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Challenges in motion planning for multiple quadrotors in complex environments lie in overall

°ight e±ciency and the avoidance of obstacles, deadlock, and collisions among themselves. In

this paper, we present a gradient-free trajectory generation method for multiple quadrotors in

dynamic obstacle-dense environments with the consideration of time consumption. A model
predictive control (MPC)-based approach for each quadrotor is proposed to achieve distributed

and asynchronous cooperative motion planning. First, the motion primitives of each quadrotor

are formulated as the boundary state constrained primitives (BSCPs) which are constructed
with jerk limited trajectory (JLT) generation method, a boundary value problem (BVP) solver,

to obtain time-optimal trajectories. They are then approximated with a neural network (NN),

pre-trained using this solver to reduce the computational burden. The NN is used for fast

evaluation with the guidance of a navigation function during optimization to guarantee °ight
safety without deadlock. Finally, the reference trajectories are generated using the same BVP

solver. Our simulation and experimental results demonstrate the superior performance of the

proposed method.

Keywords: Multi-quadrotor systems; motion planning; motion primitive; model predictive

control.

Guidance, Navigation and Control

Vol. 1, No. 2 (2021) 2150007 (20 pages)
#.c Technical Committee on Guidance, Navigation and Control, CSAA and

World Scienti¯c Publishing Co.

DOI: 10.1142/S2737480721500072

2150007-1

G
ui

d.
 N

av
ig

at
. C

on
tr

ol
 2

02
1.

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

16
.8

8.
18

2.
98

 o
n 

07
/2

3/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://dx.doi.org/10.1142/S2737480721500072


1. Introduction

Trajectory planning for multiple quadrotors is key to execute missions in cluttered

environments. In particular, multi-quadrotor tasks are especially challenging due to

many decision-making agents sharing the same space. In such settings, the planning

algorithms must compute collision-free and goal-oriented trajectories taking into

account of the neighboring agents and environment. Furthermore, the requirements

of excellent °exibility, °ight e±ciency and speed for multiple quadrotors system

make high demands on planning methods, which should have good computational

e±ciency and less execution time of trajectory for actual implementations.

The optimization solvers can be classi¯ed into two categories, gradient-based and

gradient-free optimization, respectively. In practice, the trajectory generation opti-

mization is generally a complex and often non-convex problem, in which gradient-

based solvers are easy to get stuck at a local optimal point. It thus requires a good

initial guess to alleviate such a drawback (see e.g. Ref. 1). Some optimization pro-

blems, on the other hand, cannot be formulated with gradient information. For

example, the line-of-sight cost may result in a discontinuous cost function. Gradient-

free methods solve such an optimization problem without gradient information and

guarantee policy improvement by estimating and compromising among di®erent

directions (see e.g. Ref. 2).

In addition to the type of solvers, there are a wide variety of techniques to tackle

the multi-quadrotor trajectory generation problem. Sequential convex programming

(SCP) has been applied to generate trajectories for multi-agent systems in convex

domains.3 In Ref. 3, Augugliaro et al. proposed a local planner by solving an SCP

problem sacri¯cing safety for a real °ight system. In Ref. 4, Robinson et al. combine

sequential planning with nonlinear constraints for nonlinear systems, which provides

better scalability by sacri¯cing optimal solutions. Other applications of SCP are

trajectory optimization and target assignment5 and formation payload transport.6

Although it shows good performance when planning a small team, the required

decoupling process may substantially increase computational complexity with de-

creased success rate when dealing with a large team of multiple quadrotors.It is used

to replace non-convex constraints with convex ones forming as over-constrained

optimization problems, thus always fail to ¯nd feasible solutions in complex envir-

onments. MPC-based methods have been proven e®ective for the motion planning of

autonomous vehicles in complex environments. A centralized nonlinear model pre-

dictive control (NMPC) method (see, e.g. Ref. 7) has good theoretical properties such

as guaranteed optimality to generate multiple quadrotors trajectories. They for-

mulated the problem as an optimal control using mixed-integer quadratic programs

(MIQPs) with integer collision avoidance constraints. However, this approach

requires separate integer variables for every face of every obstacle, which causes the

mixed-integer formulation intractable. The computational complexities limit its

applications merely feasible for small teams of autonomous agents with few obstacles.

