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Abstract

We study in this paper a semi-global leader-following output consensus problem for multiple heterogeneous linear
systems in the presence of actuator position and rate saturation over a directed topology. For each follower, via the
low gain feedback design technique and output regulation theory, both a state feedback consensus protocol and an
output feedback consensus protocol are constructed. In the output feedback case, different distributed observers are
designed for the informed followers and uninformed followers to estimate the state of the leader and the follower
itself. We show that the semi-global leader-following output consensus of heterogeneous linear systems can be
achieved by the two consensus protocols if each follower is reachable from the leader in the directed communication
topology.
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1 Introduction
Consensus control, a fundamental problem of cooper-
ative control for multi-agent systems, entails the con-
struction of control protocols for every agent so that the
states/outputs of all agents converge to an agreement
value when there is no leader agent (see Radenković and
Krstić [1], Wang et al. [2], Meng et al. [3] and Li et al.
[4]), and the states/outputs of all followers converge to the
state/output of the leader if there is one leader (see Dong
et al. [5] and Lu and Liu [6]). In real applications with
substantial number of agents, to reduce communication
pressure, distributed control protocols are preferred, that
is, only local information is used.
In the early literature, many results are obtained in the

consensus problem of a multi-agent system. With static
communication graph, Li et al. solved the problem for
general linear systems with adaptive dynamic protocols
[7] and fully distributed control laws [8]. Ma and Miao
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[9] and Han et al. [10] focused on the output consensus
of heterogeneous linear systems via an output regulation
approach. The consensus problem of a class of linear first-
order, second-order together with Euler-Lagrange systems
were considered by Liu et al. [11], a class of nonlinear sys-
tems by Liu and Huang [12] and rigid bodies by Yu et al.
[13]. It is well noted that actuator saturation is ubiquitous
in practical control systems, however, these early results
do not take it into consideration.
In recent years, there are some results on the semi-

global consensus problem of a group of multi-agent sys-
tem with actuator saturation (see [14–19]). In view of
input saturation, low gain feedback design technique (see
Lin [20]) is of great significance in guaranteeing the con-
trol input to remain unsaturated by tuning the low gain
parameter small enough, given any arbitrarily large and
bounded set of initial conditions. Via the low gain feed-
back design technique, the semi-global output contain-
ment control or bipartite consensus of multiple linear
systems (see [15, 16]) and multiple heterogeneous lin-
ear systems (see Shi et al. [17]) are solved, if the inter-
action topology is structurally balanced and contains a
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spanning tree. The discrete-time counterparts of these
results are also obtained in [18, 19]. There are also some
results on global consensus problem of multi-agent sys-
tems subject to actuator saturation. In particular, Zheng
et al. [21] constructed a saturated consensus protocol
for each second-order follower system under undirected
connected graphs, but the input bound depends on the
communication graph, which may not meet the require-
ments of real systems. It is shown by Meng et al. [22] that
for neurally stable systems and double integrator systems,
the global leader-following consensus can be achieved by
linear local feedback laws over a static communication
topology and nonlinear local feedback laws over a switch-
ing topology. As an extension of the results done by Meng
et al. [22], Xie and Lin [23] constructed a bounded consen-
sus protocol with intermittent directed communication to
solve the global leader-following consensus problem for a
group of agents described by a chain of integrators of an
arbitrary length.
Besides the position saturation of actuators, actuator

rate saturationmay worsen the performance of the closed-
loop system, and may even lead to instability. As reported
in [24], actuator saturation is exactly a contributing fac-
tor for the mishaps of YF-22 fighter aircraft. Therefore,
it is crucial to take into account both the actuator posi-
tion and rate saturation in the consensus problem for a
multi-agent system. The position and rate-limited case is
firstly studied by Lin [25] to solve the semi-global stabi-
lization problem of a linear system if the open-loop system
is stabilizable and all its poles located at the closed left-
half complex plane. Lim and Ahn [26] are for a class
of nonlinear interconnected systems where a decentral-
ized state feedback controller is proposed based on linear
matrix inequality conditions. In recent years, the meth-
ods of Lin [25] are extended to the coordination control
of multiple linear systems subject to actuator position
and rate saturation. The semi-global containment con-
trol and leader-following consensus problems are, respec-
tively, considered by Zhao and Lin [27], and Zhao and Shi
[28], where both state feedback control and output feed-
back control are proposed under connected undirected
graphs.
To the best of our knowledge, there is no result on

the output consensus problem for multiple heterogeneous
systems with both actuator position and rate saturation,
which is exactly the problem we consider in this paper.
By the low gain approach and output regulation theory,
we construct both a state feedback consensus protocol
and output feedback consensus protocol for each fol-
lower over a directed network. In the state feedback type,
the protocol is designed based on a distributed observer
that estimates the state of the leader. In the output feed-
back type, different distributed observers that estimate the
state of the leader and the follower itself are designed for

the informed followers and uninformed followers which
respectively have and do not have access to the output of
the leader. It is worthy to note that the methods in the
consensus or containment control for linear systems in
[27, 28] can not be used to solve the consensus of hetero-
geneous systems by a simple modification under output
regulation theory. The nontrivial consensus protocols we
designed allow the actuator rate converge to the value it
should be when the consensus problem is solved. More-
over, our consensus protocols are applicable to directed
topologies.
The outline of the rest of this article is as follows.

Section 2 gives the definitions of both semi-global state
feedback type and output feedback type leader-following
output consensus of heterogeneous linear systems with
position and rate-limited actuators. Two corresponding
consensus protocols are respectively constructed in Sub-
sections 3.1 and 3.2. We give illustrative examples in
Section 4 to verify the effectiveness of the two control
laws. Finally, we conclude our work by Section 5 with
some remarks.
Throughout this paper, for a time constant T ≥ 0 and

a signal x : R+ → R
s, x =[ x1, x2, · · · , xs]T, |x| denotes

the Euclidean norm, ‖x‖∞ = maxi |xi|, and ‖x‖T ,∞ =
supt≥T |x|. 1N ∈ R

N denotes a vector with all elements
being 1. In ∈ R

n×n is the identity matrix. Kronecker prod-
uct is denoted by ⊗. XT stands for the transpose of the
vector or matrix X. 0 represents a vector or matrix of zero
with appropriate dimension.

