
第 36 卷第 11 期
2019年 11 月

控 制 理 论 与 应 用
Control Theory & Applications

Vol. 36 No. 11
Nov. 2019

度度度量量量区区区间间间时时时序序序逻逻逻辑辑辑下下下四四四旋旋旋翼翼翼的的的集集集成成成任任任务务务与与与运运运动动动规规规划划划

蓝梦露1†, 赖叔朋2, 陈本美2,3

(1. 新加坡国立大学综合科学与工程研究生院, 新加坡 117583;

2. 新加坡国立大学电子工程系, 新加坡 117573; 3. 香港中文大学机械及自动化工程系, 中国香港)

摘要: 本文采用优化方法解决度量区间时序逻辑下进行四旋翼的集成任务与运动规划问题. 传统方法通常将任

务约束和运动约束分层处理. 由于不同规划层所使用的抽象模型并不完全匹配, 任务规划层求解出的高层策略往

往无法有效地被低层的运动规划层执行, 从而只能找到次优的运动轨迹甚至找不到解. 本文摒弃分层规划的策略,
采用B样条拟合运动轨迹, 将问题转化问一个混合整数线性规划问题, 直接在同一层处理带有时序逻辑的任务约束

以及运动约束. 与其他现有方法对比, 本文的方法保证了连续时间下的轨迹也可以完全满足所有约束条件, 而非只

有离散的轨迹点才可以满足. 用四旋翼模型进行了一系列仿真验证, 仿真结果表明了方法的有效性.
关键词: 任务与运动规划; 时序逻辑; B样条

引用格式: 蓝梦露, 赖叔朋, 陈本美. 度量区间时序逻辑下四旋翼的集成任务与运动规划. 控制理论与应用, 2019,
36(11): 1952 – 1964

DOI: 10.7641/CTA.2019.90602

Integrated task and motion planning for quadrotors under
metric interval temporal logic specifications

LAN Meng-lu1†, LAI Shu-peng2, CHEN Ben-mei2,3

(1. Graduate School for Integrative Science & Engineering, National University of Singapore, Singapore 117583;
2. Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583;

3. Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China)

Abstract: This paper presents an optimization-based method for the integrated task and motion planning problem under
temporal specifications. It is traditional to handle the task specifications and the continuous motion trajectory in separate
layers. Due to model mismatching at different layers, it often leads to a sub-optimal or even infeasible trajectory. In this
paper, we use the B-spline to formulate a mixed integer programming problem to satisfy the temporal constraints and
generates a dynamically feasible trajectory in one run. Compared to existing works, our method guarantees the satisfaction
of the state and temporal constraints over the entire trajectory instead of at discrete time points. The proposed method is
tested with a simulated quadrotor and validated with various examples.

Key words: task and motion planning; temporal logic; B-spline
Citation: LAN Menglu, LAI Shupeng, CHEN Benmei. Integrated task and motion planning for quadrotors under metric

interval temporal logic specifications. Control Theory & Applications, 2019, 36(11): 1952 – 1964

1 Introduction
Planning is an essential module in any autonomous

system. In the context of robotics, the planning problem
is typically decoupled into two layers, i.e, motion plan-
ning and task planning. Lower-level motion planning
focuses on the continuous domain and mainly handles
the dynamics constraints of the vehicle and the geomet-
ric constraints presented in the work-space. It aims to
find a dynamically feasible and collision-free trajectory
from one state to another. On the other hand, higher-
level task planning normally works with an abstrac-
tion of the original system and focuses on the discrete-

domain. It aims to find a sequence of coarse actions (or
sometimes a policy) that satisfies task-related require-
ments, such as “go to rooms P1 or P2 and then go to
room P3” and “If the robot find a parcel in room A, it
shall then deliver the package to the room B within 5
time units.” These task requirements often require the
reasoning over the time domain and thus can be formal-
ized using the temporal logic formulas.

The major problem of two-layered approach is that
the discrete model used in task planning layer often to-
tally ignores complex dynamics details and thus gener-
ates a sub-optimal or even an infeasible task plan for the

Received 27 July 2019; accepted 17 October 2019.
†Corresponding author. E-mail: lanmenglu@u.nus.edu.sg;
Recommended by Associate Editor: PEI Hai-long.

No. 11
LAN Meng-lu et al: Integrated task and motion planning for quadrotors under

metric interval temporal logic specifications 1953

lower-level motion module to implement[1–2]. An addi-
tional interface layer or intermediate procedure[3–7] is
often required to communicate between two levels, up-
date the high-level abstraction and perform necessary
re-planning procedures.

Instead of using the two-layered approach, one can
directly formulate the task requirements as a set of con-
straints over the underlying detailed dynamics mod-
el[8–11]. The integrated task and motion planning prob-
lem is then formulated into a single optimization prob-
lem. Often, the task requirements are formalized as
temporal logics, such as linear temporal logics (LTL)
and signal temporal logics (STL). The temporal formu-
las are then translated into a set of mixed-integer linear
constraints. The resulting optimization problem can be
handled within a mixed-integer linear or quadratic pro-
gramming (MILP or MIQP)[12] framework. However,
existing works focus only on point-wise constraints in-
stead of interval-wise one. They often either directly
assume that a discrete-time model is available, or use
sampling-based techniques to abstract the original con-
tinuous dynamics into a discrete-time one. These works
adopt the point-wise semantics of the temporal formu-
las. In other words, the state trajectory is interpreted as
timed words (a sequence of timestamp and state pair)
instead of a continuous signal (a sequence of intervals
where the state holds). As a result, constraints are only
effective on time points, and there is no guarantee of the
satisfaction between two time points.