In order to solve this problem, other methods for distributed motion planning have

X. Wang et al.
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been proposed (see, e.g. Refs. 8 and 9). In Ref. 8, Derenick and Spletzer formulated a

second-order cone programming problem for multi-quadrotors collision-free planning

through static obstacles. This approach triangulates the free 2D space to convexify

static obstacle avoidance constraints and computed the optimal motion in formation.

Although, in Ref. 9, Alonso-Mora et al. used a more general geometric-based opti-

mization approach by computing the convex hull of the formation. The multi-

quadrotors need to share information with their neighbors, which limits their

applications. Besides, other NMPC methods solving formation control problems

were proposed for pursuing evasion and static obstacle avoidance (see, e.g. Refs. 10

and 11).

The distributed model predictive control (DMPC) approach12 is developed due to

its abilities to handle constraints and achieve good performance for task coordination

(see e.g. Refs. 13 and 14). The result in Parys and Pipeleers15 shows that parallel

computing can also be combined with this method to reduce the run time when

quadrotors are updating their predicted states. In terms of tracking and formation

problems, Wang and Ding16 presented a synchronous DMPC scheme using the es-

timated information of other quadrotors to avoid collisions. However, with the in-

creasing of environments and task complexity, it is hard to handle state and input

constraints well and guarantee trajectory feasibility. Real-time trajectory generation

is required for quick adaptation in complex environments, but it remains challenging

to implement for robot swarms. Most obstacle avoidance techniques for trajectory

generation are either centralized or sub-optimal (see e.g. Refs. 17 and 18) usually

with high trajectory execution time.

Moreover, there are many methods formulating trajectory generation as a non-

linear optimization problem that takes smoothness and safety into account. Motion

primitives (MPs)-based local planning methods for mobile robots are also frequently

applied to abstract the continuous state space.19 The MPs along the whole trajectory

are sampled on the vehicle's boundary state constraints (i.e. jerk), and then generate

the actual motion by solving a boundary value problem (BVP).20 In addition, con-

sidering the time e±ciency, the jerk limited trajectory (JLT) has been proven well

suited for quadrotors.21 It can handle arbitrary initial position, velocity, and accel-

eration, resulting in a smooth and time-optimal trajectory from the current state to

the next target state. Furthermore, its closed-form solution can also save the

computational time.21

Inspired by the existing researches, in this paper, we develop a novel trajectory

generation method by solving a non-convex optimization problem to achieve dis-

tributed cooperative motion planning with considering deadlock and °ight e±ciency

for multiple quadrotors. The main contribution of our work is to propose a decen-

tralized and meta-heuristic, a gradient-free motion planning framework based on

MPC which allows for fast trajectory generation for multiple quadrotors in cluttered

environments. Unlike gradient-based method, the replanning time is more uniform

and thus can improve the success rate. More speci¯cally, we use JLT approximated

with NN to reduce the time consumption of trajectories and rapidly generate

Decentralized MPC-Based Trajectory Generation for Multiple Quadrotors in Cluttered Environments
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trajectories with a less computational burden. Simulation and experimental results

show that for di®erent environments and boundary states, our method can generate

dynamically feasible trajectories for multiple quadrotors and guide them to achieve

their goals in an obstacle-dense environment without deadlocks. The proposed

framework is tested using actual quadrotors, and the °ight experiments are carried

out in cluttered environments with static and dynamic obstacles to verify the

planning performance.

The rest of the paper is organized as follows. We present in Sec. 2 some prelim-

inary knowledge and the problem formulation, and in Sec. 3 we propose our MPC-

based trajectory generation framework and analyze the detailed techniques of the

trajectory generation problem for multiple quadrotors. The experimental results and

analysis are then given in Sec. 4 to validate the proposed technique. Finally, we draw

some concluding remarks in Sec. 5.