2 Problem formulation and preliminaries
Consider a group ofN+1 heterogeneous systems consist-
ing of a leader and N followers. The leader, labeled as 0, is
described as{

ẇ = Sw,
y0 = −Qw,

(1)

where w ∈ R
s, y0 ∈ R

m are the state and output, respec-
tively. Similar to the system in [29], the dynamics of the
i-th follower, i = 1, 2 · · · ,N , is subject to actuator posi-
tion and rate saturation and it is described by the following
equation,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi = Aixi + Biσp(vi) + Wiw,
v̇i = σr(−T̄ivi + T̄iui),
yi = Cixi,
ei = Cixi + Qw, i = 1, 2, · · · ,N ,

(2)

where xi ∈ R
ni , yi ∈ R

m and ui ∈ R
qi are respec-

tively, the plant state, output and control input of the
i-th follower. The second equation denotes the actua-
tor dynamics with state vi ∈ R

qi . The positive definite
diagonal matrices T̄i = diag{τi,1, τi,2, · · · , τi,qi} ∈ R

qi×qi

represents the “time constants” of the actuators. ei ∈
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R
m, which is called the regulated output, denotes output

tracking error between the i-th follower and the leader.
Wiw with Wi ∈ R

ni×n represents external disturbances
caused by the leader. σp(·), σr(·) : R

qi → R
qi repre-

sent vector valued saturation functions with p and r are
known constants. For vi =[ vi1, vi2, · · · , viqi ]T, σp(vi) =
[ σp(vi1), σp(vi2), · · · , σp(viqi)]T. For each j = 1, 2, · · · , qi,
σp(vij) = sgn(vij)min{|vij|, p} is the standard saturation
function.
In this paper, we aim to design a distributed control

law ui for each follower so that the output tracking error
satisfies limt→∞ ei = 0.
The communication topology among the leader and the

followers is represented by a directed graph G = {V , E},
with V = {0, 1, · · · ,N} being the node set and E = V × V
being the edge set. For i, j ∈ V , (j, i) ∈ E if and only if node
i have access to the information of node j. Then node j is
called the neighbor of node i and node i is called a child
of node j. We use F = {1, 2, · · · ,N} to denote the set of
followers, and use Ni := {j : (j, i) ∈ E} to represent the
set of neighbors of node i. Depending on whether or not
the followers have access to the information of the leader,
the followers are divided into two classes. The informed
ones can obtain the information of the leader, while the
uninformed ones can not, and we use Fin and Fun to
represent the informed followers and the uninformed fol-
lowers, respectively, that is, Fin := {i : i ∈ F , (0, i) ∈ E}
andFun := F \Fin. Without loss of generality, we assume
the first l followers are the informed ones and the leftN−l
followers are the uninformed ones. If the graph contains
a sequence of edges (i1, i2), (i2, i3), · · · , (ik−1, ik), then we
say there is a directed path from node i1 to ik , or ik is
reachable from i1. For a directed graph G, the adjacency
matrix A =[ aij]∈ R

(N+1)×(N+1) is defined as aij = 1 if
(j, i) ∈ E , otherwise, aij = 0. The Laplacian matrix L =
[ lij]∈ R

(N+1)×(N+1) is defined as lij = −aij if i �= j, and
lii =∑N

j=0 aij. According to the classification of the leader,
the informed followers and the uninformed followers, L
can be partitioned as

L =
[
0 0
Lfl Lff

]
=
⎡
⎣ 0 0 0
L1 L2 L3
0 L4 L5

⎤
⎦ ,

where Lfl ∈ R
N×1, Lff ∈ R

N×N , L1 ∈ R
l×1, L2 ∈ R

l×l,
L3 ∈ R

l×(N−l), L4 ∈ R
(N−l)×l and L5 ∈ R

(N−l)×(N−l).

Assumption 1 There is a directed path from the leader
node 0 to each follower node i.

Assumption 2 The following regulator equations

�iS = Ai�i + Bi�i + Wi,
Ci�i + Q = 0, i = 1, 2 , · · · ,N (3)

have a pair of solutions �i ∈ R
ni×s and �i ∈ R

qi×s.

Assumption 3 For each i = 1, 2, · · · ,N, the pair (Ai,Bi)
is stabilizable, and all eigenvalues of Ai have non-positive
real parts.

Assumption 4 For each i = 1, 2, · · · ,N, the pair (Q, S)
is detectable.

Lemma 1 [Lin [20]] Suppose Assumption 3 holds. For
each ε ∈ (0, 1], there exists a unique positive definite
matrix Pi(ε) ∈ R

ni×ni of the following parametric alge-
braic Riccati equation (ARE):

AT
i Pi(ε) + Pi(ε)Ai − γPi(ε)BiBT

i Pi(ε) = −εIni , (4)

where γ is a positive constant. In addition, limε→0 Pi(ε) =
0.

Assumption 5 For each i = 1, 2, · · · ,N, there exist a
time T ≥ 0 and two positive constants δp and δr, such that
0 < p − ‖�iw‖T ,∞ ≤ δp and 0 < r − ‖�iSw‖T ,∞ ≤ δr for
all w with w(0) ∈ W0, whereW0 is a priori given bounded
set.

Remark 1 Assumption 5 means that w is bounded for
all time t ≥ T. Since w is determined by (1), it implies
that all eigenvalues of S have non-positive real parts, and
those eigenvalues with zero real parts are semi-simple.
Besides, Assumption 5 also implies p > ‖�iw‖T ,∞ and r >

‖�iSw‖T ,∞. �iw and �iSw can be viewed as the general-
ized actuator position and rate of the leader. If the actuator
position or rate of each follower is less than that of the
leader, i.e., p < ‖�iw‖T ,∞ or r < ‖�iSw‖T ,∞, it is impos-
sible for the followers to catch up the leader when it moves
at its maximal pace. Thus, Assumption 5 is reasonable in
real applications.