To address the issue, in this paper, we use smooth-
ing B-spline to parametrize the system trajectory and
formalize the task requirements as metric interval tem-
poral logic (MITL). With the B-spline formulation, we
can directly work with the continuous dynamics model
instead of abstracting it into a discrete-time one. More
importantly, the convex hull property of the B-spline al-
lows us to address the interval-wise constraints system-
atically. Unlike common approaches based on point-
wise semantics, we partition the time domain into a se-
quence of time intervals and translate temporal formulas
into mixed-integer linear constraints over time interval-
s instead of time points. We illustrate our idea with a
quadrotor model. Together with the vehicle dynamics
and other constraints such as trajectory smoothness, the
overall formulation remains an MIQP problem.

In summary, the advantages of our approach in-
cludes:

· By satisfying all temporal logical and motion-
level constrains in a mixed-integer programming, we
avoid the problem of model mismatching due to differ-
ent levels of abstraction in the task and motion planning
layer.

· By utilizing the B-spline to represent the motion
trajectory, all constraints can be satisfied on the entire

trajectory compared to individually sampled points in
existing methods.

The rest of the paper is organized as follows. In
Section 2 and Section 3, we present the related-works
and the mathematical problem formulation of the inte-
grated task and motion planning under temporal speci-
fications. Section 4 and Section 5 discuss the proposed
method, i.e., how to formulate the integrated task and
motion planning problem into a MIQP optimization
problem using B-spline. Simulations and experiments
are provided in Section 6. Finally, Section 7 draw some
concluding remarks.

2 Related works
In this section, we present some related works. We

first discuss the traditional two-layered planning frame-
work for the integrated task and motion planning prob-
lem. Then we proceed to discuss the two major meth-
ods for planning under temporal specifications, since
the conventional planning techniques only handle the
reachability issue (i.e, find a path from one state to an-
other). Specifically, we present automata-based method
and the optimization-based method.
2.1 Two-layered planning framework

Task planning and motion planning are normally
viewed as two different research domains. The key rea-
son for such an impression is that the former normal-
ly deals with abstract discrete dynamics while the lat-
ter focuses more on the continuous domain. There are
various specialized algorithms and techniques for each
domain.

At the task level, one can specify task requirements
either in temporal logics or in planning domain defini-
tion language (PDDL). One often refers to the planning
under temporal logics as a synthesis problem. Since
we also use temporal logic as our formal task specifi-
cation, we will give a more detailed review of the con-
trol synthesis under temporal logic in the latter part of
this section. Note that it is also possible to express
temporal constraints using PDDL[13]. Control synthesis
approach and PDDL planning approach are generally
different in terms of problem formulation, algorithms
complexity, and the expressively of the specification.
The two approaches are often studied by two different
communities. The synthesis problem is studied more
often in the control community and model checking
community while the PDDL planning is studied more
in the artificial intelligence planning community. Re-
cently, there are more research efforts that aim to close
the gap. For instance, [14] handles the non-reactive LTL
synthesis problem by compiling the automata generated
from LTL into a PDDL action with conditional effects.
The resulting problem then can be solved by any stan-
dard PDDL classical planner[15]. [16] handles the reac-
tive LTL synthesis problem by compiling the two-player

1954 Control Theory & Applications Vol. 36

game into a standard fully observable planning problem
(FOND). Any PDDL FOND planner thus can be used
to solve the problem.

The integration of task and motion planning is not
a trivial issue. The high-level task plan may be infeasi-
ble for lower-level motion planner to implement. This
is due to the fact that, in a common hierarchical layered
planning framework, task planning model is essential-
ly an abstraction of the motion-level model; however,
it is very difficult to obtain a correct abstraction such
that every high-level plan can be implemented by the
lower-level planner. In practice, one often adopts the
iterative planning strategy. Specifically, one can start
with a guessed task-level abstraction, and then plan with
the guessed model. If the lower-level motion planner
cannot implement the resulting task plan, the planner
should figure out the reasons and update the high-level
abstraction accordingly. A new planning cycle then be-
gins with the updated high-level task model. For in-
stance, [3] use an independent interface to communi-
cate the geometric details from the motion level to task-
level in terms of the logical predicate. [6, 17–18] parti-
tion the state space into several regions to form an ab-
straction. The discrete plan helps the sampling-based
motion tree to identify the best possible region to ex-
plore. The motion tree also feedbacks utility informa-
tion to the discrete planner, i.e., updates the discrete ab-
straction by adjusting region weights. [19] unifies the
sampling-based planning for integration task and mo-
tion planning. It abstracts the motion planner into a
PDDL action. By performing conditional sampling in
task-motion space, it constructs a sampling-based ab-
straction. A discrete planner is then performed on this
abstraction. If the planner fails to find a solution, more
samples will be drawn to provide a denser abstraction.
Though iterative planning provides a solution to the in-
tegrated task and motion planning problem, it should be
noted that it remains challenging to identify the lower-
level planning failure reasons and figure out how to up-
date the high-level abstraction.
2.2 Automata-based methods for planning under

