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MLFcGAN: Multilevel Feature Fusion-Based
Conditional GAN for Underwater
Image Color Correction

Xiaodong Liu™, Zhi Gao

Abstract—Color correction for underwater images has
received increasing interest, due to its critical role in facilitating
available mature vision algorithms for underwater scenarios.
Inspired by the stunning success of deep convolutional neural
network (DCNN) techniques in many vision tasks, especially the
strength in extracting features in multiple scales, we propose a
deep multiscale feature fusion net based on the conditional gen-
erative adversarial network (GAN) for underwater image color
correction. In our network, multiscale features are extracted first,
followed by augmenting local features in each scale with global
features. This design was verified to facilitate more effective
and faster network learning, resulting in better performance
in both color correction and detail preservation. We conducted
extensive experiments and compared the results with state-of-
the-art approaches quantitatively and qualitatively, showing that
our method achieves significant improvements.

Index Terms— Conditional generative adversarial network
(cGAN), feature extraction and fusion, image enhancement,
underwater image color correction.

I. INTRODUCTION

NDERWATER imaging has been proven valuable in
Unumerous remote sensing applications [1], [2], where
remote sensors such as sonar and light detection and ranging
(LiDAR) are deployed conventionally. Due to recent advances
in both hardware and algorithmic approaches, affordable and
compact off-the-shelf underwater cameras are becoming popu-
lar, allowing people to easily collect images from a wide range
of undersea worlds by either diverse or remotely operated sub-
mersibles. These captured underwater images and videos with
color information are valuable resources for many underwater
scientific remote sensing missions, such as marine biology [3]
and ecological research [4].
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Compared with everyday images captured in air, underwater
images typically suffer from color shift and relatively low
quality due to light absorption and light scattering, posing
significant challenges to available mature vision algorithms in
achieving the expected performance. For underwater scenes,
light absorption is wavelength dependent; the longer the wave-
length, the higher the absorption rate is. Thus, the red compo-
nent of light is absorbed first and the underwater images often
appear bluish or greenish. Severe underwater light scattering is
due to the relatively larger particles than those observed in air,
resulting in decreased visibility. Moreover, such absorption and
scattering effects are hard to be explicitly modeled, as they are
relevant to many factors, such as water temperature, salinity,
types of particles, and so on. This complex degradation makes
it challenging to restore the visibility and color of underwater
images [5]. Restoring underwater images with natural colors
and fine details still remains an open problem [6]. Several pio-
neering works tackle this issue by inferencing the nondegraded
images based on the image degradation model. As this inverse
problem is ill-posed, prior knowledge or assumptions are
introduced to obtain a solution. These include the approaches
based on a dark channel prior [7] and its variants [8], methods
based on haze-lines prior [9], and so on. However, the prior
knowledge may fail for some underwater scenes, and all these
model-based methods reported less competitive image color
correction results [10].

Like many other computer vision tasks, underwater image
color correction has been benefiting from the deep convo-
lutional neural networks (DCNNSs). In [10], the convolu-
tional neural network (CNN) was trained to approximate the
underwater image restoration function given the synthesized
paired underwater images. Li et al. [11] proposed a two-stage
CNN for depth estimation and color restoration. Recently,
the generative adversarial networks (GANs) have achieved
huge success on many tasks such as super-resolution [12]
and image synthesis and translation [13]. Inspired by this,
in [14], the conditional GAN (cGAN) was exploited to address
the underwater image enhancement as the image-to-image
translation problem. Based on [14], Yu ef al. [15] introduced
perceptual loss into the cGAN framework for underwater
image color correction. Later, CycleGAN was introduced for
color correction in [16] and [17]. Generally speaking, such
CNN-based methods outperform aforementioned model-based
methods. However, methods in [10], [11], and [14] leverage
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only low-level local features with relatively shallow networks,
and such low-level features captured with a limited receptive
field can hardly encode the high-level semantic knowledge,
resulting in noisy and imperfect color restoration results. To
overcome the limitations of the available CNN-based methods,
we propose to exploit high-level features in the cGAN frame-
work for underwater image color correction. Leveraging on the
high-level features, impressive improvements have been made
for detection [18], segmentation [19], pose estimation [20],
and so on. Different from those methods, we augment local
features of each level with global features that capture the
semantic information, such as the overall lighting condition
and scene layout of the whole image, for underwater image
color correction.