For the case that the states of all agents can bemeasured,
a distributed observer is firstly designed for each follower
to estimate the state of the leader. Consider the following
distributed observer:

η̇i = Sηi + μ1

⎛
⎝ N∑

j=1
aij(ηj − ηi) + ai0(w − ηi)

⎞
⎠ , i ∈ F ,

(5)

whereμ1 is a positive constant such that (IN ⊗S−μ1Lff ⊗
Is) is Hurwitz. Such a μ1 exists because under Assump-
tion 1, all eigenvalues of Lff have positive real parts (see
the work of Hong et al. [30]).
The state feedback-based semi-global leader-following

output consensus problem formed by followers (2) and
leader (1) is defined as follows.
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Problem 1 (State feedback-based semi-global leader-
following output consensus problem)
Consider a multi-agent system consisting of leader (1) and
followers (2). Assume that Assumptions 1–3 and 5 hold. Let
x =[ xT1 , · · · , xTN ]T, v =[ vT1 , · · · , vTN ]T, η =[ ηT1 , · · · , ηTN ]T,
n = n1 + n2 + · · · + nN , and q = q1 + q2 + · · · + qN .
For a priori given bounded sets X0 ⊂ R

n, V0 ⊂ R
q,

W0 ⊂ R
s and Z0 ⊂ R

Ns, construct a state feedback con-
sensus protocol ui = fi(xi, vi, ηi) for each follower, based
on the distributed leader state observer (5), such that for
[ xT(0), vT(0),wT(0), ηT(0)]T ∈ X0 × V0 × W0 × Z0, the
leader-following output consensus is achieved, that is, for
any i ∈ F ,

lim
t→∞ ei = 0.

However, in reality, the plant state information of the
agents may not be available, while only the outputs can be
measured. In such a case, output-based estimations of the
states of the leader and followers should be designed for
each follower. To this end, consider the following dynamic
compensators:

˙̂wi = Sŵi + LS,i(y0 + Qŵi), i = 1, 2, · · · , l, (6)

˙̂wi = Sŵi + μ2

N∑
j=1

aij(ŵj − ŵi), i = l + 1, · · · ,N , (7)

˙̂xi = Aix̂i − LA,i(yi − Cix̂i) + Wiŵi, i = 1, 2, · · · ,N ,
(8)

where x̂i ∈ R
ni and ŵi ∈ R

s are respectively designed to
estimate the state of the i-th follower itself and the state
of the leader. LS,i and LA,i are observer gains such that S +
LS,iQ andAi+LA,iCi are Hurwitz.μ2 is a positive constant
such that (IN−l ⊗ S − μ2L5 ⊗ Is) is Hurwitz. Such a μ2
exists because all eigenvalues of L5 have positive real part
under Assumption 1 (see the work of Li et al. [31]).

Problem 2 (Output feedback-based semi-global leader-
following output consensus problem)
Consider a multi-agent system consisting of leader (1)
and followers (2). Assume that Assumptions 1–5 hold. Let
x̂ =[ x̂T1 , · · · , x̂TN ]T, ŵ =[ ŵT

1 , · · · , ŵT
N ]T. For a priori given

bounded sets X0 ⊂ R
n, V0 ⊂ R

q, W0 ⊂ R
s, X̂0 ⊂

R
n and Ŵ0 ⊂ R

Ns, construct an output feedback con-
sensus protocol ui = fi(x̂i, vi, ŵi) for each follower, based
on the distributed state observers (6)–(8), such that for
[ xT(0), vT(0),wT(0), x̂T(0), ŵT(0)]T ∈ X0×V0×W0×X̂0×
Ŵ0, the leader-following output consensus is achieved, that
is, for any i ∈ F ,

lim
t→∞ ei = 0.

3 Output consensus over directed topologies
In this section, we will propose two consensus protocols,
the state feedback type and the output feedback type, to
solve the semi-global leader-following output consensus
problems defined in Section 2. For each i = 1, 2, · · · ,N , let
Pi(ε) be the solution of the parametric ARE in (4). Accord-
ing to Lemma 1, Pi(ε) is unique and positive definite, and
it satisfies limε→0 Pi(ε) = 0. For notation convenience, we
denote Pi := Pi(ε) hereafter.

3.1 Semi-global output consensus via state feedback
In this section, based on the distributed leader state
observer (5), the following state feedback consensus pro-
tocol is constructed to solve Problem 1:

ui = − 1
ε2

T̄−1
i

(
BT
i Pi(xi − �iηi) + (vi − �iηi)

)
+ T̄−1

i �iSηi + vi, (9)

where Pi is the solution of (4) with γ = 2, �i and �i are a
pair solution of the regulator Eq. (3), ηi is the state of the
observer (5). The first three terms of (9) follows from the
fact that if limt→∞ ei = 0, then limt→∞(xi − �iw) = 0,
limt→∞(vi − �iw) = 0 and limt→∞(ui − �iSw) = 0. vi of
(9) is to make up for the term −T̄ivi of (2). The distributed
control law (9) is a combination of a purely decentralized
control law and a distributed observer.

Theorem 1 Consider a multi-agent system consisting of
leader (1) and followers (2). Assume that Assumptions 1–
3 and 5 hold. The state feedback consensus protocols (9)
solve Problem 1. That is, for a priori given bounded sets
X0, V0,W0 and Z0, there exists an ε∗ ∈ (0, 1] such that for
each ε ∈ (0, ε∗] and for all [ xT(0), vT(0),wT(0), ηT(0)]T ∈
X0 × V0 × W0 × Z0, the output consensus error satisfies
limt→∞ ei = 0.

