
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019 3577

Model Predictive Local Motion Planning With
Boundary State Constrained Primitives

Shupeng Lai , Menglu Lan, and Ben M. Chen

Abstract—Motion primitives are frequently used to find valid
local trajectories for mobile robots, especially in cases where fast
replanning is required, but the onboard computational power is
limited. In this letter, we present a practical framework for con-
structing motion primitives from boundary state constraints, and
then using them for online planning. The primitives are offline
constructed with either a boundary value problem solver or a
controller. They are then approximated with a neural network
for fast evaluation during online optimization. The references and
nominal inputs are generated in a receding horizon fashion by
solving a model predictive control problem in the continuous do-
main with either gradient-based or gradient-free techniques. The
proposed approach is computationally efficient and has been tested
on quadrotors in real flight experiments, including sensor-based
navigation, flying through a complex three-dimensional environ-
ment, dynamic obstacle avoidance, and tracking moving references.

Index Terms—Motion and path planning, collision avoidance,
motion primitives.

I. INTRODUCTION

MOTION planning for mobile robots can be typically de-
coupled into global planning and local planning phases.

The global planning is responsible for finding the connectivity
information of the environment with the simplified dynamics
model and providing guidance, such as heuristics, to the lower-
level local planner. Local planning is responsible for the real-
time reaction to environmental changes with a detailed dynamics
model. Due to environmental uncertainties, the planning process
is typically repeated in a receding horizon fashion, similar to
the one used in the model predictive control (MPC). In this
letter, we focus on the local planning problem which is solved
by searching in the parameterized space of the robot’s inputs
and producing a dynamically feasible and collision-free local
trajectory according to a predefined cost function.

Manuscript received February 24, 2019; accepted June 26, 2019. Date of
publication July 12, 2019; date of current version July 24, 2019. This letter was
recommended for publication by Associate Editor L. Tapia and Editor N. Amato
upon evaluation of the reviewers’ comments. (Corresponding author: Shupeng
Lai.)

S. Lai is with the Department of Electrical and Computer Engineering, Na-
tional University of Singapore, Singapore 119077 (e-mail: elelais@nus.edu.sg).

M. Lan is with the Graduate School for Integrative Science & En-
gineering, National University of Singapore, Singapore 119077 (e-mail:
lanmenglu@gmail.com).

B. M. Chen is with the Department of Mechanical and Automation Engi-
neering, Chinese University of Hong Kong, Hong Kong, and also with the
Department of Electrical and Computer Engineering, National University of
Singapore, Singapore 119077 (e-mail: bmchen@cuhk.edu.hk).

This letter has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This video shows a practical
framework to construct motion primitives from boundary state constraints and
further use them for online planning.

Digital Object Identifier 10.1109/LRA.2019.2928255

Motion primitives (MPs) are frequently used for local motion
planning by spanning a local search tree to abstract a continuous
state space [1]. The best local trajectory can then be found
efficiently via tree searching techniques. According to [2], the
process resembles a localized version of the sampling-based
planning process [3]. To achieve a fast reaction to environmental
changes, the local search tree can often be limited to a single
layer [2], [4]–[7]. Compared to the traditional gradient-based
optimization approaches, it neither requires the environmental
gradient information [8] nor restricts the trajectory in convex
subsets of the free space [6]. However, the sparsity of the
search tree limits the resolution of the solution, restricting its
quality and availability, especially in applications that require
precise maneuvers such as walking over cinder blocks [9] or
tracking a moving reference. The two most common approaches
of generating MPs are 1) sampling in the vehicle’s input space
and then performing a forward simulation, and 2) sampling on
the vehicles’ boundary state constraints, and then generating the
actual motion by solving a boundary value problem (BVP) [1].
With input sampling, though dynamic constraints are inherently
satisfied by forward simulation, it is difficult to ensure a well-
separated coverage in the search space because the state space
response of the sampled input can vary as a non-linear function.
Therefore, we adopt the latter approach and refer to the generated
MPs as the boundary state constrained primitives (BSCPs) which
have been successfully applied to various platforms, including
unicycles [10], autonomous cars [11], [12], rotorcrafts [5], [13],
fixed wings [2], [14] and field robots [15]. With the BSCPs,
a long and feasible trajectory can usually be encoded in a
few parameters, thus effectively reducing the dimension of the
optimization problem and boosting computational efficiency.
However, solving the BVP remains a non-trivial problem and
could potentially be time-consuming.

In this letter, we adopt a neural network (NN) to approximate
the BVP solutions (i.e. the BSCPs) and present an innovative
framework combining BSCPs and MPC for real-time applica-
tions. The main contributions of the letter can be summarized as
follows:
� We formulate the problem of finding the best BSCP as an

optimization problem over the continuous domain. Com-
pared with the traditional tree searching based method, our
method generates a solution of better quality for tasks like
tracking a moving reference.

� We propose two methods to solve the optimization prob-
lem. The first one is gradient-based, where the gradient
is obtained through the backpropagation of the NN. The
second one is a gradient-free method using the NN and the
particle swarm optimization (PSO) to construct a dynami-
cally evolving single layer tree that gradually converges to
the optimal local motion. The PSO inherits the advantages

2377-3766 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2597-5392
mailto:elelais@nus.edu.sg
mailto:lanmenglu@gmail.com
mailto:bmchen@cuhk.edu.hk

3578 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

of the tree searching techniques while addressing the issue
of the limited resolution of the solution.