temporal specifications
One popular approach to synthesize a controller un-

der temporal specification is based on the automata the-
ory[6, 20–22]. The basic procedure can be summarized
as follows. First, the temporal logic is translated in-
to an equivalent automaton in the sense that the lan-
guage satisfying the temporal formula is the same lan-
guage accepted by the automaton. For instance, it has
been proven that any linear temporal logic (LTL) for-
mula can be fully mapped to an Büchi automaton and
there are various tools available such as LTL2BA[23]

and Spot[24]. After obtaining the specification automa-
ton, one can create a product automaton between the
system abstraction (which is represented as a labelled

transition system) and the specification automaton. Fi-
nally, one can search for a satisfying path or policy over
the product automaton. The automata-based synthe-
sis approach is frequently combined with the iterative
planning technique to handle partially unknown envi-
ronments[6, 22]. Sampling-based techniques can also be
integrated with automata-based control synthesis[25–26].
There are also research efforts focusing on partial speci-
fication satisfaction based on automata-based synthesis
approach[6, 27–28]. Reactive synthesis with state uncer-
tainty is also studied[29]. To synthesize a control strat-
egy under MITL specifications, timed automata can be
used. The system abstraction and specification automa-
ton are all expressed in timed automaton[30]. A timed
path (a sequence of the time-stamped waypoints) is ob-
tained for a lower-level planner to follow. Algorithms
of translating MITL specifications into timed automa-
ton can be found in [31].

2.3 Optimization-based method for planning un-
der temporal specifications

The temporal specification can also be translated
directly into a set of constraints over the original dy-
namical system. The overall formulation is then solved
in an MILP/MIQP framework, assuming the predicates
are linear. Such an approach is generally referred as
control synthesis from an optimization perspective[32].
Pioneer work of such an approach can be found in [8],
where the author encodes the LTL formulas into a set of
mixed-integer constraints. There is also various work
focusing on the encoding of STL[9]. Instead of Boolean
satisfaction, STL can provide quantitative satisfaction.
For each STL formula, one can assign a robustness s-
core over it to evaluate the robustness of the satisfaction.
Such a robustness score can be seamlessly integrated
into an optimization problem. [9] extends the synthe-
sis problem into a receding horizon control framework.
The major problem of MILP approach is the high com-
putational burden, due to a large set of binary variables.
Work in[33] adopts an iterative planning approach and
introduce fewer binary variables for each iteration. The
idea is to guess a trajectory first and identify the vio-
lated points. Then they add new constraints over these
violation points and solve again, which shares a similar
idea of incremental constraints solving[5]. [34] provides
a differentiable approximation of robustness function,
and thus formulates an SQP problem for higher compu-
tational speed. [35] goes one step further by defining a
new robustness score (Arithmetic-Geometric Mean Ro-
bustness) which directly has gradient information avail-
able. As mentioned, existing works adopt point-wise
semantics of the temporal formulas and there is no guar-
antee that the constraints will be satisfied between t-
wo discrete time points. The major difference of our
proposed method is that we can guarantee interval-wise
constraints satisfaction.

No. 11
LAN Meng-lu et al: Integrated task and motion planning for quadrotors under

metric interval temporal logic specifications 1955

3 Problem formulation
In this section, we present the problem formulation

for the integrated task and motion planning problem. S-
ince we formalize the task specifications using the met-
ric interval temporal logic (MITL), we will first provide
some preliminaries on MITL.
3.1 Signal and MITL

Let T denote the time domain, which is the set of
non-negative real number R> 0. A time interval I is
a non-empty convex subset of the time domain T . An
interval I that sup(I) exists is called a bounded interval.
We use |I| to represent sup(I)-inf(I). Let I and J be
two intervals over T , the Minkowski sum of two inter-
vals I ⊕ J is the set {r + s ∈ T |r ∈ I, s ∈ J}. Sim-
ilarly, the Minkowski difference of two intervals I ⊖ J
is the set {r − s ∈ T |r ∈ I, s ∈ J}.

Table 1 Minkowski sum of two intervals
⊕ [c (c

[a [a+ c (a+ c

(a (a+ c (a+ c

⊕ d) d]

b) b+ d) b+ d)

b] b+ d) b+ d]

LetAP denote a set of atomic propositions. A state
σ over AP is the subset of AP . A signal γ over 2AP

is a function γ : T −→ 2AP . In this work, we assume
the signal has only finitely many discontinuities over a
bounded time interval, in other words, we exclude the
Zeno signal.

We consider a time interval sequence Ī =
I0I1I2 · · · , which partitions the time domain T (i.e,
1) ∀i > 0, sup(Ii) = inf(Ii+1) and the intersection of
Ii and Ii+1 is the empty set; 2) ∀t ∈ T, t ∈ Ii for some
i). The corresponding state sequence over the propo-
sition set 2AP is σ̄ = σ0, σ1, σ2, · · · . Then the timed
state sequence over 2AP is a pair κ = (σ̄, Ī) where
σ̄ and Ī are state sequence and interval sequence over
2AP respectively. We let κ(t) = σi if t ∈ Ii for some
i > 0, and k(t) is essentially a signal over 2AP in the
time domain T .