In this letter, we propose a generic multilevel features
fusion-based conditional GAN (MLFcGAN) for underwater
image color correction. Compared to the existing network
structures, MLFcGAN extracts more scale of features, and
the global features are fused with low-level features on each
scale. Extensive experiments are conducted and comparisons
with the state-of-the-art approaches are made quantitatively
and qualitatively, showing that our design achieves significant
improvements.

II. PROPOSED METHOD

Our design is based on the framework of cGAN, where the
adversarial loss is beneficial to image generation compared to
DCNNs with Euclidean loss [13]. Consisting of one gener-
ator G and one discriminator D, GAN is initially deployed
to produce vivid images, given the noise input z. G aims to
produce images to fool D and D is trained to distinguish
samples from real images, where G and D are updated in
an adversarial fashion. Slightly different from the basic GAN,
cGAN takes conditional variables as input.

A. Generator

The generator is based on the encoder-decoder structure
and the multiscale feature extraction and feature fusion unit
are designed and novelly integrated, whose effectiveness is
demonstrated in Section IV.

1) Global Features and Multilevel Local Feature Extrac-
tion: High-level information extracted from the image with
a receptive field of the entire image is termed as the global
features. The extraction of this information is prevalent in fea-
ture engineering, and can be achieved by the average pooling
along the spatial dimension, as described in [21]. Unlike the
average pooling, we extract the global features by gradually
down-sampling the input images with convolution layers until
the output has a dimension 1 x 1 x ¢g, where ¢, represents
the number of channels of global features. The benefits of
gradually down-sampling compared to simple average pooling
are of two-fold: First, the number of feature maps at each
resolution are free to be chosen. Second, in this way, more
scales of local features can be extracted simultaneously. The
multiscale local features offer abstraction of the image at
different resolutions, and are beneficial for generating images
with fine details. (This is validated in Section IV.) As the
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encoder part of the generator functions as feature extraction,
and to make the network deeper and easier to optimize,
the residual building blocks are employed as proposed in [22].

2) Fusion of the Global and Local Feature Unit: Here,
we propose the feature fusion unit to dynamically fuse the
global features with local features. Suppose the local feature
map f; at scale i with dimension /; x w; x ¢; and the global
features f, with dimension 1 x 1 x ¢,. The global features are
first adjusted through a 1 x 1 convolution layer with learnable
weights for channel matching. Normally, ¢, is larger than c¢;,
therefore this step is designed to adaptively extract the most
useful information from global features for local features at
scale i. The parameter settings for this convolution layer are:
kernel size 1 x 1, stride 1, number of input channels cg, and
number of output channels c;.

Denote Feony, Feopy> Freshape> and Feoncar as the convolution,
copy, reshape, and concatenate operation separately. The fea-
ture fusion unit follows the operations, as described in (1)—(4).
The output after the convolution can be denoted as follows:

fgl = Fconv(fg, W) (1)

where W denotes the learnable weights. Then, fg1 is copied
in total h; X w; times

fe2 = Fcopy(fglanumzhi X w;) (2)
Then, fg> is reshaped into (h;, w;, ¢;)
fg3 = Freshape(nga size = (h;, w;, ¢;)). (3)

Finally, the features f; and fg3 with the same dimension are
concatenated along the channel dimension

fout = Fconcat(fl’ fg3)- 4)

The fused feature foy is fed into the corresponding layer in
the decoder with a skip connection.

Remarks: Local features and global features cover dif-
ferent scales of the image and convey variant knowledge
of the image. Normally, the local image features represent
low-level features such as edges. The global features encode
the high-level information such as the overall light condition,
the layout, or the type of the scene, and so on. Fusing with
low and high information at different scales is beneficial to
generate images with plausible natural color and better details.
In addition, since the global features are a higher abstraction of
local features, they could act as the regularizer to penalize the
artifacts generated in the enhanced images due to mishandling
in the low-resolution images. Hence, here, we fuse the global
features with low-level features at each resolution, as shown
in Fig. 1.

B. Discriminator

In this letter, PatchGAN is adopted as the discriminator [13].
PatchGAN is designed to identify if each N x N patch in the
image is real or generated by G, and the overall decision is
achieved by averaging the authenticity of all patches. In this
case, the generated image will only be considered as real,
when nearly all image patches are generated with good and
less blurring details to be considered with high probability to
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Fig. 1. Overview of the network structure. (Left) Generator which consists

of the encoder, decoder, and multiscale local and GF with skip connection.
(Right) PatchGAN-based discriminator.

h fusion unit W

be real. Considering the network is trained in an adversarial
way, the generator is pushed to focus more on high frequency
(details in the image) and generate better image details so
as to fool the discriminator. On the other hand, compared to
the whole-image discriminator, less convolutional layers are
needed for PatchGAN. For more details, please see [13].