Proof Denote the estimation error by η̃i = ηi − w, and
η̃ =[ η̃T1 , η

T
2 , · · · , η̃TN ]T. Followed by (5), η̃ is determined by

the following equation:

˙̃η = (IN ⊗ S − μ1Lff ⊗ In)η̃.

Since IN ⊗ S − μ1Lff ⊗ In is Hurwitz, it follows that
limt→∞ η̃i = 0. Denote x̃i = xi − �iw, then we have

˙̃xi = ẋi − �iẇ
= Aixi + Biσp(vi) + Wiw − �iSw
= Aix̃i + Biσp(vi) − Bi�iw, (10)

where the last equality holds is due to the first equation
of (3) (Assumption 2). Let x̃ = [

x̃T1 , · · · , x̃TN
]T, v =

[ vT1 , · · · , vTN ]T, w̄ = 1N ⊗ w, η̃ =[ η̃T1 , · · · , η̃TN ]T,
A = diag{A1, · · · ,AN }, B = diag{B1, · · · ,BN },
P = diag{P1, · · · ,PN }, � = diag{�1, · · · ,�N }, � =
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diag{�1, · · · ,�N }. Then the compact form of (10) can be
written as

˙̃x = Ax̃ + Bσp(v) − B�w̄, (11)

and v follows the dynamic equation

v̇ = σr

(
− 1

ε2
BTP(x − �η) − 1

ε2
(v − �η) + �(IN ⊗ S)η

)
.

(12)

Define the Lyapunov function candidate

V1 = x̃TPx̃ +
(
BTPx̃ + v − �w̄

)T (
BTPx̃ + v − �w̄

)
.

Notice that V1 is positive definite.
According to Assumption 5, we have

‖�iw‖T ,∞ < p, ‖�iSw‖T ,∞ < r.

Recall that limt→∞ η̃i = 0. For simplicity, we assume

‖BT
i Pi�iη̃i‖T ,∞ ≤ ε2

δr
6
,

‖�iη̃i‖T ,∞ ≤ ε2
δr
6
,

‖�iSη̃i‖T ,∞ ≤ δr
6
, (13)

for all ε ∈ (0, 1] and all initial conditions of η̃i(0). For any
[ xT(0), vT(0),wT(0), ηT(0)]T ∈ X0 × V0 ×W0 ×Z0, x̃(T)

and v(T) belong to bounded sets X̃T and VT , respectively,
independent of ε, since they are determined by linear
differentiate equations with bounded inputs. According
to Remark 1, w(t) is bounded. Therefore, there exists a
bounded setWT such that w(T) ∈ WT .
Let c1 > 0 be a constant such that

sup
ε∈(0,1],[x̃T(T),vT(T),wT(T)]T∈X̃T×VT×WT

V1 ≤ c1.

Such a c1 exists because XT , VT and WT are bounded,
and limε→0 P = 0. Define LV1(c1) := {[ x̃T, vT, w̄T]T ∈
R
n+q+Ns : V1 ≤ c1}. Let ε∗ ∈ (0, 1] be such that, for all

ε ∈ (0, ε∗], [ x̃T, vT, w̄T]T ∈ LV1(c1) implies that

‖BT
i PiAix̃i‖T ,∞ ≤ δr

6
,

‖BT
i PiBiσp(vi)‖T ,∞ ≤ δr

6
,

‖BT
i PiBi�iw‖T ,∞ ≤ δr

6
. (14)

The existence of such an ε∗ is due to the fact that
limε→0 Pi = 0.
The derivative of V1 along the trajectories (1), (11) and

(12) inside LV1(c1) follows

V̇ = ˙̃xTPx̃ + x̃TP ˙̃x + 2
(
BTPx̃+s−�w̄

)T(
BTP ˙̃x+ ṡ−� ˙̄w

)
=
(
x̃TAT + σT

p (s)BT − w̄T�TBT
)
Px̃

+ x̃TP
(
Ax̃ + Bσp(s) − B�w̄

)
+ 2
(
BTPx̃ + s − �w̄

)T(
BTP(Ax̃+ Bσp(s)−B�w̄)

+ σr
[
− 1

ε2
BTP(x−�η) − 1

ε2
(s − �η) + �(IN ⊗ S)η

]
− �(IN ⊗ S)w̄

)
= x̃T

(
−εIn+2PBBTP

)
x̃ + 2x̃vPBσp(s) − 2x̃TPB�w̄

+ 2
(
BTPx̃+s−�w̄

)T
×
(
σr

[
− 1

ε2
BTPx̃ − 1

ε2
(s − �w̄)+�(IN ⊗ S)w̄ + ς

]

− �(IN ⊗ S)w̄ + �
)

= −εx̃Tx̃ + 2x̃TPB
(
BTPx̃ + σp(s) − �w̄

)
+ 2
(
BTPx̃ + s − �w̄

)T
×
(
σr

[
− 1

ε2
BTPx̃− 1

ε2
(s − �w̄)+ �(IN ⊗ S)w̄ + ς

]

− �(IN ⊗ S)w̄ + �
)

= −εx̃Tx̃ +
N∑
i=1

2x̃Ti PiBi(BT
i Pix̃i+σp(si)−�iw)

+
N∑
i=1

2
(
BT
i Pix̃i+si −�iw

)T

×
(

σr

[
− 1

ε2
BT
i Pix̃i −

1
ε2

(si − �iw) + �iSw + ςi

]

−�iSw + θi

)
, (15)

with ς = 1
ε2
BTP�η̃ + 1

ε2
�η̃ +�(IN ⊗ S)η̃, � = BTP(Ax̃+

Bσp(v) − B�w̄), ςi = 1
ε2
BT
i Pi�iη̃i + 1

ε2
�iη̃i + �iSη̃i, and
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θi = BT
i Pi(Aix̃i+Biσp(vi)−Bi�iw). Denote φi = −BT

i Pix̃i,
the derivative of V1 can be rewritten as

V̇1 = − εx̃Tx̃ −
N∑
i=1

2φT
i
(
σp(vi) − �iw − φi

)

+
N∑
i=1

2
(
vi − �iw − φi

)T

× (σr
[
− 1

ε2
(vi − �iw − φi) + �iSw + ςi

]
− �iSw + θi

)
. (16)

According to (13) and (14), we have

‖ςi‖ ≤
∥∥∥∥ 1
ε2

BT
i Pi�iη̃i

∥∥∥∥+
∥∥∥∥ 1
ε2

�iη̃i

∥∥∥∥+ ‖�iSη̃i‖ ≤ δr
2
,

‖θi‖ ≤ ‖BT
i PiAix̃i‖+‖BT

i PiBiδp(vi)‖ + ‖BT
i PiBi�iw‖ ≤ δr

2
.