We now introduce metric interval temporal logic
(MITL). Formally, MITL formula over a set of proposi-
tions AP are defined according to the grammar:

φ ::= p | ¬φ | φ ∧ φ | φ UI φ, (1)

where p ∈ AP and I is a non-singular interval of T
with rational end-points. ¬ and ∧ are standard Boolean
operator negation and conjunction. Other boolean con-
nectives, disjunction (∨), implication (⇒) and equiva-
lence (⇔), are defined as standard. UI denotes temporal
operator until. Other temporal operators eventually ♢I
and always �I can be derived:

♢Iφ := True UIφ, �Iφ := ¬♢I¬φ. (2)

There are two types of semantics for MITL, one is
point-wise semantics where the MITL formula is inter-
preted over timed words; the other is continuous seman-

tics where the formula is interpreted over signals. We
focus on the continuous semantics. Given a signal γ
over 2AP , t ∈ T , and a formula φ, the satisfaction rela-
tion γ, i |= φ (whether the signal γ satisfies the formula
φ at time t) is recursively defined as

· γ, t |= p iff p ∈ γ(t);
· γ, t |= ¬φ, iff σ, i |̸= φ;
· γ, t |= φ1 ∧ φ2, iff γ, i |= φ1 and γ, t |= φ2;
· γ, t |= φ1UIφ2, iff ∃ t′ ∈ t⊕ I , γ, t′ |= φ2 and

∀ t′′ ∈ (t, t′), γ, t′′ |= φ1 .
Remark Metric temporal logic (MTL) can be seen as

a timed version of linear temporal logic (LTL). LTL consider-
s only the ordering of the events but MTL extends LTL with
quantitative timed information. However, it has been shown
that the model checking of MTL is non decidable over the in-
finite continuous semantics[36]. To address the issue, metric
interval temporal logic (MITL), as a fragment of MTL is pro-
posed. Unlike MTL, MITL does not allow punctuality. In other
words, singular time interval for temporal operator is not al-
lowed in MITL. Signal temporal logic (STL)[37] can be seen as
a special extension (real-valued signals) of the bounded subset
of MITL, i.e, MITL[a,b].

3.2 Integrated task and motion planning
We consider a system with the state space X ⊆ Rn.

The state evolves according to a constrained differential
equation:

ẋ(t) = f(x(t), u(t)), x ∈ XC, (3)

where XC ⊆ X ⊆ Rn describe the state constraints. U
is a set of admissible control inputs, and u(t) ∈ U is
the control signal.

The semantics of a proposition p ∈ AP is defined
over the state space X by a function HOLDS(p, x) :
AP × X → {⊤,⊥}, which indicates whether or not
x ∈ X satisfies p. A mapping M : V → 2AP defines
all the propositions satisfied by the state x:

M(x) = {p| p ∈ AP and HOLDS(p, x) = ⊤}. (4)

In this paper, we assume that p maps to a union of a
finite number of convex polytopes. The integrated task
and motion planning problem is to find a control signal
u : [0, T] −→ U such that the dynamically feasible tra-
jectory x(t) obtained by applying u to initial state i.e,

x(t) = xinit+
w t

h=0
(f(x(h), u(h)))dh is also collision

free and satisfy the formula φ.
4 Motion parametrization

Since a continuous trajectory is of infinite dimen-
sion, which cannot be manipulated with numerical
methods, it is necessary to describe the trajectory with
finite parameters, such as using a fixed ordered polyno-
mial to describe a trajectory. In this paper, we adopt
the B-spline formulation to parameterize the trajectory.
By using the convex hull property of the B-spline, it is
possible to guarantee the satisfaction of temporal logic
constraints over a continuous time-segment.

1956 Control Theory & Applications Vol. 36

4.1 B-spline formulation
We use a clamped uniform B-spline Sk to para-

metrize the trajectory, where k is the order of the spline.
Let Nk

i denote the i-th basis function, ci be the corre-
sponding control point and s be the path parameter. The
k-th order spline Sk is then defined as

Sk(s) =
M−1∑
i=0

ciN
k
i (s), ci, S ∈ X , Nk

i ∈ R, (5)

where X ∈ Rd×1 is the d dimensional work space and
d ∈ N.

The matrix C = [c0 c1 · · · cM−1] ∈ Rd×M is re-
ferred as the control point matrix and Ĉ = CT is the
vectorized version of C. We can also create a matrix
Λi to represent the relationship between the i-th control
point ci and Ĉ, such that:

ci = ΛiĈ, i ∈ {0, 1, · · · ,M − 1}. (6)

Let K = [s0 s1 · · · sM+k] denote a knot vector,
the basis functions are defined recursively over the knot
vector as

N0
i (s) =

{
1, if si 6 s < si+1,
0, otherwise,

N j
i (s) = NA(s, i, j)N

j−1
i (s) +NB(s, i, j)N

j−1
i+1 (s),

(7)
where

NA(s, i, j) =

0, if si = si+j,
s− si
si+j − si

, otherwise,

NB(s, i, j) =

0, if si+1 = si+j+1,
si+j+1 − s

si+j+1 − si+1

, otherwise.