C. Objective Function

Considering the problem of exploding or vanishing gradient
during training the original GAN [15], [23], many improve-
ments and modifications have been made to stabilize the
training such as the LSGAN [24], Wasserstein GAN [25],
and Wasserstein GAN with gradient penalty (WGAN-GP),
and the WGAN-GP shows the best performance for image
generation [26]. In this letter, the WGAN-GP [26] loss is
adopted and modified into conditional setting as the adversarial
loss

Lewgan-cp = Ex y[D(x, y)] — Ex[D(x, G(x))]
+AE (1 D@2 = DT (5)

where x and y are the original raw image and the ground-truth
underwater image (with good color balance and details),
respectively, X are the samples along the lines between the
generated images G(x) and y, and A stands for the weight
factor.

The adversarial loss measures the Wasserstein distance from
the distribution perspective between the distribution of the
generated images and that of the ground-truth images. The
traditional loss such as the L, or L loss measures the distance
from the pixel perspective, and it has been demonstrated to
be helpful to combine the adversarial loss with traditional
distance loss for image-to-image translation tasks [27]. As
reported in [13] and [28], the L loss is likely to give less
blurring results than the L, loss, therefore the L loss is
introduced

Lr,(G) = Exyllly = Gl (6)
The overall objective function £* is (1; is the weight factor)

L= m(}n max LewGan-cp(G, D) + A1 L, (G). @)
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EUF DUIENet

UWCNN

Fig. 2. Color correction comparisons of val images with EUF [29], MBIE
[30], HLC [9], UVE [31], UGAN [14] and DUIENet [32], UWCNN [33],
and CycleGAN [34]. Better 4x zoomed-in view.

III. EXPERIMENTS AND ANALYSIS
A. Preparation

1) Data: Different from other computer vision tasks, there
is limited publicly available data set for underwater images as
the challenge to acquire the ground-truth. The data set used for
training was recently proposed in [14]. It contains 6128 image
pairs with ground truth (nondistorted underwater images) and
distorted underwater images. We randomly select 6000 image
pairs as the training set, and the remaining images are used for
validation. In addition, to further evaluate the generalization
ability of our method, 86 real world underwater images are
collected from the Internet with various scenes. All the images
are resized to 256 x 256.

2) Training Settings: In our experiment, we set 1 = 10
and 1; = 10. The values are selected based on the basic
hyperparameter tuning. We apply the Adam solver, with the
learning rate = 0.0002, £ = 0.5, and S = 0.999. The batch
size is 1 and the network is trained for 50 epochs.

3) Methods for Comparison: Comparisons are made with
the following state-of-the-art methods, which are published in
top conferences or journals recently. 1) Model-based meth-
ods: EUF [29], MBIE [30], HLC [9], and UVE [31], and
they are tested with the code provided by their authors. 2)
Learning-based methods: UGAN [14] and DUIENet [32],
UWCNN [33], and CycleGAN [34]. UGAN [14] and Cycle-
GAN [34] are retrained on the data set from scratch with the
recommended parameter settings in their letters to achieve the
best enhancement results. DUIENet [32] and UWCNN [33]
are tested with the pretrained model provided by the authors.

4) Evaluation Metrics: The evaluation is based on both
the validation images and real-world underwater images. For
the validation images set where the ground truth is available,
the peak signal to noise ratio (PSNR) and the structural simi-
larity index (SSIM) are adopted for quantitative comparisons.

B. Experimental Results

1) Evaluation of the Validation Image Set: The average
PSNR and SSIM were calculated and shown in Table I.
Fig. 2 demonstrates that our method can achieve the best
image restoration performance, which is rather close to the
ground truth. Quantitatively, as can be seen from Table I, our
method achieves the best PSNR and SSIM and outperforms
other methods with a large margin, demonstrating the superior
learning ability of our structure.

2) Evaluation of Real World Underwater Images: Visual
comparisons are presented in Fig. 3. UVE [31] and HLC [9]
perform poorly to remove the color cast, and images processed
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TABLE I
PSNR AND SSIM EVALUATION OF VALIDATION IMAGES
\ EUF MBIE HLC UVE UGAN DUIENet UWCNN CycleGAN Ours
PSNR 16.36 14.67 15.72 15.58 18.58 19.6279 15.2351 23.0224 2342
SSIM | 0.5527 04244  0.5249 04716  0.5851 0.6431 0.6133 0.7893 0.8158

DUIENet UWCNN CycleGAN

Fig. 3.