(i) We first consider the case that
‖ − 1

ε2
(vi − �iw − φi) + �iSw + ςi‖ ≤ r,

that is, ‖vi − �iw − φi‖ ≤ ε2 δr
2 ,

which implies ‖vi‖ ≤ ε2 δr
2 + ‖�iw‖ + ‖φi‖.

Choosing ε ≤ min
{
max

{
ε : ε ∈ (0, 1] , ‖φi‖ ≤ δp−

‖�iw‖} ,
√

2(p−‖�iw‖−‖φi‖)
δr

}
. Such an ε exists because

‖�iw‖<p and limε→0 ‖φi‖= limε→0 ‖−BT
i Pix̃i‖ = 0.

Then, we have ‖vi‖ ≤ p, which means σp(vi) = vi. It
follows that

σr

[
− 1

ε2
(vi − �iw − φi) + �iSw + ςi

]
− �iSw + θi

= − 1
ε2

(vi − �iw − φi) + ςi + θi, (17)

and

2φT
i
(
σp(vi)−�iw−φi

) = 2φT
i
(
vi−�iw−φi

)
. (18)

Taking (17) and (18) into (16) gives

V̇1 = −εx̃Tx̃ −
N∑
i=1

2φT
i
(
vi − �iw − φi

)

+
N∑
i=1

2
(
vi − �iw − φi

)T

×
(

− 1
ε2
(
vi − �iw − φi

)+ ςi + θi

)

≤ −εx̃Tx̃ − 2
N∑
i=1

(
1
ε2

‖vi− �iw− φi‖ − ‖ςi

+θi‖ + ‖φi‖
)

‖vi − �iw − φi‖.

There exists an ε∗
1 ∈ (0, 1] such that for any

ε ∈ (0, ε∗
1 ],

1
ε2

‖vi − �iw− φi‖ − ‖ςi + θi‖ + ‖φi‖ > 0,
because 1

ε2
→ ∞ as ε → 0, ‖φi‖ → 0 as ε → 0, and

‖ςi + θi‖ ≤ δr . Thus, we have

V̇1 < 0,∀
[
x̃T, vT, w̄T

]T ∈ LV1(c1)\{0}. (19)

(ii) Next, we consider the case that
− 1

ε2
(
vi − �iw − φi

)+ �iSw + ςi < −r, that is
vi − �iw − φi > ε2

(
r + �iSw + ςi

)
> 0.

(a) if vi − �iw > 0 and φi > 0, then
σp(vi) − �iw ≥ 0. It follows that (16) can be
rewritten as

V̇1 ≤ −εx̃Tx̃ − 2
N∑
i=1

‖φi‖
(
vi − �iw − φi

)

+ 2
N∑
i=1

(−r − �iSw + ‖θi‖
)(
vi

− �iw − φi
)

= −εx̃Tx̃ − 2
N∑
i=1

(‖φi‖ + r + �iSw

− ‖θi‖
)(
vi − �iw − φi

)
.

Since r − ‖�iSw‖ < δr and ‖θi‖ ≤ δr
2 , there

exists an ε∗
2 ∈ (0, 1] such that for any

ε ∈ (0, ε∗
2 ], ‖φi‖ + r + �iSw− ‖θi‖ > 0. Thus,

it follows that (19) holds.
(b) if vi − �iw > 0 and φi < 0, then(

vi − �iw − φi
)T(−r − �iSw + θi

)
< 0 and

−φT
i
(
σp(vi) − �iw − φi

)
> 0. Then, we have

V̇1 = −εx̃Tx̃ − 2
N∑
i=1

φT
i
(
σp(vi) − �iw − φi

)

+2
N∑
i=1

(
vi − �iw − φi

)T(−r− �iSw+ θi
)

≤ −εx̃Tx̃ + 2
N∑
i=1

(−r− �iSw + θi + ‖φi‖
)

(vi − �iw − φi). (20)

Similarly, there exists an ε∗
3 ∈ (0, 1] such that

for any ε ∈ (0, ε∗
3 ], −r−�iSw+ θi +‖φi‖ < 0.

Since vi − �iw− φi > 0, we have V̇1≤−εx̃Tx̃,
which means (19) holds.

(c) if vi −�iw < 0 and φi < 0, then vi < �iw < p.
It is easy to verify that (20) holds.

(iii) Similarly, we can show that (19) holds for the case
that − 1

ε2
(vi − �iw − φi) + �iSw + ςi > r.
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In conclusion, we have shown that, for all ε ∈ (0, ε∗],
ε∗ = min{ε∗

1 , ε∗
2 , ε∗

3 },

V̇1 < 0,∀
[
x̃T, vT, w̄T

]T ∈ LV1(c1)\{0}.
Hence, we have limt→∞ x̃i = limt→∞(xi − �iw) = 0 and
limt→∞(vi − �iw) = 0, which implies that

lim
t→∞ei = lim

t→∞(Cixi+Qw) = lim
t→∞

(
Ci
(
x̃i+�iw

)+Qw
) = 0.

The above facts complete the proof.