� We implement the proposed approach on a real quadrotor
which is capable of navigating in 3D complex environ-
ments, tracking moving references and avoiding dynamic
obstacles.

In our framework, the NN is used to learn the BSCPs offline
and approximate them during online optimization. Therefore,
the BSCPs can be evaluated efficiently by avoiding the time
consuming numerical optimization [16], while not compromis-
ing on motion constraints [13], [17] and optimization targets [5],
[18]. Although a similar effect can be achieved with a look-up
table, a densely constructed look-up table can be prohibitively
large for high-dimensional systems, while a sparse one restricts
the BSCPs’ initial condition to certain selected states [19].

The rest of the letter is organized as follows. In Section II,
the related works are reviewed. The overview of the proposed
approach is given in Section III. Section IV discusses the gener-
ation of the BSCP and its corresponding NN with both quadrotor
and unicycle models. In Section V, we discuss how to solve the
resulting optimization problem with two different methods. The
real flight experiments with quadrotors are given in Section VI.
Finally, concluding remarks are provided in Section VII. All
values presented are in SI units unless otherwise stated.

II. RELATED WORKS

The successful application of MPs in local motion planning
can be traced back to earlier works such as [10], in which the
author uses the current state of the vehicle and the desired head-
ing to encode the MPs. A similar approach can be found more
recently in [5], where each MP is generated from the current state
to the desired end velocity by solving a time-optimal BVP in
closed-form. The best motion is then selected from a collection
of uniformly sampled MPs. However, the trajectory could be
unnecessarily aggressive due to the time-optimal formulation. A
similar method that accepts the desired end position can be found
in [18]. In order to achieve a smooth trajectory, works in [13],
[17] use BVP solvers that minimize the integration of the square
of the trajectory’s high order derivatives. For efficiency, the state
constraints are ignored in the BVP, and an extra checking process
is needed to select the valid motions. In applications such as
on-road driving, biased sampling can be adopted to reduce the
search space. In [12], the MPs are regulated onto a carefully
chosen set of terminal states aligned with the reference path and
inside the lane. For applications where such biased sampling
is not possible, a fixed or randomly generated set of MPs is
usually used to construct the search tree [1], [2], [4], [5]. In [7],
a densely sampled motion primitive library is adopted. During
the online execution, the library that is sufficiently close to the
initial condition is chosen to provide the motions. To improve the
resolution of the solution, [11] selects the best matching motions
from a look-up table and uses them to construct the initial guess
for online optimization. However, the size of the look-up table
grows exponentially with its dimension. Similar approaches can
also be found in [6].

On the other hand, the encoding of complex motions requires
an extra set of latent parameters, such as the dynamic movement
primitive (DMP) [20] which is generated with a predefined
linear system and inputs that are parameterized with Gaussian
basis functions. With the increased number of parameters, it
becomes exponentially expensive to find the best motion by

constructing a search tree. Gradient-based methods, like the
sequential quadratic programming, are then adopted [21]. In
[6], [22], a quadrotor and a model car have been successfully
guided through obstacles by performing such optimization at
each control cycle. However, they require the obstacles to be
considered as well-defined geometric shapes. In sensor-based
navigation, constructing these shapes directly from sensor infor-
mation remains a non-trivial task for a general environment. In
[8], obstacles are modeled with a cost map instead of geometric
shapes. A gradient-based method is then applied to the resulting
non-convex problem. Due to the nature of such problem for-
mulations, failure cases are often observed and require random
restarts of the optimization process. Recently, the use of NNs
for local motion planning has been gaining popularity. It can
either be used to model the complex system dynamics and make
predictions on future states given an input sequence [23], [24],
or substitute the local planner entirely through reinforcement
learning [25]. Complex and long-range motions can then be
generated by combining the local motion with a sampling-based
global planner [25], [26].

III. PRELIMINARY

In this section, the proposed framework is presented with a
general mobile robot model.

A. Problem Formulation

Let x ∈ X denote the robot’s state and u ∈ U represent its
input. Assume it has the dynamics

ẋ = f(x,u), (1)

with invariant constraints

h(x,u) = 0, h̃(x,u) ≤ 0 (2)

which are the collection of state and input constraints that
are invariant to the environment. In contrast, the collision free
constraints

x /∈ O (3)

are environment-dependent with O being the obstacle set. As-
sume the initial condition at time instance t0 is

x(t0) = x0. (4)

Let u(t),x(t), t ∈ [t0, t0 + T] represent the input and the state
trajectories respectively with T being the planning horizon. The
local motion planning is then formulated as an MPC problem
which minimizes

J = ζ(x(t0 + T)) +

∫ t0+T

t0

L(x(t),u(t))dt (5)

subject to constraints in Equations (1)–(4). The functions ζ, L
are user-defined terminal and running costs. The optimization is
done every τ seconds with the updated robot and environmental
information. Instead of solving the optimization problem di-
rectly, we use BSCPs to reduce its dimension. The BSCP is the
solution of the BVP:

min
u(t),x(t),tf

G(x(t),u(t), tf) (6)

LAI et al.: MODEL PREDICTIVE LOCAL MOTION PLANNING WITH BOUNDARY STATE CONSTRAINED PRIMITIVES 3579

subject to constraints in Equations (1), (2), (4) and an additional
end state constraint

g(x(tf),θ) = 0 (7)

where G is a user-defined cost function, tf is the final time and
θ denotes parameters of g. If x(tf) happens to be on the trim
manifold [19], it is possible to find a controller that regulates the
system to

‖g(x(tf),θ)‖ < ε, ∀t ≥ tf , (8)

with ε being a small positive number. We formulate the BVP
such that its solutions û(t), x̂(t), t̂f are uniquely dependent on
θ and x0, which can be represented by the mapping:

S : 〈x0,θ〉 →
〈
û(t), x̂(t), t̂f

〉
. (9)

If x0 is fixed through the measurement process, û(t), x̂(t) are
then determined byθ only. The problem of minimizing Equation
(5) can then be rewritten as

min
θ

J =

∫ t0+T

t0

L̄(θ)dt+ C̄(θ) (10)

with L̄, C̄ being the running and the terminal costs respectively.

