE
and UIQM score into 0;1ð Þ within each dataset for better method
comparisons, where the highest UCIQE/UIQM scores are set as 1,
also as the baseline for each dataset. The normalized values are
denoted as UCIQE⁄/UIQM�. Since we take the average UCIQE/UIQM
for normalization, UCIQE/UIQM for a single image may exceed the
mean value, which could result in UCIQE�/UIQM� score to be larger
than 1as the case shown in Fig. 5.

From Table 2 and Table 3, we could find our method, IPMGAN,
nearly achieve the best PSNR and SSIM for all the datasets. Interest-
ingly, however, for UCIQE and UIQM metrics, MBIE [12] achieves
the best as shown in Table 4 and Table 5 instead of IPMGAN. Sam-
ples from MBIE [12] and IPMGAN are shown in Fig. 5. In Fig. 5,
compared with the original inputs, images processed by IPMGAN
are recovered with visually pleasing white balance achieving
improvements in UCIQE�/UIQM�. On the other hand, although
MBIE [12] introduces the red color bias and over-saturation, it
achieves better UCIQE�/UIQM� score. This also explains why MBIE
[12] achieves the best UCIQE/UIQM for all datasets. Thus, we
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may report some limitations of UCIQE and UIQM for underwater
image enhancement evaluation. In theory, UCIQE and UIQM try
to measure image colorfulness; therefore, these metrics favor col-
orful objects in the image. However, these metrics lack penaliza-
tion on over-saturation and would fail for these cases. The
limitations of UCIQE and UIQM are also reported in [33].

Quantitative evaluation on VGG feature distance
We calculate the content feature distance between the restored

images and the ground-truth images for all methods on all data-
sets. The results are depicted in Fig. 6, where the smaller distance
to the ground-truth indicates a better visual restoration. For all
datasets involved, IPMGAN achieves the lowest distance. This
shows that IPMGAN can restore images closest to the ground-
truth in VGG content feature space, indicating the best perceptual
restoration among all methods.

Qualitative evaluation
In the following, we will present the restoration results for each

dataset sequentially.
Evaluation on the UGAN dataset.
This dataset mainly contains images suffering from the color

cast where the degraded images appear greenish or bluish. Three
samples are chosen from the test results due to space limitations
in Fig. 7. The original input images contain intense green hue,
and EUF [37], UVE [11], WCID [9], however, fails to remove the
color shift. MBIE [12], on the other hand, introduces unwanted
color bias, for example, the red and blue hue in the first and second
image receptively. Results obtained by UWCNN [33] appear dim.
UGAN [21] and CycleGAN [22] achieved relatively better perfor-
mance, however, there still remain unwanted green hue on the
image in the third row. Results obtained from WaterGAN contain
unexpected artifacts, which may be due to the limited learning
ability of the one-stage color correction net. By contrast, our
enhancement results achieve clear results with good white bal-
ance, and visually quite close to the ground-truth images. Quanti-
tatively, our results achieve the best PSNR and SSIM scores, and
outperform other methods, as shown in Tables 2 and 3 with a large
margin.



Fig. 12. Zoom-in details for images suffer severe backscatter. From the left to right are original inputs, the enhancement results from EUF [37], UVE [11], MBIE [12], WCID [9],
UWCNN [33], UGAN [21], CycleGAN [22], WaterGAN [20], ours and the ground-truth images.

X. Liu, Z. Gao and B.M. Chen Neurocomputing 453 (2021) 538–551
Evaluation on the Li dataset.
This dataset is more challenging than others as: first, it contains

images with much poorer quality with limited visibility; second,
the number of training images is also limited (less than 1000
images). The evaluation on the Li dataset is shown in Fig. 8, where
our method can achieve better image restoration quality compared
to others.

Evaluation on the EUVP dataset.
First, the evaluation on the underwater scenes and underwater

ImageNet dataset are shown in Figs. 9 and 10 since these two data-
sets share some similarities. As shown in Figs. 9, 10, our method
can effectively remove the color cast and achieve good white bal-
ance. More interestingly, as shown in the third row of the test
image in Fig. 9 of the human diver, our result is more visually
pleasing than the simulated ground-truth with better white bal-
ance. Quantitatively, the average PSNR and SSIM values are
28.1232 dB/0.9197 and 23.3435 dB/0.8029 for underwater scenes
and underwater ImageNet dataset, respectively, which greatly out-
perform other methods.
547
Evaluation on the dark underwater dataset is shown in Fig. 11.
To restore the dark underwater dataset is a bit more challenging,
and nearly all methods can not guarantee to achieve acceptable
colorful results, especially the restoration of the background with
great diversity and variation. As shown in Fig. 11, the background
for the first and the third images are red and blue receptively, caus-
ing it challenging to be precisely restored.