Color correction result comparisons of real underwater images with
EUF [29], MBIE [30], HLC [9], UVE [31], UGAN [14] and DUIENet [32],
and UWCNN [33] and CycleGAN [34]. Better zoomed-in view.

by these methods remain bluish or greenish. MBIE [30], on the
other hand, can generate images with good color saturation,
but it introduces unwanted superfluous red hue. Similarly,
EUF [29] introduces unwanted artifacts and noise. The poor
performance of the model-based methods may be because the
prior knowledge or the assumed parameters may not hold
for some underwater scenes. For DUIENet [32], it is likely
to introduce unexpected gray hue (such as the images in
the second and fourth rows) or red hue (such as the images
in the first and fifth rows) with low brightness, as shown
in Fig. 3. For UWCNN [33], similarly, the enhanced results
appear dim with low intensity, as shown in Figs. 2 and 3.
As UGAN and CycleGAN are retrained on the unified data
set, we made further comparisons in Figs. 4 and 5. As for
UGAN [14], the color correction performance is generally
acceptable, but it is likely to generate noisy patches in the
texture-less areas and along the boundary of the images. For
CycleGAN [34], it may fail for some cases (such as the deep
green scenarios) and retain the green hue with blurry details,
as shown in Figs. 4 and 5. On the other hand, our method
can achieve good color correction results with smooth details.
As discussed earlier, only based on the limited scales of local
features, it is likely to produce noisy patches. On the other
hand, the proposed multiscale feature extraction and fusion
strategy can help generate images with better preservation of
details.

IV. GENERATOR STRUCTURE COMPARISONS

To evaluate the effectiveness of the proposed multiscale
feature extraction and global feature design as well as the
proposed generator structure, we make a comparison against
the following generator model.

1) Generator used in [16] and [17] (Two scales of low-level

features, which we term it as G-2 here for simplicity);

2) The basic U-Net as used in [14];

CycleGAN

" UGAN Ours

Fig. 4. Further comparisons with UGAN [14] and CycleGAN [34]. UGAN
and CycleGAN may fail for deep green hue scenarios and generate more
blurry results than ours.

CycleGAN

Raw

Fig. 5. Zoomed-in view comparisons of the image patches against UGAN
[14] and CycleGAN [34], where they may generate more blurry results, and
our method could restore natural color and produce smooth results without
loss of details.

TABLE II
COMPARISON AND EVALUATION OF DIFFERENT GENERATOR STRUCTURES
[ G2 U-Net UNet+RB  UNet+GF  Ours-GF Ours
PSNR | 16.78 18.11 18.85 20.46 21.82 22.60
MSE | 0.022 0.016 0.013 0.0091 0.0068 0.0055

3) U-Net implemented with residual blocks (RBs) in the

encoder;

4) U-Net augmented with global features fusion (GF);

5) Our generator without the global feature fusion: denoted

Ours-GF;

6) Our proposed generator structure.

Here, we construct a small training set with 512 paired
underwater images. The training is conducted with a batch size
of 8 for 100 epochs. The objective for training is to minimize
the mean square error (MSE). The PNSR and MSE results
are reported in Table II, and the training process is shown
in Fig. 6.

From Table II, we can have the following findings.

1) The number of scales of feature matters. The comparison

between G-2 (2 scales of features), U-Net (5 scales
of features), and Ours-GF (8 scales of features) shows
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Fig. 6. Comparisons for generator structures. Better zoomed-in view.
(a) PSNR. (b) MSE.

that multiscale features are beneficial for image-to-image
translation learning.

2) RBs in the encoder improves the learning ability.

3) Global feature fusion works as well. Overall, our pro-
posed structure can achieve the highest PSNR and the
smallest MSE, which demonstrate good learning ability
and the effectiveness of the proposed generator structure.

V. CONCLUSION

In this letter, we propose a generic MLFcGAN under the
framework of conditional GAN for underwater image color
correction. Extensive experimental results demonstrate that by
embedding the high-level information with low-level knowl-
edge at multiple scales, MLFcGAN possesses better learning
ability. Our method can effectively restore the underwater
images’ color with fine details and alleviate the unwanted arti-
facts, which outperform the state of the art both subjectively
and objectively. Furthermore, as feature aggregation is fun-
damental in solving computer vision tasks via deep learning,
our strategy could also be explored for other computer vision
topics such as segmentation and salient object detection.
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