2. Problem Formulation

We consider the trajectory planning problem for a multi-agent quadrotor system

with K quadrotors in the 3D space X � R3. Every quadrotor k with k 2 K is as-

sumed to obey the same dynamic limits and its dynamics is di®erentially °at as

adopted in Mellinger and Kumar.22 The quadrotor dynamics has inputs

�k ¼ ½pk;  k�T, where pk 2 R3 is the position of the mass center of quadrotor in the

world frame, and  k is the yaw angle. This allows us to plan the trajectory of

quadrotor k independently using a triple integrator with its position pk, velocity vk,

acceleration ak, and jerk jk, respectively. Let xk ¼ ½pk; vk; ak�T be the state variable

with invariant constraints vk 2 ½vmin; vmax�, ak 2 ½amin; amax� and jk 2 ½jmin; jmax�
which might be di®erent for the horizontal and vertical axes. uk ¼ jk is de¯ned as the

control input and �t is the sampling interval. Thus, the discrete-time linear model

can be de¯ned as follows:

xk½nþ 1� ¼ Akxk½n� þ bkuk½n�; ð1Þ
where

Ak ¼
1 �t �t2=2

0 1 �t

0 0 1

2
4

3
5; bk ¼

�t3=6

�t2=2

�t

2
64

3
75: ð2Þ

We aim to generate a continuous, smooth, collision-free and kinodynamic feasible

trajectory F k : ½0; tgoal� ! R3 of each quadrotor k, where tgoal represents the terminal

time at which the last quadrotor in the team reaches its goal. The state vector of each

quadrotor is denoted as xkðtÞ 2 X at runtime t. All quadrotors need to reach their

destinations from their starting points, i.e. xkð0Þ ¼ sk and xkðtgoalÞ ¼ gk, where sk
and gk are, respectively, the initial and terminal state of each quadrotor.

The cluttered environment is modeled by an occupancy grid map. The static

obstacles are denoted by a set Ostatic which might contain non-convex obstacles.

X. Wang et al.
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The dynamic obstacles are de¯ned as a set of convex moving obstacles and removed

from the static map. We denote each moving obstacle i as an area OiðtÞ � X at time

t. A set i 2 I :¼ f1; . . . ;Ng represents all moving obstacles, whereN is the number of

moving obstacles. Other quadrotors can be regarded as a part of dynamic environ-

ment for one speci¯c quadrotor. It is assumed that we can predict the trajectory of

each quadrotor and penalize the relative distance of them to avoid crashes. Thus, we

can construct an set at time instant t given by

Odynamic
t ¼

[
i2f1;...;Ng

OiðtÞ: ð3Þ

The free con¯guration space for a single quadrotor is de¯ned as

X free ¼ XnðOstatic [Odynamic
t Þ: ð4Þ

All trajectories are considered collision-free if, for each quadrotor, there are no col-

lisions between the quadrotor and environment:

xkðtÞ 2 X free; 8 0 � t � tgoal: ð5Þ

We adopt the following an optimization cost function for generating control input

sequence uk:

min Jk ¼
Z t0þT

t0

fw1u
2
kðtÞ þ w2jjxkðtÞ � gkjj2 þ w3e

�jjd k
oðtÞjj þ w4jjdk

sðpkðtÞÞjj2gdt

¼ s:t: _xkðtÞ ¼ fðxkðtÞ;ukðtÞÞ;
gðxkðtÞ;ukðtÞÞ < 0;

hðxkðtÞ;ukðtÞÞ ¼ 0; ð6Þ

where w1, w2, w3, w4 are used to trade o® these four penalties. For the constraints of

trajectory generation problem, fðÞ is the nominal model of the quadrotor de¯ned by

Eqs. (1) and (2). Inequality constraint gðÞ indicates the limit interval of velocity,

acceleration and jerk, respectively, for three axes. The boundary state constraint hðÞ
regulates the triple integrator from an initial state con¯guration sk to an assigned

goal state gk.