B. Method Overview

The optimization problem in Equation (10) is usually solved
sparsely by sampling a set of discrete θ, generating a new trajec-
tory for each θ sample, evaluating all trajectories and finding the
best trajectory among them [2], [4], [5], [13], [27]. In this man-
ner, the optimization space is reduced to sparse discrete samples,
and the solution could be highly suboptimal therefore unsuitable
for tasks requiring precise maneuvers. Another challenge is to
evaluate the mapping S efficiently for real-time applications.
Although efficient closed-form solutions are available for some
vehicles, they often ignore certain state constraints [13], [17]
or require specific cost functions [5], [18]. On the other hand,
numerical methods are usually much slower, therefore limited
to a small number of discrete samples [16].

In the proposed method, we approximate S with a neural
network SNN. With modern hardware, the propagation of SNN

can be evaluated very efficiently, which allows the PSO to be
executed in real-time. The gradient dJ

dθ can also be found through
backpropagation, so that J can be minimized with gradient-
based methods. Although look-up tables can be used for a similar
effect, it could become prohibitively large for high dimensional
systems. In [26], an NN is trained to approximate the solution
of the BVP of a nine degrees-of-freedom (DOF) system. The
corresponding look-up table would have entries on the level of
1018, which is challenging to construct and store.

Our approach consists of an offline training stage and an
online MPC stage.
� Offline: Randomly sample the initial state x0 and the end

state constraint θ. Generate trajectories for these sampled
pairs using adequate BVP solvers or controllers. Finally,
train an NN with x0,θ as inputs and the desired trajectory
information, such as the discrete time samples of x̂(t), as
outputs.

� Online: Each online MPC cycle further consists of three
phases.
1) Update the current state of the vehicle x0 and the

environmental information.

2) With x0 fixed, we search for θ∗ that minimizes J (see
Equation (10)). Given an arbitraryθ, the NN can be used
to approximate the trajectory defined by x0 and θ, or
to find the derivative dJ

dθ . Then, gradient-free (see Sec-
tion V-B) or gradient-based (see Section V-A) methods
can be used to find θ∗ in the continuous domain.

3) With θ∗, the reference trajectory is reconstructed with
the original BVP solver or the controller used in the
offline stage. The reference is rechecked against the
constraints. If the checking fails, we try the trajectory
from the previous MPC cycle. In cases where the con-
straints are still violated, an emergency stop command
is issued.

In this manner, the BVPs are solved at most 2 times (when
constructing the final reference) in the MPC cycle. Furthermore,
because the final reference is obtained through the original BVP
solver or controller, it is kept free from the numerical noise
of the NN. The checking on the final reference guarantees the
soundness of the method.

IV. CONSTRUCTION OF BSCP

In this section, we discuss the construction of the BSCP
and its corresponding NN approximation through a quadrotor
model (Section IV-A) and a second order unicycle model
(Section IV-B).

A. Quadrotor

Following [18], the quadrotor is modeled as a 9 DOF system
with a triple integrator on each of its x, y, z axis. In our previous
work [26], we construct the BSCP by solving a 9 DOF BVP
numerically. Here, we show how to construct the BSCP from
a controller designed through dynamic programming (DP). On
each axis, the 3 DOF discrete-time dynamics of a triple integrator
can be expressed as

xq[n+ 1] = Aqxq[n] + bquq[n] (11)

where

Aq =

⎡
⎢⎣
1 Δt Δt2

2

0 1 Δt

0 0 1

⎤
⎥⎦, bq =

⎡
⎢⎣

Δt3

6
Δt2

2

Δt

⎤
⎥⎦.

with state xq = [p, v, a]ᵀ being its position, velocity, accelera-
tion and input uq = j being its jerk. The invariant constraints
are:

v ∈ [vmin, vmax] , a ∈ [amin, amax] , j ∈ [jmin, jmax] (12)

where the limits might be different for each individual axis.
The controller regulates the triple integrator from an arbitrary
initial state to a desired set point xqd = [θq, 0, 0]

ᵀ. The end state
constraint is

gq(xq, θq) = xq − xqd = [p− θq, v, a]
ᵀ = 0 (13)

We define the relative state x̄q and relative position p̄ as

x̄q = xq − xqd, p̄ = p− θq. (14)

Substituting Equation (14) into (11) gives

x̄q[n+ 1] = Aqx̄q[n] + bquq[n]. (15)

3580 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

TABLE I
DETAILS ON THE NEURAL NETWORKS

* MSE: Mean Squared Error. MLP: Multi-Layer Perceptron.