3.2 Semi-global output consensus via output feedback
In this section, we construct the following output
feedback consensus protocol based on the distributed
observers (6)–(8):

ui = − 1
ε2

T̄−1
i

(
BT
i Pi(x̂i − �iŵi) + (vi − �iŵi)

)
+ T̄−1

i �iSŵi + vi, (21)

where Pi is the solution of (4) with γ = 1, �i and �i
are a pair solution of the regulator Eq. (3), x̂i and ŵi are
the states of the distributed observers (6)–(8). The idea
of designing control law (21) is similar to the design of
control law (9).

Theorem 2 Consider a multi-agent system consisting
of leader (1) and followers (2). Assume that Assump-
tions 1–5 hold. The output feedback consensus proto-
cols (21) solve Problem 2. That is, for a priori given
bounded sets X0, V0, W0, X̂0 and Ŵ0, there exists an
ε∗ ∈ (0, 1] such that for each ε ∈ (0, ε∗] and for all[
xT(0), vT(0),wT(0), x̂T(0), ŵT(0)

]T ∈ X0×V0×W0×X̂0×
Ŵ0, the output consensus error satisfies limt→∞ ei = 0.

Proof Firstly, we show that limt→∞(ŵi−w) = 0. Denote
w̆i = ŵi − w, i = 1, 2, · · · ,N , w̆in = [

w̆T
1 , · · · , w̆T

l
]T, and

w̆un =[ w̆T
l+1, · · · , w̆T

N ]T. By the observers (6) and (7), we
have

˙̆win = D1w̆in,
˙̆wun = D2w̆un + Ew̆in,

where D1 = Il ⊗ (S + LS,iQ), D2 = IN−l ⊗ S − μ2L5 ⊗ Is
and E = −μ2(L4 ⊗ Is). Since bothD1 andD2 are Hurwitz,
it is obvious that limt→∞ w̆i = 0.
Denote x̆i = x̂i − xi, then it follows from (8) that

x̆i = (Ai + LA,iCi
)
x̆i − Biσ(vi) + Wiw̆i. (22)

Let Hi = Ai + LA,iCi. Since Hi is Hurwitz, for any positive
definite matrix Ni, there exists a positive definite matrix
Mi that satisfies

HT
i Mi + MiHi = −Ni.

(10) is independent of the control law, so it also holds.

For each follower, we define a Lyapunov function candi-
date

V2,i =x̃Ti Pix̃i + λmax(Pi)x̆Ti Mix̆i

+
(
BT
i Pix̃i + vi − �iw + BT

i Pix̆i
)T

×
(
BT
i Pix̃i + vi − �iw + BT

i Pix̆i
)
. (23)

Let c2,i be a constant scalar such that

sup
ε∈(0,1],

[
xTi (0),vTi (0),wT(0),x̂Ti (0),ŵTi (0)

]T
∈X0×V0×W0×X̂0×Ŵ0

V2,i ≤ c2,i. (24)

Such a c2,i exists because sets X0, V0, W0, X̂0 and
Ŵ0 are bounded, and limε→0 Pi = 0. Define LV2,i :={(
xi, vi,w, x̂i, ŵi

) ∈ R
2ni+2s+qi : V2,i ≤ c2,i

}
. Let ε∗

i ∈ (0, 1]
be such that, for all ε ∈ (0, ε∗

i ],
(
xi, vi,w, x̂i, ŵi

) ∈ LV2,i
implies that

‖BT
i Pi(Aix̃i + Biσp(vi) − Bi�iw)‖ ≤ δr

8
,

‖BT
i Pi(Hix̆i + Wiw̆i − Biσp(vi))‖ ≤ δr

8
,

‖BT
i Mix̆i‖ ≤ δr

4λmax(Pi)
. (25)

The existence of such an ε∗
i is due to limε→0 Pi = 0.

The derivative of V2,i is

V̇2,i = − εx̃Ti x̃i + 2x̃Ti PiBi
(
0.5BT

i Pix̃i + σp(vi) − �iw
)

− λmax(Pi)x̆Ti Nix̆i
+ 2λmaxx̆Ti MiWiw̆i − 2λmax(Pi)x̆Ti MiBiσp(vi)

+ 2
(
vi − �iw + BT

i Pix̃i + BT
i Pix̆i

)T
×
(
σr
(−T̄ivi + T̄iui

)− �iSw

+ BT
i Pi
(
Aix̃i+ Biσp(vi)− Bi�iw

)
+ BT

i Pi
(
Hix̆i+ Wiw̆i− Biσp(vi)

) )
. (26)

Let

φi = −BT
i Pix̃i, βi = BT

i Pix̆i, ψi = BT
i Mix̆i,

θi = BT
i Pi
(
Aix̃i + Biσp(vi) − Bi�iw

)
,

αi = BT
i Pi
(
Hix̆i + Wiw̆i − Biσp(vi)

)
. (27)
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Then, (26) can be written as

V̇2,i = − εx̃Ti x̃i − λmax(Pi)x̆Ti Nix̆i + 2λmaxx̆Ti MiWiw̆i

+ 2
(
1
2
φ2
i − φiσp(vi) + φi�iw

)
− 2λmax(Pi)ψiσp(vi)

+ 2(vi − �iw − φi + βi)

×
[
σr
(− 1

ε2
(−φi + βi + vi − �iw − �iw̆i

)+ �iSw

+ �iSw̆i
)− �iSw − θi − αi

]
. (28)

Moreover,

2
(
1
2
φ2
i − φiσp(vi) + φi�iw

)
− 2λmax(Pi)ψiσp(vi)

= 2
(

−1
4
φ2
i − φi(σp(vi) − �iw − φi)

)

+ 2
(

−λmax(Pi)ψiσp(vi) − 1
4
φ2
i

)
.