Here we note that the control objective, the cost function has three main com-

ponents: (i) The ¯rst term (an input variation penalty) is to penalize the square of

jerk to generate smooth trajectories. The total control e®orts should be minimized to

meet the requirements for real °ight applications; (ii) The second term (a desired set

position penalty) is to minimize the deviation from the current state to the desired

goal state; (iii) ¯nally, the last term (a collision-free penalty) is °ight safety cost of

moving obstacles to handle the collision of potential threats. Di®ering from the

geometrical constraints, we can obtain the relative closest distance dk
oðtÞ at time t

Decentralized MPC-Based Trajectory Generation for Multiple Quadrotors in Cluttered Environments
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between the predictive trajectories of quadrotor and moving obstacles. Besides, for

°ight safety cost of static and non-convex obstacles, we calculate a potential function

over a Euclidean Distance Transform (EDT) map giving the quadrotor global vision

to avoid su®ering from deadlock. The cost to the goal point of every grid for each

quadrotor dk
sðpkðtÞÞ is a value stored on the map. As shown in Fig. 1, this collision

cost pushes the quadrotor away from static and dynamic obstacles to satisfy the

requirement of Eq. (5).

By solving the optimization problem, a locally optimal sequence of commands

during each predictive horizon can be attained to drive each quadrotor to reach its

desired destination while avoiding collisions. Based on above optimization process,

we can ¯nd feasible trajectories for this decentralized and asynchronous multiple

quadrotors system in cluttered environments.

3. Framework of Multi-quadrotor Trajectory Generation

In this section, we present a novel trajectory generation framework for multiple

quadrotors in dynamic obstacle-dense environments. A synchronous and decen-

tralized non-convex optimization procedure based on MPC is proposed to achieve

distributed cooperative motion planning with considering deadlock and °ight e±-

ciency. The overall structure of our proposed method is depicted in Fig. 2, which

consists of o®line training Neural Network process and MPC-based optimization.

The proposed framework consists of the following two stages:

(1) Training NN stage: We construct the BSCPs, a trajectory library, designed

through JLT generation method, a BVP solver, with the given start and goal

Fig. 1. The °ight safety of quadrotor k.

X. Wang et al.
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states. Thus, an NN can be pre-trained to approximate the generated BSCPs to

save the time consumption.

(2) MPC stage: Given the objective function Jk, we can fast evaluate all candidate

end states of quadrotors which are approximated by means of NN with consid-

eration of the surrounding environments X . After this optimization process, we

can obtain the end-state constraints xtgt among these candidates to minimize the

cost function Jk given in Eq. (6) at each step. In addition, we also add guidance

map to help the quadrotors to avoid deadlock. After obtaining xtgt, a series of

reference state x�
k can be generated through JLT and only the ¯rst few states will

be given to the low level dynamic controller. Thus, recomputing the system state

and a current state xk can be returned for the next planning horizon.

3.1. Construction of BSCPs using JLT

In this subsection, we present detailed procedures for the o®line training stage. To

prepare for training data, we use a BVP solver associated with the JLT generation

method to create a certain range of trajectories of quadrotors in the state space,

which are formulated as BSCPs.

The JLT method can solve the trajectory optimization problem and obtain an

analytical solution under the condition of limited computing power. Speci¯cally, it

can compute the time-optimal trajectory to a set goal xðtendÞ ¼ ½pref ; vref ; aref �
for the quadrotor system in Eqs. (1) and (2) with arbitrary initial state values

xð0Þ ¼ ½p0; v0; a0� and with physical limits vmax, amax, jmax. The jerk pro¯le is given as

j 2 fjmin; jmax; 0g and the state variables xðtÞ can be obtained by integrating the jerk

pro¯le jðtÞ at time index t. The time-optimal JLT generation problem can then be

Fig. 2. The overall structure of the proposed method for multi-quadrotor motion planning.