The target now is to regulate x̄q to zero. We use the value function
V (x̄q) to denote the remaining cost from x̄q to the origin, and
it follows

V (x̄q[n]) = C(x̄q[n], uq[n]) + V (x̄q[n+ 1]). (16)

where C(x̄q, uq) is the instantaneous cost. In our implemen-
tation, it is responsible for regulating the system to the origin
while satisfying Equation (12) as soft constraints. Therefore, it
is given as

C(x̄q, uq) = x̄ᵀ
qHx̄q + ru2

q +Hp(x̄q, uq) (17)

where

Hp(x̄q, uq) = wvη
2(v, vmin, vmax) + waη

2(a, amin, amax)

+ wjη
2(j, jmin, jmax)

with η(k, k1, k2) = max (k1 − k, 0) + max (k − k2, 0), k, k1,
k2 ∈ R and wv, wa, wj being weighting factors. Here, Hp(x̄q)
acts as a soft constraint to penalize the violation of Equation
(12). As a necessary condition, the minimum value function for
each state is achieved when

V ∗(x̄q[n]) = min
uq [n]

C(x̄q[n], uq[n]) + V ∗(x̄q[n+ 1]) (18)

is satisfied for all x̄q of interest. Equation (18) is called the Bell-
man equation and can be solved by discretizing the state/input
space and performing value iteration. The resulting optimal
policy π(x̄q) is obtained as a lookup table. With the policy, a
unique state trajectory can be obtained by regulating the system
(given in Equation (11)) from a given initial state to the origin.
The process is represented through mapping

x̄q(t) = S̄(x̄q0), μq = R̄(x̄q0) (19)

where x̄q(t) is the relative state trajectory, μq =
∫
u2
q(t)dt is the

integration of the square of the input and x̄q0 is the relative initial
state. From Equation (14), there is x̄q0 = xq0 − xqd with xq0

being the real initial state. The real state trajectory is recovered
as xq(t) = x̄q(t) + xqd.

In order to limit the size of the NN so that it can be deployed
on devices without GPU, we learn the mapping from x̄q0 to
the relative position p̄(t) instead of the full relative state x̄q(t).
By discretizing p̄(t) at 2 Hz for 20 seconds into the future
and cascading the result with μq , the output of the NN is a
41× 1 vector, whereas its input is a 3× 1 vector (the size
of x̄q0). The training data is collected by randomly sampling
x̄q0 and generating trajectories through forward simulation with
the optimal policy π(x̄q). The sampling volume shall be large
enough such that the generated trajectories cover the state limits
in Equation (12). The NN is trained using PyTorch with the
Adam optimizer and more of its details can be found in Table I.
Although a more complex NN can be used to further reduce
the training error, the four-layer rectifier (ReLU) multi-layer
perceptron (MLP) is adopted for its efficiency on CPU-only

platforms. In this letter, no emergency stop command is issued
through all simulations and experiments with the trained NN.

B. Second Order Unicycle

By reusing some of the symbols in Section IV-A, the model
of the second order unicycle can be expressed as

ẋ = v cos(φ), φ̇ = ω

ẏ = v sin(φ), ω̇ = β

v̇ = a
(20)

where xc = [x, y, v, φ, ω]ᵀ is the state of the vehicle. Here, x, y
are its positions on the 2D plane, v, φ, ω are its speed, heading
angle and angular speed, the input uc = [a, β] includes the
translational and angular acceleration. The invariant constraints
are:

v ∈ [vmin, vmax] , a ∈ [amin, amax]

ω ∈ [ωmin, ωmax] , β ∈ [βmin, βmax]
(21)

The end state constraints are enforced on the heading and the
velocity as:

gc(xc,θc) =

[
0 0 1 0 0

0 0 0 1 0

]
xc −

[
θv
θφ

]

︸ ︷︷ ︸
θc

= 0, (22)

with θv being the end velocity and θφ being the end head-
ing. To solve the BVP, the velocity v is varied linearly with
a = {amin, amax, 0} towards θv. On the other hand, the heading
trajectory is solved as a non-linear optimization problem using
the time-bisection method presented in [26] for a smoother
response. With the velocity and the heading generated, the
overall system trajectory is then constructed through forward
simulation. Other trajectory generation methods can also be used
as long as the solved trajectory xc(t) is uniquely dependent on
the initial condition xc0 and the end state constraint θc. The
mapping from xc0,θc to the trajectory is denoted as

xc(t) = Sc(xc0,θc) (23)

Similar to Section IV-A, the mapping can be learned with a neu-
ral network ScNN. Since the trajectory can be easily translated
and rotated, we assume it always starts from x = 0, y = 0, φ =
0. The NN has an input size of 4× 1 including the desired speed,
the desired heading, and the remaining initial states ω0, v0.
By sampling the resulting position trajectory at 10 Hz for the
future 4 seconds and cascading the result with the total energy
consumption, the output of the NN is an 81× 1 vector. More
details of the network can be seen in Table I. The NN can be
evaluated in 50 μs, while solving the BVP numerically takes
107 ms, both computed in the Matlab with an I7 CPU.

LAI et al.: MODEL PREDICTIVE LOCAL MOTION PLANNING WITH BOUNDARY STATE CONSTRAINED PRIMITIVES 3581

V. MODEL PREDICTIVE MOTION PLANNING WITH BSCP

In this Section, the BSCP is applied to solve the MPC problem
in Equation (5) for local motion planning applications. Unlike
previous methods, the optimization problem is solved in the con-
tinuous domain in this work. In Section V-A, the gradient-based
method is adopted to find the optimal motion. The cost gradient
is obtained through backpropagation of the NN. In Section V-B,
the PSO is adopted for solving the optimization problem. The
commonly used single layer local search tree is, in fact, a PSO
with only one iteration.