One possible reason for this failure may be that the number of
training images is limited. Compared to the restoration of the blue
or green hue dominated scenes, in a dark scenario, the majority of
information in all RGB channels is lost, hence more information
needs to be learned and recovered by the network. Therefore, data
augmentation or more training images are required for
improvement.

In addition, zoom-in details for images that suffer from severe
backscatter are evaluated and presented in Fig. 12. Four samples
of real underwater images are from the Li dataset and the EUVP
scenes dataset. Fig. 12 demonstrates that when the images, which
suffer heavier backscatter, are challenging for a perfect restoration.



Fig. 13. Evaluation on the Akkaynak-Treibitz dataset. From the left to right are original inputs, the enhancement results are EUF [37], UVE [11], MBIE [12], WCID [9], UWCNN
[33], UGAN [21], CycleGAN [22], WaterGAN [20], and ours.

Table 6
UIQM for methods on the Akkaynak-Treibitz dataset. UICM, UIQM, UIConM refer to image colorfulness measure, sharpness measure and contrast measure, respectively.

UICM UIQM UIConM UIQM

EUF �59.2150 7.1388 0.6089 2.6153
UVE �81.5150 7.2574 0.4820 1.5677
MBIE 54.2868 7.4361 0.5325 5.6307
WCID �52.5412 7.1239 0.5215 2.4867

UWCNN �24.0956 6.9938 0.8342 4.3682
UGAN �13.5590 6.9812 0.8156 4.5951

CycleGAN �66.2694 7.0944 0.8412 3.2339
WaterGAN �14.6831 7.1984 0.7872 4.5259
IPMGAN �3.6700 7.0987 0.8567 5.0559

Table 7
PSNR and SSIM comparisons against different design approaches.

Simplifed model-based [31] End-to-end network [24] IPMGAN

PSNR 18.3934 22.9651 23.5439
SSIM 0.5801 0.7946 0.8142
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Most methods could not obtain the perceptually pleasing results,
especially for patches in the distance. Besides, their corresponding
"ground-truth" images are actually the reference images instead of
the real ground-truth. Despite that the reference images are not
clear and satisfied, our method achieves comparatively the best
performance for color restoration and hazy removal. The results
are visually closest to the reference images.
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Evaluation on the Akkaynak-Treibitz Dataset.
The evaluation on the Akkaynak-Treibitz dataset is shown in

Fig. 13. As there are no ground-truth images available for the data-
set, UIQM is adopted for quantitative performance evaluation, and
the results are listed in Table 6. From Fig. 13 and Table 6, we could
have the following observations. EUF [37], UVE [11] and CycleGAN
[22] fail to remove the color shift for these samples. MBIE [12] gen-
erates images with high saturation, together with unwanted color
bias. WCID [9] could improve the contrast but fail to remove the
color shift. Visually, UWCNN [33] could remove the color shift to
some extent, however, images still appear dim. WaterGAN [20]
would introduce unwanted artifacts like the black holes in the
restored images. UGAN [21] and IPMGAN can successfully achieve
good enhancement for the foreground, and ours can generate
images with better details (for example, the color chart) when



Fig. 14. From the left to right are the raw underwater input, the estimated transmission map, the estimated scattering map and the reconstructed images by IPMGAN.

Table 8
PSNR and SSIM for different loss functions.

Loss function LL1 LL1 + LSSIM L�

PSNR 20.9421 21.7193 22.2804
SSIM 0.7076 0.7673 0.7713
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zooming in for visual inspection. As for the background with severe
haze effects, it is still challenging for restoration. This is also
reported challenging even for the depth estimation-based or
range-map dependent image restoration methods in [39]. To cor-
rectly estimate the depth, the areas far from the camera are quite
difficult due to the low signal-to-noise-ratio [39].

Quantitatively, as discussed earlier that UIQM favors colorful-
ness objects, MBIE [12] again achieves the best UIQM scores on this
dataset. If we exclude the "outliers" of MBIE [12], our method
achieves the best reasonable UIQM.

The learning-based method is deeply dependent on the training
dataset. Therefore, to further effectively restore the areas with low
signal-to-noise-ratio, datasets containing severely degraded
images which are paired with high-quality ground-truth or refer-
ence images are greatly expected. Possible choices would be the
Fig. 15. Examples from the results
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Akkaynak-Treibitz dataset (when the reference images are ready
and publicly available) or the simulated dataset with the
Akkaynak-Treibitz model.
4.2. Ablation study

In this section, we first compare the different network design
philosophies; then demonstrate the effectiveness of the loss
functions.

Comparisons against other design philosophies. Considering
our design is based on the revised underwater image degradation
model, we make comparisons with the other two different network
design philosophies:

1) The network based on the simplified underwater image
degradation model as described in Eq. (1), which ignores
the difference between the absorbing coefficients and scat-
tering coefficients (as used in [31]).