Decentralized MPC-Based Trajectory Generation for Multiple Quadrotors in Cluttered Environments
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formulated as

min tend
s:t: pð0Þ ¼ p0; pðtendÞ ¼ pref ;

vð0Þ ¼ v0; vðtendÞ ¼ vref ;

að0Þ ¼ a0; aðtendÞ ¼ aref ;

_pðtÞ ¼ vðtÞ;
v
:ðtÞ ¼ aðtÞ;
_aðtÞ ¼ jðtÞ;

�vmax � vðtÞ � vmax;

�amax � aðtÞ � amax;

�jmax � jðtÞ � jmax:

ð7Þ

The algorithm will calculate the covered area of the velocity that equals the desired

change in position. The time distribution can be divided into the ascent phase,

descent and cruise phases, respectively. The problem is to determine the velocity

pro¯le and switching times subject to the state and input constraints. The procedure

to determine the shape of the velocity pro¯le is shown in Fig. 3. First, it is to

accelerate velocity to the maximum with constant jerk �jmax, and then to decelerate

the speed to zero with jmax to determine whether the end position exceeds the desired

position. If the end position is undershooting compared with desired position, i.e. the

triangular case in Fig. 4, then we use bisection searching algorithm given in Ref. 24 to

calculate the acceleration time tascent and deceleration time tdescent. Otherwise, it is

corresponding to the trapezoidal case in Fig. 4, we can also use the position area to

determine the acceleration time tascent, cruise time tcruise and deceleration time tdescent.

A closed-form and smooth trajectory can be obtained through the above method.

After generating the BSCPs, we then implement the trajectory approximation

and evaluation system using a pre-trained NN in Ref. 20, which is called SNN to save

computational time for real °ight implementations. The inputs to the network are

9� 105 randomly samples which consist of both the initial and goal states. The

corresponding trajectory generated from the JLT as output is a 41� 1 vector. The

detailed information of the network architecture is shown in Table 1. The accuracy of

the NN meets our requirements with an average error of 0.00052 compared with the

BVP solver. We should note that the purpose of using the NN approximation is to

reduce computational burdens for real implementations. We have chosen a simple

and classic network structure, i.e. MLP, as it proves to yield su±ciently accurate

approximations for our needs. Other neural networks should also work well, but

might require longer training time.

3.2. Construction of guided map

At the MPC stage, we use a guidance map to predict information of future

states navigating the quadrotor to choose an optimal action. We follow the work of

X. Wang et al.
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Lau et al.23 to use an EDT module to represent a surrounding environment. The

closest distance of the static obstacles and index for every cell can be e±ciently

obtained through this map. In this subsection, we propose a method to calculate a

potential function from a set of goals to the current positions of the quadrotor

combined with an EDT map. We use the Dijkstra algorithm to calculate the cost

value cg to the goal point for each cell pi, which is the de¯nition of the potential

function over the state space. Index i is associated with the revolution of the map.

The potential function has the ability to push the quadrotor away from the obstacles

and guide it to the goal. Besides, it is quite suitable for the quadrotor, a holonomic

system, as this type of robot can freely move in any direction. After constructing the

EDT map and potential function, we can combine them together, so the cost value of

a cell MðpiÞ consisting of a cost-to-goal value cg and a safety value cs with

Fig. 3. Selection correct canonical velocity pro¯le type.

Decentralized MPC-Based Trajectory Generation for Multiple Quadrotors in Cluttered Environments
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consideration of the closest distance to obstacles can be calculated as

MðpiÞ ¼ csðpiÞ þ �gcgðpiÞ; ð8Þ
where �g is a weight factor that trades o® the relative importance of the cost-to-go

value, as seen in Fig. 5. It can guide the local planner to choose appropriate actions

u� to the lowest-cost path of a map at every point during execution, which considers

both environments and goal information, thus avoids falling into local minimal, as

seen in Eq. (7).

u� ¼ argmin
u

MðpiÞ: ð9Þ

3.3. Trajectory generation strategy

We combine the BSCPs with a gradient-free technique, i.e. the particle swarm op-

timization (PSO), for trajectory planning. This method is capable of ¯nding a fea-

sible solution for each quadrotor in the team to either non-convex or non-continuous

problem without reaching the maximum iterations. The other advantage of such

meta-heuristic algorithms is that the per iteration time is quite uniform thus avoids

(a) Trapezoidal case (b) Triangular case

Fig. 4. Three types of velocity pro¯le.

Table 1. Illustration of network architecture used in this work.

Horizontal coordinate Vertical coordinate

NN structure 64–128–128–41 MLP* 64–128–128–41 MLP*

Training set size 9� 105 9� 105

Test set size 3� 105 3� 105

Batch size 32 32
Epoch 15 15

Average Mean Squared Error 5:73� 10�4 4:64� 10�4

Note: *MLP stands for the multi-layer perception.