A. Gradient Based Method

Gradient-based methods are widely used in solving optimiza-
tion problems. Given a cost function J(x(t),u(t)) and a fixed
initial state x0, the best BSCP can be found by descending θ

in the direction of dJ(x(t),u(t))
dθ , where θ is the parameter of the

end state constraints defined in Equation (7). With the chain rule,
there is

dJ(x(t),u(t))

dθ
=

∂J

∂x(t)

∂x(t)

∂θ
+

∂J

∂u(t)

∂u(t)

∂θ
. (24)

Usually, the ∂J
∂x(t) and ∂J

∂u(t) can be evaluated analytically as long
as the cost function is smooth and directly defined on x(t) and
u(t). On the other hand, the analytical evaluation of the ∂x(t)

∂θ

and ∂u(t)
∂θ requires a closed-form solution to the BVP problem.

For BSCP generated with numerical solvers and controllers, the
gradient needs to be found through numerical differentiation. It
is time consuming as solving the BVP or performing forward
simulation could both be expensive. With the NN approximated
mapping, ∂x(t)

∂θ and ∂u(t)
∂θ can be efficiently evaluated through

backpropagation following the work in [23].
We illustrate the process of finding the dJ

dθ using the quadro-
tor’s model. We first consider a flying-through problem where
the vehicle is tasked to pass a waypoint at a specific time ts. It
can be achieved by minimizing the following cost function

J =
1

2
(p(ts)− pw)

ᵀ(p(ts)− pw) (25)

where p(ts) is the position of the quadrotor at time ts and pw is
the position of the waypoint. Combining Equation (14), there is

J =
1

2
(p̄(ts) + θq − pw)

ᵀ(p̄(ts) + θq − pw). (26)

Taking the derivative to θq gives

dJ

dθq
= (p̄(ts) + θq − pw)

(
dp̄(ts)

dθq
+ 1

)
. (27)

With the mapping in Equation (19) and its NN approximation
S̄NN, there are

p̄(t) = S̄NN(x̄q0) (28)

and

dp̄(t)

dθq
=

dS̄NN

dx̄q0

dx̄q0

dθq
. (29)

Here, the dS̄NN

dx̄q0
can be evaluated through the backpropagation

of the S̄NN [23]. Moreover, there is x̄q0 = xq0 − [θq, 0, 0]
ᵀ

with xq0 being a constant. Therefore, dx̄q0

dθq
can be calculated

Fig. 1. Predicted vs actual trajectory of the quadrotor in gradient descent.

Fig. 2. Single axis trajectory tracking with the quadrotor.

analytically. Substituting Equation (29) into (27), the gradient
dJ
dθq

is acquired, and methods like [28] can be used to minimize
the cost J . In Figure 1, we use the gradient descent method
to find a trajectory that guides the quadrotor on a 2D plane to
pass through a waypoint at pw = [−1, 5] at ts = 3. The initial
states are p0 = [0, 0], v0 = [2, 1] and a0 = [−1,−1]. The same
optimization procedure can also be used for the MPC problem
in Equation (6). For example, given a reference signal pref(t),
trajectory tracking can be achieved by minimizing the cost
function:

J =

∫ t0+T

t0

(p(t)− pref(t))
ᵀ(p(t)− pref(t))dt (30)

in the MPC’s receding horizon fashion. For the ease of visual-
ization, we track a reference signal on a single axis in Figure 2.
The reference signal is a combination of step, cosine and ramp
signals. It is not always smooth and dynamically feasible to the
quadrotor. However, thanks to the underlying MPs, the invariant
constraints are always satisfied with an average tracking error
of 0.64.

B. Particle Swarm Optimization
In this section, we combine the BSCP with the PSO for local

motion planning. Methods based on single layer search trees
are a special case of the PSO algorithm, and they can be easily
adapted into the PSO scheme for optimization in the continuous
domain. PSO is a gradient-free technique, and it is capable of

3582 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

Fig. 3. Comparison of the tracking performance between using PSO and the
uniform sampling applied on a second order unicycle.

Algorithm 1: Particle Swarm Optimization.
Input: xini,M(map)
Output: θ∗ (best end state constraint)

1: Θ← Particle_Initialization();
2: c∗i ←∞, θ∗i ← θi, δi ← rand, ∀i ∈ [1, size(Θ)]
3: for m = 1 to MAX_ITERS do
4: for each θi ∈ Θ do
5: [x(t), u(t)] = SNN(xini,θi)
6: ci = J(x(t), u(t),M)
7: if ci < c∗i then
8: c∗i = ci
9: θ∗i = θi

10: i∗ = argmin
i

(c∗i)

11: θ∗ = θi∗

12: for each θi ∈ Θ do
13: δi = δi + k1 · rand · (θ∗i − θi) + k2 · rand ·

(θ∗ − θi)
14: θi = θi + δi

finding the solution even the cost function is non-continuous.
The PSO process is given in Algorithm 1. First, a finite set of
particles Θ is initialized (line 1). Each particle represents an end
state constraint. For the ith particle θi, θ

∗
i denotes its best value

among all previous iterations with c∗i being the corresponding
cost value. The δi is its velocity in the parameter space. They are
initialized in line 2 either randomly or with a predefined pattern.
Within each iteration, we evaluate each particle with a cost
function J (line 5–6), and update c∗i , θ

∗
i (line 7–9). During the

evaluation process, the state trajectory is obtained with the NN
mappingSNN, and evaluated againstJ with current environment
mapM. Then the global best target θ∗ is found in line 10–11.
Finally, the particle velocity and its location are updated in line
12–14. It is worth noting if the PSO is limited to one iteration, it
becomes a local search tree based method. In line 1–9, a single
layer search tree is constructed. In line 10–11, the best trajectory
is selected from the tree. With multiple iterations, the search tree
is gradually modified and converged to the optimal value.