Since σp is a standard saturation function, we have

|σp(s1) − σp(s2)| ≤ |s1 − s2|.
Then, in the case of − 1

ε2
(−φi + βi + vi − �iw − �iw̆i

) +
�iSw + �iSw̆i < −r, it follows that

− λmax(Pi)ψiσp(vi) − 1
4
φ2
i

= −λmax(Pi)ψi
(
σp(vi−�iw−φi+βi)

− σp(vi−�iw−φi+βi) + σp(vi)
)− 1

4
φ2
i

≤ δr
4

‖vi− �iw− φi+ βi‖ + λmax(Pi) (|ψi�iw|+ |ψiβi|)

+ λmax(Pi)|ψiφi| − 1
4
φ2
i

≤ δr
4

‖vi − �iw − φi + βi‖ + kλmax(Pi)ψ2
i

+ λmax(Pi)|ψiβi| + λ2max(Pi)ψ
2
i

≤ δr
4

‖vi − �iw − φi + βi‖ + λmax(Pi)
[
(k + 1

+ λmax(Pi))‖MiBiBT
i Mi‖

+ λmax(Pi)‖MiBiBT
i Pi‖

]
x̆Ti x̆i, (29)

where we assume ‖�iw‖ ≤ k‖ψi‖ because ‖�iw‖ is
bounded according to Assumption 5. In addition,

− 1
4
φ2
i − φi(σp(vi) − �iw − φi)

= −1
4
φ2
i − φi(σp(vi) − �iw − φi + βi) + ψiβi

≤ δr
4

‖vi − �iw − φi + βi‖ + β2
i

≤ δr
4

‖vi − �iw − φi + βi‖ + ‖PiBiBT
i Pi‖x̆Ti x̆i. (30)

The last term of (28) follows that

(vi − �iw − φi + βi)
[
σr
(
− 1

ε2
(−φi + βi + vi − �iw

−�iw̆i
)+ �iSw + �iSw̆i

)
− �iSw − θi − αi

]
≤ ‖vi − �iw − φi + βi‖

(−r + r − δr + ‖θi‖‖αi‖
)

≤ −3δr
4

‖vi − �iw − φi + βi‖. (31)

Then, taking (29)–(31) into (28) gives

V̇2,i

≤ − εx̃Ti x̃i + 2λmaxx̆Ti MiWiw̆i − δr
2

‖vi − �iw

− φi + βi‖
−
(
λmax(Pi)‖Ni‖ − 2λmax(Pi)

[
(k + 1

+ λmax(Pi))‖MiBiBT
i Mi‖

+ λmax(Pi)‖MiBiBT
i Pi‖

]
− 2‖PiBiBT

i Pi‖
)
x̆Ti x̆i. (32)

Choose Ni large enough such that

λmax(Pi)‖Ni‖ − 2‖PiBiBT
i Pi‖ − 2λmax(Pi)

[
(k + 1

+ λmax(Pi))‖MiBiBT
i Mi‖ + λmax(Pi)‖MiBiBT

i Pi‖
]

> 0.

Hence, we have

V̇2,i < 0, ε ∈ (0, ε∗
i ] .

Similarly, we can show that V̇2,i < 0 when
− 1

ε2
(−φi + βi + vi − �iw − �iw̆i

)+ �iSw+ �iSw̆i > r or
‖ − 1

ε2
(−φi + βi + vi − �iw − �iw̆i

) + �iSw + �iSw̆i‖ <

r.

4 Illustrative examples
In this section, two examples are given to verify the effec-
tiveness of the state feedback consensus protocol (9) and
output feedback consensus protocol (21), which, respec-
tively, solves the output consensus problem defined in

Fig. 1 The communication graph
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Fig. 2 (A), Estimation errors w − ηi , i = 1, 2, . . . , 5; (B), States of the leader w and states of the distributed observer (5) ηi , i = 1, 2, . . . , 5

Problem 1 and Problem 2. The control laws have also
been applied successfully to formation control in practical
scenarios in [32].
The multi-agent system consists of one leader (labeled

as 0), one informed follower (labeled as 1) and four unin-

formed followers (labeled as 2, 3, 4 and 5, respectively).
The communication graph G shown in Fig. 1 is a directed
network containing a loop. It is clear that Assumption 1 is
satisfied. The corresponding Laplacian matrix L, Lff and
L5 are respectively

Fig. 3 Simulation results under the state feedback consensus protocols (9) with ε = 0.1. (A), Output consensus errors ei , i = 1, 2, . . . , 5; (B), The
outputs of the leader y0 and the five followers yi , i = 1, 2, . . . , 5
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Fig. 4 (A), Elements of estimation errors w − ŵi , i = 1, 2, . . . , 5; (B), Elements of the state of the leader w and its estimations ŵi , i = 1, 2, . . . , 5

Fig. 5 Elements of estimation errors xi − x̂i , i = 1, 2, . . . , 5
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L =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
−1 2 0 0 −1 0
0 −1 1 0 0 0
0 −1 0 1 0 0
0 0 0 −1 1 0
0 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Lff =

⎡
⎢⎢⎢⎢⎣

2 0 0 −1 0
−1 1 0 0 0
−1 0 1 0 0
0 0 −1 1 0
0 −1 0 0 1

⎤
⎥⎥⎥⎥⎦ , L5 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 −1 1 0

−1 0 0 1

⎤
⎥⎥⎦ .

Notice that all eigenvalues of Lff and L5 have positive
real parts.
The matrices of the leader are

S =
⎡
⎣ 0 0 0
0 0 1
0 −1 0

⎤
⎦ , Q =

⎡
⎣ 0 −1 0

−1 0 −1
0 −1 −1

⎤
⎦ .

For the followers 1 and 2, i = 1, 2, the matrices are

Ai =
⎡
⎣−1 0 0

0 0 1
0 0 0

⎤
⎦ , Bi =

⎡
⎣ 1 0
1 0
0 2

⎤
⎦ , Wi =

⎡
⎣−1 0 1

−1 −1 −1
2 −1 2

⎤
⎦ ,

Ci =
⎡
⎣ 1 0 0
0 1 1
1 0 1

⎤
⎦ .