(8)
For a uniform clamped spline, we have

K =[s0 s1 · · · sM+k] =

[0 · · · 0︸ ︷︷ ︸
k+1 times

1 2 · · · M − k · · · M − k︸ ︷︷ ︸
k+1 times

].

(9)
There are two important properties of the B-spline.
Specifically, they are 1) non-negativity:

Nk
i (s) > 0, ∀i ∈ {0, 1, · · · ,M−1}, ∀s ∈ [s0, sM+k],

(10)
and 2) partition-of-unity:

M−1∑
i=0

Nk
i (s) = 1, ∀s ∈ [s0, sM+k]. (11)

4.2 Mapping between the path parameter and
the time parameter

The mapping between the path parameter s and the
time t can be assigned linearly, following the work in
[38]:

s

t
= α. (12)

Hence, we have Sk(s) = Sk(αt) where t ∈ [0, Tend]

and Tend =
M − k

α
.

From Eq.(12) above, given a time point τj , the path
variable for τj can be obtained as ατj . Let η(τj) =
⌊ατj⌋ + k. Then ατj would appear in a knot vector
[sη(τj), sη(τj)+1).

According to the definition of the basis functions
(Eq.(8)), for any knot span [ui, ui+1), there are at most
k + 1 non-zero basis functions, which are Nk

i−k,

Nk
i−k+1, · · · , Nk

i . Hence for a time interval [τj, ρj),
only basis functionsNk

i (s), i∈{η(τj)−k, · · · , η(ρj)}
are possibly non-zero. We can then safely ignore all
other basis functions since they are zeros and have no
effects on the spline.
4.3 Convex hull property of B-spline

Assume we have a linear constraint on state x that
can be represented by a convex polytope. Let the poly-
tope be the set of states

{x ∈ X |Ax 6 b}. (13)

For a B-spline formulation, the above constraint can be
satisfied by constraining the control points ci inside the
polytope. Specifically, we have

Aci 6 b, i ∈ {0, 1, · · · ,M − 1}. (14)

We present a simple proof here by applying the two im-
portant properties of the B-spline mentioned in Eq.(10)
and Eq.(11).

Proof We slightly abuse the notation and use Ni

to denote the basis function Nk
i (ts) in Eq.(5). Let x

denote a point on the trajectory at time ts. We have
Ax = A

∑
i

Nici =
∑
i

Ni(Aci). (15)

Since basis functions are all non-negative (Eq.(11)) and
the summation of all basis functions at a particular point
is always unity (Eq.(11)), we then have∑

i

Ni(Aci) 6
∑
i

Nib = b⇒ Ax 6 b. (16)

QED.
We now consider the above linear constraint over a

specific time interval I = [τj, ρj). Following the Sec-
tion 4.2, we have

Aci 6 b, i ∈ {η(τj)− k, · · · , η(ρj)}. (17)

By replacing ci with Eq.(6), we have

AΛiĈ 6 b, i ∈ {η(τj)− k, · · · , η(ρj)}. (18)

4.4 Optimization objective: smoothness
It is desired to generate a smooth trajectory for the

vehicle to track. We define the smoothness cost as the
following and would like to minimize this cost during
the optimization process:

Esmooth =
k∑

n=1

ρ(n)
w ∞

−∞
∥d

nSk
dtn

∥2dt =

k∑
n=1

d∑
i=1

ρ(n)
w ∞

−∞
(
dnSk(i)
dtn

)2dt, (19)

No. 11
LAN Meng-lu et al: Integrated task and motion planning for quadrotors under

metric interval temporal logic specifications 1957

where ρ(n) > 0, ∀n ∈ {1, · · · , k}. We can express
the above term as a quadratic form, following the work
in [39],

ĈT[
k∑

n=1

(ρ(n)Vn)⊗ Id]Ĉ, (20)

where

Vn(i,j) = α2n−1
w ∞

−∞

dnNk
i (s)

dsn
dnNk

j (s)

dsn
ds, (21)

and ⊗ is the Kronecker product operator, and Id is an
identity matrix of dimension Rd×d. We identify that
the above cost term is actually obtained by integrat-
ing/summing together the square of trajectory’s deriva-
tives. For quadrotors, we can take the derivative up to
the snap since the snap can be mapped to the angular
acceleration of the quadrotor[40]. In practice, minimum
jerk trajectory is also popular.
4.5 Dynamics constraints

The trajectory has to satisfy the dynamics con-
straints of the vehicle. In [41], it has shown that, for
a quadrotor, the constraints on the thrust and body rate
can be translated into a set of constraints on the accel-
erations and jerks. In other words, we can satisfy the
dynamics constraints of the quadrotor by assigning lim-
its on the derivatives of the trajectory, i.e., velocity, ac-
celeration and jerk. We now show how can we apply
the convex hull property of B-spline to constrain these
derivatives of the trajectory. Let S(1)

k denote the first
derivative of a kth order B-spline Sk, which is a k − 1
th order B-spline itself:

S
(1)
k =

dSk(s)

dt
=

M−2∑
i=0

c
(1)
i Nk−1

i+1 (s), (22)

where c(1)i is given as

c
(1)
i = α

k(ci+1 − ci)

si+k+1 − si+1

. (23)

The knot vector K(1) for S(1)
k is

K(1) = [s
(1)
0 s

(1)
1 · · · s(1)M+k−1]