In Figure 3, a second order unicycle presented in Section IV-B
is tasked to track a moving reference. Its invariant constraints
are v ∈ [−0.5, 4], a ∈ [−2, 2], ω ∈ [−1, 1] and β ∈ [−2, 2]. The
cost function is

J =

∫ t=t0+T

t=t0

Qc(xc(t)) + wrRc(θc)dt

Qc(xc(t)) = (xc(t)− xcref(t))
ᵀ(xc(t)− xcref(t))

Rc(θc) =
∥∥θc − θc,previous

∥∥
2
. (31)

TABLE II
PERFORMANCE OF PSO AND UNIFORM SAMPLING

Fig. 4. Motion planning in the indoor environment.

The tracking is done using MPC with prediction horizon T = 4s
and the re-planning frequency of 2 Hz. In each MPC iteration,
we compare the PSO’s performance with the uniform sampling
strategy [5], [7], and the random sampling strategy [2]. In
the uniform/random sampling cases, 100 uniformly/randomly
sampled end state constraints are drawn from θv ∈ [−0.5, 4] and
θφ ∈ [−0.9π + φ0, 0.9π + φ0] with θv, θφ defined in Equation
(22) and φ0 being the initial heading. The PSO has 10 randomly
initialized particles and is iterated for 10 times. Here, we use
the unicycle BSCP presented in Section IV-B. All methods have
the same computational burden of evaluating 100 trajectories.
The result can be seen in Figure 3. Compared to the uniform
and random sampling, PSO gives a much smoother trajectory
by optimizing in the continuous domain. The smoothness is

measured by calculating ηφ =
∫
ω2(t)dt
Ttotal

, ηv =
∫
a2(t)dt
Ttotal

where
Ttotal is the total time of the trajectory. The comparison of
the smoothness and the average tracking error are given in
Table II. The values are acquired as average of 10 consecutive
runs. Besides tracking a moving reference, the PSO method
is also suitable for guiding the vehicle in an obstacle-strewn
environment. Here, we use it to guide a quadrotor in a simulated
indoor environment. Following Equation (11), where xq is the
vehicle’s state on a single axis, we use Xq = [xq

ᵀ
x,xq

ᵀ
y ,xq

ᵀ
z]

ᵀ

to denote the vehicle’s state in the 3D space. The cost function
for indoor navigation is then

J =

∫ t=t0+T

t=t0

Hq(Xq(t)) +Oq(Xq(t))dt (32)

The local motion is encoded with the BSCP and the MPC is
executed at 4 Hz with a prediction horizon of 10 seconds. Here,
the heuristic Hq is the remaining distance to the target and is
estimated by a global planner. The ability of the vehicle to
handle non-convex obstacles depends on the accuracy of Hq .
Following [4], we use Dijkstra’s algorithm to calculate Hq for
each grid in the workspace. In practice, efficient methods like
[3], [29] can be used to estimate the heuristics partially. The
incomplete heuristics can then be updated with hierarchical
planning techniques [30]. The details on the integration of the
global and the local planner are out of the scope of this letter. The
obstacle cost Oq is defined upon a cost map (see Figure 4(a) and

LAI et al.: MODEL PREDICTIVE LOCAL MOTION PLANNING WITH BOUNDARY STATE CONSTRAINED PRIMITIVES 3583

TABLE III
TIME CONSUMPTION BETWEEN NN AND FORWARD SIMULATION

Fig. 5. The real flight experiment of flying through complex environments
to reach a series of targets. The location of the next target is not known to the
quadrotor until it reaches the current target. (The obstacle plots are for illustration
purpose only, the planning is based on an EDT map.)

4(b)). Each grid in the map is given a cost value depending on its
distance γ to the nearest obstacle. The obstacle cost Oq(Xq(t))
is then evaluated as the sum of the cost of the grids that are
occupied by the robot while atXq(t). One possible way to assign
the grid cost is through the dilation. Specifically, a grid with
γ < rs can be identified and assigned with a high-cost value,
where rs is a design factor. However, the resulting cost function
jumps at the edge of the dilated obstacles. To get a smooth cost
map, techniques such as Euclidean distance transform (EDT)
are often used, but incurring a higher computational burden.
Unlike the gradient-based method [8], a smooth cost map is
not a necessity for the PSO algorithm. Figure 4(a) and 4(b)
demonstrate the PSO planning results on both non-smooth and
smooth cost maps. Furthermore, we compare our BSCP (from
Section IV-A) to the state-of-the-art one [18] by examining the
smoothness of the overall trajectory. A hundred consecutive sim-
ulations are conducted with randomly sampled initial and target
positions in the indoor environment (Figure 4(b)) using both
BSCPs, and the vehicle always safely reaches the target. The
smoothness is then evaluated with the time-averaged integration
of the square of the jerk (denoted as ηj) [13]. The one from [18]
gives ηj = 4.44× 105, while the proposed BSCP results in a
much smoother flight with ηj = 7.87× 103. The BSCP in [18]
is set to be time optimal for an efficient closed-form solution
but causes unnecessary aggressive maneuvers. In contrast, our
BSCP optimizes a multi-objective target that includes the square
of the jerk, therefore generates a smoother response. In terms
of computational efficiency, the two methods are close to each
other. The NN of our BSCP can be evaluated in 3 μs in PyTorch
with the TX2 GPU while the BSCP in [18] takes 2.5 μs in C++
with an I7 CPU.