X. Wang et al.
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failure greatly. The detailed optimization process is shown in Algorithm 1. First,

calculate the map Mk using the method in the previous subsection (Line 2). Then,

perform random initialization of particles in the search space (Line 3). Each particle

Fig. 5. The illustration of deadlock avoidance.
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represents a terminal state constraint for one planning horizon. Next, update the

velocity �i and position xtgti of particles according to the equation in this algorithm

(Lines 5–6), where !1 and !2 are acceleration constants and x�
tgti and xg

tgt represent

the best position experienced by the particle i and the best position experienced by

the particles group for the previous interactions. After updating the state of particles,

the trajectory F i can be approximated using SNN for fast evaluation. The objective

function will consider the information of trajectory and the surrounding environment

to get the cost value costi (Lines 7–8). We can then update the local best and global

best position of particles (Lines 9–16) to get the optimal end state, where cost�i
represents local best cost value and costg is the corresponding global best value. The

cost function Jk given in Sec. 2 handles the various tasks such as internal collisions

among quadrotors, avoidance of deadlock and static obstacles, and navigation to the

goal target. For the internal collision, we treat it as a dynamic obstacle avoidance

problem by using the NN to predict the trajectories of other quadrotors and add

them to the cost function. The feasible solution xtgt will be found after multiple

interactions, which is used in a BVP solver to obtain a F k of each quadrotor (Lines

18–20).

4. Simulation and Experimental Results

In this section, we present our simulation and experimental results to demonstrate

the feasibility and robustness of the proposed framework of motion planning for

multi-quadrotors in dynamic cluttered environments. The BSCPs and NN used for

the MPC-based trajectory generation are those given in Sec. 3. The PSO algorithm is

used to solve the multi-objective optimization that includes the penalty term con-

sisting of the square of a jerk, which results in a smoother response and saves the

control e®orts of multi-quadrotors. We evaluate di®erent settings for the parameters

in our planner and compare its performance for di®erent tasks against the state-of-

the-art motion planners in the literature.

4.1. Implementation details

As shown in Fig. 6, we use Crazy°ie, a small, versatile quadcopter, as the experi-

mental platform to verify the proposed method for motion planning of multi-quad-

rotors. The real °ight experiments are carried out in an indoor VICON environment.

The VICON system provides localization and obstacles sensing for each quadrotor.

The planning is done on a laptop with an Intel I7 CPU, and the generated trajec-

tories that includes position, velocity, and acceleration are sent to Crazy°ies via a

Crazyradio PA.

The following are three scenarios conducted through simulations and experi-

ments:

. Scenario 1: Each quadrotor must reach its destination while avoiding obstacles in

cluttered environments containing several pillars.

X. Wang et al.
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. Scenario 2: Each quadrotor must reach its destination while passing through a

bridge and guaranteeing the °ight safety simultaneously in the vertical axis.

. Scenario 3: Each quadrotor must reach its destination while avoiding deadlock in

cluttered environments containing non-convex obstacles.

4.2. Simulation and °ight experiment

To obey the limited physical performance, the kinodynamic feasibility constraints

are speci¯ed on the velocity, acceleration, and jerk with v ¼ ½2:0; 2:0; 1:0�,
a ¼ ½3:0; 3:0; 2:0�, and j ¼ ½5:0; 5:0; 5:0�, which consist of the maximum horizontal

limit, minimum and maximum vertical limits, respectively. The environment is

represented as a 3D grid map and is then processed to the guided map in Sec. 3. For

the PSO algorithm, 40 candidates of population are iterated over 20 times to ¯nd the

best candidate solution. The model predictive planning along the process is executed

at 5 Hz with a prediction horizon of 2 s.

Figure 7 shows cases that the four quadrotors start from their initial positions to

their antipodals while avoiding collision with other quadrotors and static obstacles in

the surrounding environment. All the quadrotors avoid the obstacles and converge to

their antipodal positions in about 4.8 s. The maximum speed reached is 1.99m/s with

an average speed of 0.93m/s.