= [0 · · · 0︸ ︷︷ ︸
k times

1 2 · · · M − k · · · M − k︸ ︷︷ ︸
k times

],

(24)
which simply removes the first and last elements in the

knot vectorK of Sk. LetC(1) = [c
(1)
0 c

(1)
1 · · · c(M−2)

(1)]

denote the control point matrix of S(1)
k , we can express

Eq.(23) in a matrix form

Ĉ(1) = αΓ1Ĉ, (25)

where Ĉ is the vectorized control point matrix of Sk.
Similarly, for the nth order derivative S(n)

k , the vector-
ized control point matrix Ĉ(n) is

Ĉ(n) = αnΓnĈ. (26)

Following the same reasoning procedure for Eq.(6), we
define the mapping matrix for the control points of S(n)

k

as

c
(n)
i = Λ

(n)
i Ĉ(n). (27)

Note that S(n)
k is a k − n th order B-spline and we can

still apply the convex hull property in Section 4.3. To
constrain the n-th derivative S(n)

k inside a convex poly-
tope {p ∈ X |Anp 6 bn}, it is sufficient to constrain its
control point:

Anc
(n)
i = AnΛ

(n)
i Ĉ(n) = αnAnΛ

(n)
i ΓnĈ < bn,

∀i ∈ {0, · · · ,M − n− 1}. (28)

4.6 Boundary conditions
For a clamped B-spline Sk , the boundary condition

can be directly imposed on its control points, because

Sk(0) = c0,

Sk(αTend) = cM−1,
(29)

where the c0 is the first control point and cM−1 is the
last control point. Similarly, for its nth derivative S(n)

k ,
we have

S
(n)
k (0) = c

(n)
0 ,

S
(n)
k (αTend) = c

(n)
M−n−1,

(30)

where c(n)0 and c(n)M−n−1 are first and last control points.
Following the derivative relation (Eq.(26)) and con-

trol points mapping (Eq.(6)), we have boundary con-
dition as equality constraints over vectorized control
points matrix Ĉ:

Λ0Ĉ = Sini,

ΛM−1Ĉ = Send,

αnΛ
(n)
0 ΓnĈ = S

(n)
ini ,

αnΛ
(n)
M−n−1ΓnĈ = S

(n)
end,

(31)

where Sini, Send, S(n)
ini , S

(n)
end denote the desired initial

and end condition of the trajectorySk and its nth deriva-
tive S(n)

k .

5 Mixed-integer formulation for MITL
We have discussed how to use B-spline to

parametrize the trajectory and formulate basic dynam-
ics constraints in Section 4. In this section, we will dis-
cuss how to formally formulate the task requirements
specified in MITL. Based on the framework developed
by [8] for LTL and [9] for STL, we translate the MITL
formula into a set of mixed-integer linear constraints.
However, instead of introducing binary variables over
time points like[8–9], we define our boolean variables
over time intervals. With the capability of B-spline to
handle interval-wise constraints (Section 4.3), we can
now interpret our trajectory as a continuous signal in-
stead of timed words.
5.1 Encoding
5.1.1 Proposition

A proposition p is essentially mapped to a subset
of the underlying state space. In this paper, we assume

1958 Control Theory & Applications Vol. 36

that such a subset can be described by a union of a fi-
nite number of closed convex polytopes. Each polytope
then can be expressed as a linear constraint. Assume
there are in total Npoly polytopes, the j-th polytope is
the set of states

{x ∈ X |Hpjx 6 Kpj}, ∀j ∈ {0, 1, · · · , Npoly − 1}.
(32)

From the analysis in Section 4.3, the above constrain-
t can be satisfied by constraining the control points ci
instead. Assume that during the time interval I =
[τj, ρj), the system satisfies the constraint described by
the j-th polytope. Following the Section 4.2, we have

Hpjci 6 Kpj , i ∈ {η(τj)− k, · · · , η(ρj)}. (33)

We define a boolean variable zpjI ∈ {0, 1} such that
during the time interval I = [τj, ρj) , if j-th polytope
constraint pj is true, and then zpjI = 1. For each poly-
tope, we can use standard big-M formulation to enforce
the above constraint. By replacing ci with Eq.(6), we
have

HpjΛiĈ 6 Kpj+Mc(1−zpjI), i ∈ {0, 1, · · · ,M−1},
(34)

where Mc is a sufficiently large constant. We further
define zpI :=

∨
z
pj
I , j ∈ {0, 1, · · · , Npoly − 1}. If zpI

is true, then x satisfies the proposition p during the time
interval I .

zpI > z
pj
I , ∀j ∈ {0, 1, · · · , Npoly − 1},

zpI 6
Npoly−1∑
j=0

z
pj
I .

(35)

5.1.2 Boolean operators
For a formula φ, we define a boolean variable zφI to

indicate whether the formula φ hold or not during the
time interval I . We then define new binary variable zψI
to represent logic operators.