VI. EXPERIMENT WITH QUADROTORS

In this Section, the performance of the proposed framework
is studied with real flight experiments on quadrotors (the ex-
periment video is in the attached file). The BSCP used here is
the one discussed in Section IV-A. The NNs used for the model
prediction can be seen from Table I. To solve the optimization
problem, we use the PSO algorithm presented in Section V-B.
The calculation within each iteration is implemented parallelly
to utilize the modern multicore hardware fully. In Table III, we

Fig. 6. Real flight experiments of trajectory following. In the case that an
obstacle blocks the desired trajectory, the quadrotor could avoid it by deviating
from the path and converge back to it afterward.

Fig. 7. Real flight experiments of sensor based navigation in an underground
car park. (The obstacle pillars are for illustration purpose only, the environment
is priorly unknown. The cost map is constructed with a ZED camera and an
RP-lidar.)

compare the time consumption between evaluating the NN and
forward simulation for 20 seconds. The NN helps to increase
the efficiency on both the CPU and the GPU.

In Figure 5, the quadrotor is tasked to fly in a 4 m× 4 m× 2 m
space containing 7 pillars and 13 strings. The online planning
is done wirelessly on a laptop equipped with an Intel I7 CPU.
The quadrotor has no prior knowledge about the locations of its
targets. It is given the next target only if it enters the reaching
radius (0.3 m) of the current one. The localization and obstacle
sensing are achieved with the VICON system. The environment
is represented as a 3D EDT map. For the PSO algorithm, 40 par-
ticles are iterated over 20 times, which averagely takes 14 ms on
the I7 CPU. The model predictive planning is executed at 10 Hz.
The experiment is repeated 4 times consecutively. The quadrotor
can reach every target safely in all trails. The maximum speed
reached is 1.39 m/s with an average speed of 0.74 m/s. With the
10 Hz replanning rate, the quadrotor is also capable of avoiding
dynamic obstacles (see the experiment video).

Moreover, our method also allows for obstacle avoidance
while following a reference trajectory. In Figure 6(a), the vehicle
follows a given trajectory with an average tracking error of
0.31 m. In Figure 6(b), a pillar is added to block the desired
trajectory with a forbidden radius of 1.2 m. The vehicle auto-
matically avoids the obstacle and converges back to the reference
trajectory afterward. The reference trajectory can also be given
online by another moving object such as a marker in the user’s
hand (see the experiment video). Finally, the proposed method
is tested with sensor-based navigation tasks in an underground
car-park which has approximately 0.02 pillars per m2. The vehi-
cle has no prior information of the environment; the localization
and mapping are achieved with a ZED stereo camera and an
RP-lidar laser scanner. All algorithms are running onboard with
a TX2 computer. The PSO uses 15 particles over 10 iterations
which consume 14 ms on the TX2 CPU averagely. In Figure 7(a),
the vehicle performs a zig-zag flight among 4 waypoints while
avoiding obstacles, the maximum speed reached is 3.25 m/s,

3584 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

and the average speed is 2.0 m/s. In Figure 7(b), the vehicle flys
forward for about 40 m, the maximum speed reached is 2.5 m/s,
and the average speed is 1.7 m/s. A total of 12 similar flight ex-
periments are conducted. The total length of the flight is 933.2 m,
and the quadrotor is always capable of reaching the targets safely.

VII. CONCLUSION

In this letter, we have presented a local motion planning frame-
work based on BSCPs and model predictive control. By approxi-
mating the BSCP with a neural network, it allows the fast evalua-
tion of local trajectory and its derivative against the cost function.
Furthermore, we formally express the local motion planning
with BSCPs as an optimization problem where the programming
variables uniquely define the end state constraints. With two dif-
ferent optimization techniques, we demonstrate that the resulting
optimization problem can be solved efficiently in the continuous
domain. It gives an increased performance for tasks that require
precise maneuver. It also allows the BSCPs without closed-form
solution to be used in online optimization with algorithms such
as the PSO. Finally, the proposed method is tested with real flight
experiments on quadrotors for various tasks.

REFERENCES

[1] T. Howard, M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Model-
predictive motion planning: Several key developments for autonomous
mobile robots,” IEEE Robot. Autom. Mag., vol. 21, no. 1, pp. 64–73,
Mar. 2014.

[2] A. A. Paranjape, K. C. Meier, X. Shi, S.-J. Chung, and S. Hutchinson,
“Motion primitives and 3d path planning for fast flight through a forest,”
Int. J. Robot. Res., vol. 34, no. 3, pp. 357–377, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914558017

[3] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based meth-
ods for motion planning with constraints,” Annu. Rev. Control, Robot.,
Auton. Syst., vol. 1, no. 1, pp. 159–185, 2018. [Online]. Available:
https://doi.org/10.1146/annurev-control-060117-105226

[4] P. Florence, J. Carter, and R. Tedrake, “Integrated perception and control
at high speed: Evaluating collision avoidance maneuvers without maps,”
in Proc. Int. Workshop Algorithmic Found. Robot., 2016.