2) The end-to-end network training scheme without the inte-
gration of the physical model. We take the state-of-the-art
underwater image enhancement [24] for comparison.
with different loss functions.
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These networks are trained on the UGAN dataset with the same
training parameters. The evaluation is made based on the 628 test
images, where the average PSNR and SSIM are reported in Table 7.

As shown in Table 7, our method achieves the best score in both
PSNR and SSIM metrics, which shows that based on the Akkaynak-
Treibitz underwater image formation model, the network is
empowered with better learning ability. Compared to the simpli-
fied model-based network design, the Akkaynak-Treibitz model
could capture more information from the degradation process.
On the other hand, compared to the end-to-end training strategy,
integrating the revised physical model further boosts the restora-
tion ability.

In addition, we show the estimated transmission map bT and the

scattering map bS in Fig. 14. Different from the in-air captured
images, the transmission coefficients bd

c and the scattering coeffi-

cients bb
c are not equal in RGB channels due to the wavelength-

dependent absorption and scattering in water. Therefore, bT and bS
are shown in color. Clearly, bT and bS are different from each other.

Nevertheless, this significant difference between bT and bS were
ignored in the simplified image formation model, and the over-
simplification may also be the cause for the lower PSNR and SSIM
scores on the evaluation (in Table 7). This also demonstrates the
Akkaynak-Treibitz model’s correctness and verifies the necessity
of integrating the revised model into the network design, which
greatly improves the performance in underwater image
restoration.

Effectiveness of the loss function.
Here we would give more illustration about the effectiveness of

the loss functions. The network is trained with three loss functions
as a) only L1 distance loss: LL1 ; b) L1 distance loss and SSIM loss:
LL1 þ LSSIM; and c) the overall loss function
L� : LL1 þ LSSIM þ LGAN�GP (with weight factors). The results are
evaluated in terms of PSNR and SSIM as shown in Table 8. The
examples together with their zoom-in details are visualized in
Fig. 15.

Table 8 shows the results of PSNR and SSIM, where our objec-
tive function L� achieves the best score. Besides, Fig. 15 provides
the visual effects exerted by the losses. The result from L1 loss
appears with color cast, and relatively poor white balance. That
may be due to the Euclidean distance loss is likely to push the net-
work to achieve an average of all plausible results [36]. Incorpo-
rated with SSIM loss, more structure constraint is introduced and
learned by the network, thus the background with more textures
is better recovered with good white balance. Besides, from Table 8,
we could notice there is a huge improvement of SSIM score when
SSIM loss is introduced. Furthermore, the adversarial loss is bene-
ficial to generate finer details [36] [22] [21], which are presented in
the fin and the face of the Nemo with comparatively better clear-
ness and smoothness.

5. Conclusion

We have presented an integration of the current two main
streams underwater image restoration methods, i.e., the underwa-
ter image degradation model-based and the neural-network-based
methods, aiming to make full advantages of the merits of these two
approaches to mutually benefits with each other. The revised
image degradation model guides of the network design and learn-
ing, on the other hand, the model-free conditional GAN framework
also improves the underwater image restoration performance.
Besides, to our knowledge, we are the first to incorporate the
revised model into the network design and the performance is
evaluated nearly on all publicly available datasets. Extensive
experiment results demonstrate that our method can effectively
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restore color of underwater images with fine details and alleviate
the unwanted artifacts, which outperform state-of-the-arts
approaches both subjectively and objectively.
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Appendix A. Table of Notation Symbols
Symbol
 Decription
Ic
 The captured color underwater image.

Jc
 The unattenuated scene radiance (goal of image restoration).

bc
 Attenuation coefficients.

z
 Distance between the camera and the objects.

B1
c
 Veiling light.

c
 Color channel (red,green,blue).
bdc
 Attenuation coefficients for direct transmission.
bbc
 Backscatter coefficients.
vb
 Dependencies of bbc .

vd
 Dependencies of bdc .

q
 Scene reflectance.

R
 Spectrum of ambient light.

Sc
 Sensor spectral response.

s
 Physical scattering coefficients of water body.

b
 Beam attenuation coefficients of water body.

T
 Transmission map.

S
 Scattering map.

G
 Generator network.

D
 Discriminator network.

E
 Statistical expectation value.

p
 Pixel in the image.
la;lb
 Mean value for image patch a and patch b.

ra;rb
 Variance for image patch a and image patch b.

C1;C2
 Constant value in SSIM calculation.
bI
 Samples along the lines between G Icð Þ and Jc

lVGG
 VGG feature distance.

/i;j
 Operation to extract feature map from jth convolution layer
before the ith maxpooling layer.

kGP; kG; k1; k2
 Weight factor for gradient penalty, GAN loss, L1 loss and SSIM

loss.
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