Negation zψI = ¬zφI :

zψI = 1− zφI . (36)

Conjunction of n sub-formulas zψI =
n∧
i=1

zφi

I :

zψI 6 zφi

I , i = 1, · · · , n,

zψt > 1− n+
n∑
i=1

zφi

I .
(37)

Disjunction of n sub-formulas zψI =
n∨
i=1

zφi

I , we have

zψI > zφi

I , i = 1, · · · , n,

zψI 6
n∑
i=1

zφi

I .
(38)

5.1.3 Temporal operators
Temporal operators can be viewed as the conjunc-

tion or disjunction over time intervals. Before we start
encoding, we first need to calculate the correct time in-

terval with respect to current time interval. Assume that
the temporal operator is operating over interval I with
respect to current time interval Ic. The new time inter-
val is the Minkowski sum of two intervals Ic ⊕ I , but
within the total time horizon Tend. So the final interval
is Ic ⊕ I ∩ [0, Tend].

Always: ψ = �Iφ,

zψIc :=
∧
Ii

zφIi , ∀Ii ∈ Ic ⊕ I ∩ [0, Tend]. (39)

Basically, the temporal operator always encodes that the
during the time interval Ic⊕I∩[0, TN], the formula has
to be satisfied for every sub time intervals. The encod-
ing of conjunction is similar to Eq.(37), but with one φ
for n intervals. Note that if the formula φ can be rep-
resented as a set of convex constraints (e.g., an simple
convex proposition), it is possible to merge the multiple
sub time interval into a big one.

Eventually: ψ = ♢Iφ,

zψIc :=
∨
Ii

zφIi , ∀Ii ∈ Ic ⊕ I ∩ [0, Tend]. (40)

The temporal operator always basically encodes that the
during time interval [a′, b′], the formula has to be satis-
fied at one of sub intervals. The encoding of disjunction
is similar to Eq.(38).

Until: ψ = φ1UIφ2,

zψIc =
∨

I′∈Ic⊕I∩[0,Tend]

(zφ2

I′ ∧
∧

I′′∈[Ic,I′]

zφ1

I′′). (41)

5.2 Prefix-suffix structure
The MITL is interpreted over an infinite sequence.

However, we have to encode this infinite behaviour in
a finite number of time intervals. The core idea is to
parametrize the infinite trajectory into a prefix-suffix
form. The prefix is a finite path starting from the initial
state and the suffix part is a periodic signal that forms
a loop. For an MITL specification, at least one of the
satisfying run is in the prefix-suffix form. The result
is directly derived from the LTL. The LTL formula can
be translated equivalently into a Büchi automata. The
loop structure comes from the fact that acceptance con-
ditions of the Büchi automata require a run visits the
same accepting state infinite often. Hence, the satis-
fying run can be decomposed into two segments. One
segment (prefix) starts from the initial state, and ends in
one of accepting state. Another segment (suffix) starts
from the reached accepting state and comes back to the
same accepting state (possibly after visiting some other
states), and thus looping around the accepting state and
satisfying the Büchi acceptance condition.

Formally, we consider the trajectory in the form of
x = xpre(xsuf)

ω, where xpre is the prefix and xsuf is
the suffix. Let xcat : = xprexsuf denote the concate-
nation of prefix and suffix. Assume there are in total
N +1 time intervals. We assign interval indices to xcat

No. 11
LAN Meng-lu et al: Integrated task and motion planning for quadrotors under

metric interval temporal logic specifications 1959

as Tcat := {0, 1, · · · , L, · · · , N}, let Tpre := {0, 1,
· · · , L − 1} and Tsuf := {L, · · · , N}. To encode the
prefix-suffix structure, for each time interval i, we intro-
duce a boolean variable li to indicate whether the loop
starts in this particular time interval. If a loop occurs,
then it means the start of the suffix part of the signal
should be the same as the end of the suffix part of signal.
Let tL be the inf(IL) of the time interval IL, and tend
be the total end time used for the optimization. We can
enforce the prefix-suffix structure by imposing a con-
straint of x(tL) = x(tend).

N∑
i=0

li = 1,

x(tend) 6 x(tL) +Mi(1− li), i = 0, · · · , N,
x(tend) > x(tL) +Mi(1− li), i = 0, · · · , N.

(42)

6 Simulations and results
This section presents the simulation results for the

proposed method as well as the comparison study with
other methods. By using the B-spline to parametrize
the motion trajectory, our method can directly handle
the continuous-time dynamics, without the need to dis-
cretize it into a discrete-time one. Also, the B-spline
formulation allows us to handle the interval wise con-
straints directly. As a result, unlike the previous meth-
ods relying on pointwise semantics, our generated tra-
jectory is not a sequence of points, but a true smooth
signal over continuous time.

We first present two examples to illustrate the abil-
ity of our method. Then we present the comparison
study between our method and other existing method-
s, including the traditional two-layered method and the

method based on point-wise semantics of temporal log-
ic. For all simulations, we use a quadrotor model pre-
sented above. The total planning horizon is set as 10
seconds and we partition it into 10 time intervals. The
implementation is done in the Matlab. The encoding
of MITL is obtained by modifying the existing toolbox
BluSTL[9]. The B-spline formulation is based on our
previous works [42] and [43]. We use the Gurobi as the
main optimization solver for our simulations.
6.1 Simulation results

Example 1 First of all, we consider a simple tem-
poral formula, where the time interval for the temporal
operators is [0,∞). Specifically, the drone is always
required to avoid the red obstacle. Also, it has to even-
tually reach the blue region and green region for some
tasks. Finally, it should stop at an end target. Such a
task specification can describe a wide range of tasks.
For instance, it can model the task that the drone need
to take some pictures of both blue region and green re-
gion. The order of visiting the green region and the blue
region does not matter as long as two regions have been
both visited. Formally, if we omit the time interval no-
tation, the specification of Example 1 can be written as

φeg1 := �(¬pred) ∧ ♢pgreen ∧ ♢pblue ∧ ♢�pgoal,
(43)

where pred, pgreen and pblue are propositions to indicate
whether the vehicle position is inside the red, green or
blue region. Where red, green, blue indicate the target
zones.