[5] B. T. Lopez and J. P. How, “Aggressive 3-D collision avoidance for high-
speed navigation,” in Proc. IEEE Int. Conf. Robot. Autom., May 2017,
pp. 5759–5765.

[6] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale RC cars,” Optimal Control Appl. Methods,
vol. 36, pp. 628–647, 2015.

[7] X. Yang, K. Sreenath, and N. Michael, “A framework for efficient tele-
operation via online adaptation,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2017, pp. 5948–5953.

[8] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Gal-
ceran, “Continuous-time trajectory optimization for online UAV replan-
ning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2016,
pp. 5332–5339.

[9] S. Kuindersma et al., “Optimization-based locomotion planning, es-
timation, and control design for the atlas humanoid robot,” Auton.
Robots, vol. 40, no. 3, pp. 429–455, Mar. 2016. [Online]. Available:
https://doi.org/10.1007/s10514-015-9479-3

[10] I. Ulrich and J. Borenstein, “Vfh+: Reliable obstacle avoidance for fast
mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom., May 1998, vol. 2,
pp. 1572–1577.

[11] D. Ferguson, T. M. Howard, and M. Likhachev, “Motion planning in urban
environments: Part I,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep. 2008, pp. 1063–1069.

[12] U. Schwesinger, M. Rufli, P. Furgale, and R. Siegwart, “A sampling-based
partial motion planning framework for system-compliant navigation along
a reference path,” in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2013,
pp. 391–396.

[13] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient
motion primitive for quadrocopter trajectory generation,” IEEE Trans.
Robot., vol. 31, no. 6, pp. 1294–1310, Dec. 2015.

[14] M. Hwangbo, J. Kuffner, and T. Kanade, “Efficient two-phase 3D motion
planning for small fixed-wing UAVs,” in Proc. IEEE Int. Conf. Robot.
Autom., Apr. 2007, pp. 1035–1041.

[15] M. Pivtoraiko, I. A. D. Nesnas, and A. Kelly, “Autonomous robot navi-
gation using advanced motion primitives,” in Proc. IEEE Aerosp. Conf.,
Mar. 2009, pp. 1–7.

[16] J. Tordesillas, B. T. Lopez, J. Carter, J. Ware, and J. P. How, “Real-time
planning with multi-fidelity models for agile flights in unknown environ-
ments,” 2018, arXiv preprint arXiv: 1810.01035.

[17] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frent frame,” in Proc. IEEE
Int. Conf. Robot. Autom., May 2010, pp. 987–993.

[18] M. Hehn and R. D’Andrea, “Real-time trajectory generation for quadro-
copters,” IEEE Trans. Robot., vol. 31, no. 4, pp. 877–892, Aug.
2015.

[19] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion plan-
ning for nonlinear systems with symmetries,” IEEE Trans. Robot., vol. 21,
no. 6, pp. 1077–1091, Dec. 2005.

[20] S. Schaal, Dynamic Movement Primitives: A Framework for Motor Control
in Humans and Humanoid Robotics. Berlin, Germany: Springer, 2006,
pp. 261–280. [Online]. Available: https://doi.org/10.1007/4-431-31381-
8_23

[21] R. Krug and D. Dimitrov, “Model predictive motion control based on gen-
eralized dynamical movement primitives,” J. Intell. Robot. Syst., vol. 77,
no. 1, pp. 17–35, Jan. 2015. [Online]. Available:10.1007/s10846-014-
0100-3

[22] I. M. Caireta, “Planning and control of a multiple-quadcopter system coop-
eratively carrying a slung payload in dynamical environments,” Bachelor’s
thesis, Barcelona School of Informatics, Polytechnic Univ. of Catalonia,
Spain, 2019.

[23] I. Lenz, R. A. Knepper, and A. Saxena, “DeepMPC: Learning deep latent
features for model predictive control,” in Proc. Robot., Sci. Syst., Rome,
Italy, 2015.

[24] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,”
in Proc. IEEE Int. Conf. Robot. Autom., May 2017, pp. 2786–2793.

[25] A. Faust et al., “PRM-RL: Long-range robotic navigation tasks by combin-
ing reinforcement learning and sampling-based planning,” in Proc. IEEE
Int. Conf. Robot. Autom., May 2018, pp. 5113–5120.

[26] M. Lan, S. Lai, and B. M. Chen, “Towards the realtime sampling-based
kinodynamic planning for quadcopters,” in Proc. 11th Asian Control Conf.,
Dec. 2017, pp. 772–777.

[27] T. M. Howard, C. J. Green, and A. Kelly, State Space Sampling of Feasible
Motions for High Performance Mobile Robot Navigation Highly Con-
strained Environments. Berlin, Germany: Springer, 2008, pp. 585–593.
[Online]. Available: https://doi.org/10.1007/978-3-540-75404-6_56

[28] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” J. Mach. Learn. Res., vol. 12,
pp. 2121–2159, 07 2011.

[29] D. Harabor and A. Grastien, “Online graph pruning for pathfinding on
grid maps,” in Proc. 25th AAAI Conf. Artif. Intell., 2011, pp. 1114–1119.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2900423.2900600

[30] H. Zhang, J. Butzke, and M. Likhachev, “Combining global and local
planning with guarantees on completeness,” in Proc. IEEE Int. Conf.
Robot. Autom., May 2012, pp. 4500–4506.

https://dx.doi.org/https://doi.org/10.1007/4-431-31381-8_23
https://dx.doi.org/10.1007/s10846-014-0100-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