As it can be clearly seen in Fig. 8, the six quadrotors qi, i ¼ 1; 2; . . . ; 6, carry out

the antipodal position swapping in the environment containing several pillars and

non-convex obstacles which may result in local minima in optimizing the objective

function. In Fig. 8(a), Some exciting results can be found that quadrotors, bene¯ting

from the potential function, reach their goal points, and avoid the deadlock simul-

taneously. As a contrast, in Fig. 8(b), the quadrotor q5 falls into local minima, and it

cannot reach its goal successfully without the potential function. Both scenarios

show that multi-quadrotors can achieve tasks successfully. Detailed °ight experi-

ments can be found in the video clips at https://youtu.be/QgHfa2dgvv8.

(a) Crazy°ie (b) Experimental environment

Fig. 6. The °ight platform and experimental environment.

Decentralized MPC-Based Trajectory Generation for Multiple Quadrotors in Cluttered Environments

2150007-13

G
ui

d.
 N

av
ig

at
. C

on
tr

ol
 2

02
1.

01
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

16
.8

8.
18

2.
98

 o
n 

07
/2

3/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



4.3. Comparison with other multi-quadrotor trajectory

planning method

We compare our method with the methods in Augugliaro et al.,3 Park et al.18 and Lai

et al.20 on a 10m� 10m� 2:5m obstacle-free environment using 8 quadrotors and

the same initial and terminal states. Detailed simulation results are shown in Fig. 9

and Table 2.

(1) Safety Ratio: The safety ratio is de¯ned as min dk
o=rc for all k, where rc is an

expanding radius of a quadrotor. We have tested the °ight safety 20 times and obtain

(a) An environment with several pillars

(b) An environment with bridge openings

Fig. 7. Quadrotor trajectories during antipodal position swapping. In both (a) and (b), the solid circles
denote four quadrotors and the solid curves denotes their trajectories, respectively.

X. Wang et al.
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the minimum safety ratio of 1.16, which is still over 1, avoiding collisions with

obstacles. Obviously, the SCP-based method sacri¯ces the safety of a real °ight

system.

(2) Total Flight Time: our method performs better in terms of °ight e±ciency

than the algorithm in Park et al.18 work as it uses JLT to get the time-optimal

trajectory, thus having a shorter total °ight time.

(a) With potential function

(b) Without potential function

Fig. 8. The 3D navigation of multi-quadrotors in cluttered environments with non-convex obstacles.

Decentralized MPC-Based Trajectory Generation for Multiple Quadrotors in Cluttered Environments
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(3) Time Per Iteration: For each planning horizon, the average time of our work is

0.095 s for each quadrotor, which satis¯es the real °ight requirements. Compared

with the DP method in Lai et al.,20 this method has better performance in terms of

(a) Ours (b) DP

(c) Algorithm in Ref. 3 (d) Algorithm in Ref. 18

Fig. 9. Comparison of °ight performance of di®erent work.

Table 2. Summary of °ight performance.

Method Safety ratio Time per iteration Total °ight time

Our Method 1.19 0.095 56.4

DP Method20 1.16 0.132 58.4

SCP (h ¼ 0:34 s)3 0.92 16.2 ���
Algorithm in Ref. 18 1.01 ��� 75.61

X. Wang et al.
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reducing the computational burden. Besides, as the number of quadrotors increases,

the computational time will only °uctuate slightly due to the quadrotor system is

distributed.

5. Conclusion

In this paper, we have presented a decentralized MPC-based trajectory planning

method of multi-quadrotors in cluttered environments. The motion primitives along

the °ight trajectory are generated using the jerk limited method with given initial

and goal states and approximated by a pre-trained NN during the optimization

process. Furthermore, a gradient-free algorithm, di®erential evolution, has been

applied to ¯nd the best solution to meet the requirements of °ight safety, e±ciency,

and kinodynamic feasibility. The proposed method has been tested with simulations

and real °ight experiments on multi-quadrotors. Experimental results have dem-

onstrated that the proposed method has excellent performance for motion planning

of multi-quadrotors in dynamic cluttered environments.
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