For the followers 3, 4 and 5, i = 3, 4, 5, the systemmatrices
are

Ai =
⎡
⎣ 0 1 0
0 0 1
0 0 0

⎤
⎦ , Bi =

⎡
⎣ 0 0
0 1
2 0

⎤
⎦ , Wi =

⎡
⎣−1 0 0

−1 −2 −2
0 −3 3

⎤
⎦ ,

Ci =
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ .

For i = 1, 2, . . . , 5, all eigenvalues of Ai have non-
positive real parts, and each pair of (Ai,Bi) is stabilizable.
We assume in this example that each follower has the
same actuator “time constants”, that is, for i = 1, 2, . . . , 5,
T̄i = 20I3.
The solution of the regulator Eq. (3) gives

�i =
⎡
⎣ 0 1 0
1 0 0
0 0 1

⎤
⎦ , �i =

[
1 1 0

−1 0 −1

]
, i = 1, 2,

�i =
⎡
⎣ 0 1 0
1 0 1
0 1 1

⎤
⎦ , �i =

[
0 1 −1
1 0 1

]
, i = 3, 4, 5.

The initial state of the leader is chosen as w(0) =[−2 −
3 − 2]T. It follows that ‖�iw(t)‖ ≤ 7.13 and ‖�iSw(t)‖ ≤
5.84, i = 1, 2, . . . , 5, ∀t ≥ 0. Let p = 10, r = 10. Thus,
Assumption 5 is satisfied with δp = 10, δr = 10 andT = 0.

4.1 Semi-global output consensus via state feedback
In this section, we present simulation results to verify state
feedback consensus protocol (9) that solves Problem 1,
under Assumptions 1–3 and 5.

Fig. 6 Simulation results under the output feedback consensus protocols (21) with ε = 0.01. (A), Output consensus errors ei , i = 1, 2, . . . , 5; (B), The
outputs of the leader y0 and the five followers yi , i = 1, 2, . . . , 5
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The initial states of the distributed observers (5) are set
as random scalars between (0, 1) for i = 1, 2, . . . , 5, and
the positive scalar μ1 is chosen as μ1 = 3. It is easy to
verify that (I5 ⊗ S − μ1Lff ⊗ I3) is Hurwitz. As shown in
Fig. 2, the states ηi(t) asymptotically converge to the state
of the leader w(t).
The initial system states and actuator positions of the

followers are chosen as

[
x1(0) x2(0) x3(0) x4(0) x5(0)

] =
⎡
⎣ 10 5 −6 7 −10
10 5 −6 7 −10
10 5 −6 7 −10

⎤
⎦ ,

[
v1(0) v2(0) v3(0) v4(0) v5(0)

] =
[
2 −2 1 −6 −1
2 −2 1 −6 −1

]
.

The low gain parameter ε is chosen as ε = 0.1. The
simulation result is shown in Fig. 3. It can be seen that
the outputs of the five followers converge to the output
of the leader asymptotically, and the output consensus
errors asymptotically converge to 0. Thus, the semi-global
leader-following output consensus problem defined in
Problem 1 is solved by the state feedback consensus con-
trol protocol (9) with ε = 0.1.

4.2 Semi-global output consensus via output feedback
In this section, simulation results are given to verify out-
put feedback consensus protocol (21) in solving Prob-
lem 2, under Assumptions 1–5.
For the informed follower 1, i.e., i = 1, the gain matri-

ces in distributed observers (6) and (8) are set as LA,1 =

diag{−5,−6,−5} and LS,1 =
⎡
⎣ 1 1 0
0 1 0
0 0 2

⎤
⎦. We can verify

that S + LS,1Q is Hurwitz. For the uninformed follower
2, i.e., i = 2, the distributed observers (7) and (8) are
constructed with μ2 = 4, LA,2 = LA,1. For the rest unin-
formed followers i.e., i = 3, 4, 5, we set μ2 = 4, LA,i =
diag{−2,−2,−2}. It follows that matrices (I4⊗S−μ2L5⊗
I3) is all Hurwitz. For i = 1, 2, . . . , 5,Ai+LiCi are Hurwitz.
For i = 1, 2, . . . , 5, the initial states of the dis-

tributed observers (6)–(8) are chosen as random constants
between (0, 1). The initial system states and actuator posi-
tions of the followers are chosen as

[
x1(0) x2(0) x3(0) x4(0) x5(0)

] =
⎡
⎣ 2 1 −1 3 −2
2 1 −1 3 −2
2 1 −1 3 −2

⎤
⎦ ,

[
v1(0) v2(0) v3(0) v4(0) v5(0)

] =
[
2 −2 1 0 −1
2 −2 1 0 −1

]
.

The trajectories of wi, ŵi, xi, x̂i, and estimation errors
ŵi − wi, x̂i − xi, i = 1, 2, . . . , 5, are shown in Figs. 4 and
5. It is clear that ŵi converge to wi and x̂i converge to xi
asymptotically.
We consider low gain parameter ε = 0.01. It is easy

to get solutions of the parametric ARE (4) with γ = 1.

The simulation result is shown in Fig. 6, from which we
can conclude that the outputs of the followers yi, i =
1, 2, . . . , 5, are regulated to the output of the leader y0
asymptotically and the output consensus errors ei con-
verge to zero, which implies that the consensus protocol
(21) achieves the semi-global leader-following output con-
sensus problem with the followers subject to actuator
position and rate saturation.

5 Conclusion
In this paper, we have investigated the semi-global output
consensus problem for multiple heterogeneous linear sys-
tems subject to actuator position and rate saturation. Both
a state feedback-based consensus protocol and an out-
put feedback-based consensus protocol for each follower
are constructed, using the information of the follower
and its neighbors. It is proved that given any a priori
given bounded conditions, the problem is solved by the
consensus protocols if the low gain parameter is tuned
small enough and the communication graph contains a
spanning tree.
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