We create three different settings by varying the lo-
cations of red, blue, and green regions, as well as the
initial target and goal target, as shown in Fig. 1.

(a) Case 1

1960 Control Theory & Applications Vol. 36

(b) Case 2

(c) Case 3

Fig. 1 Example 1. The quadrotor is required to always avoid the red region and eventually visit the green region and the blue
region. Also, it is required that the vehicle finally stops at the goal location. We consider three different settings by
varying the locations of interested regions. The left sub-figures show the workspace. The sub-figures on the middle and
right columns show the position, velocity and acceleration profiles for x axis and y axis respectively

For different settings, the generated trajectories
are also different. For instance, in Case 1 (Fig. 1),
the drone reaches green region first and then reaches
the blue region. In Case 2 (Fig. 1), the drone reaches
the blue region first, then it reaches the green region.
However, all generated trajectories satisfy the task re-
quirements, i.e., avoiding the red regions, reaching
both green and blue regions, stopping at goal loca-
tion. The position, velocity, and acceleration profiles

for x axis and y axis are shown in the sub-figures of
each case. As shown, we have continuous smooth sig-
nals for all position, velocity, and acceleration. More
importantly, unlike the point-wise semantics, the con-
straints are satisfied over the entire trajectory instead
of individual points.

Example 2 In the second example, the quadro-
tor is required first to reach the blue region within 5 s,
and after that, it should reach the green region within

No. 11
LAN Meng-lu et al: Integrated task and motion planning for quadrotors under

metric interval temporal logic specifications 1961

the next 4 s. Similar to Example 1, the drone has to
finally stop at the goal target. The specification can
be formally written as
φeg2 := ♢[0,5](pblue ∧ ♢[0,4]pgreen) ∧ ♢�pgoal.

(44)

We also vary the locations of interested regions and
present two different settings for the second example,
as shown in Fig. 2. As expected, the generated trajec-
tories for different workspace settings are also differ-
ent, but all satisfy the requirements.

(a) Case 1

(b) Case 2

Fig. 2 Example 2. The quadrotor is required first to reach the blue region within 5 s. After that, it should reach the green region
within the next 4 s. Also, it is required that the vehicle finally stop at the goal location. We consider two different
settings by varying the locations of interested regions. The left sub-figures show the workspace. The sub-figures
on the middle and right columns show the position, velocity and acceleration profiles for x axis and y axis respectively

First of all, we compare our method with the tradi-
tional two layered approach. For a mobile robot such
as the quadrotor, it is traditional to decouple the task

and motion planning into two layers. The complex
system is first abstracted into a simpler one, which of-
ten totally ignores the high order dynamics such as ve-

1962 Control Theory & Applications Vol. 36

locity, acceleration and jerks. Then a high-level plan-
ner such as a pure geometric planner or discrete task
planner is involved to generate a high-level plan based
on the abstracted model. The resulted high-level plan
is then fed into the lower-level planner to implement,
where the detailed dynamics are considered. The ma-
jor drawback of the two-layered approach is that it
requires a simulation (or bi-simulation) relation be-
tween the high level planning model and low level
planning model. In other words, it works with an un-
derlying assumption that every high-level task plan
can be implemented or simulated by the lower layer
planer. Clearly, such an assumption does not always
hold in real applications. Even the high-level plan is
implementable, the resulted trajectory may be high-
ly sub-optimal. It remains an open problem to obtain
a correct abstract model for general dynamical sys-
tem such that the abstraction has a simulation relation
with the original system.

Figure 3 shows the comparison result with the
two-layered approach. The vehicle is tasked to vis-
it two regions (green and blue regions) in any order
from a start position and stop at a goal position. The
high-level planner considers only position-level dy-
namics of the system and computes a pure geometric
path that fulfils the given temporal logic. For this par-
ticular task, the high-level plan is calculated as vis-
iting green region first and then visiting blue region
(see the purple straight line in Fig. 3(a). Note that this
geometric path is actually optimal with respect to the
abstracted model (i.e, it is the shortest geometric path
that fulfils the task-level specification). We use the
same B-spline based motion algorithm discussed in
Section 4 as our lower-level trajectory generation al-
gorithm. The optimization target is the same (i.e, to
generate minimal snap trajectory).

As shown in Fig. 3(a), if the initial velocity of the
vehicle is zero, the resulted lower-level smooth trajec-
tory is sufficiently satisfying. However, if the vehicle
has a non-trivial amount of initial velocity, it is no
longer suitable to stick to the high-level plan.

As shown in Fig. 3(b), due to the non-zero initial
velocity of the positive x-direction, the generated tra-
jectory curves intensively in order to visit the green
region first, which is highly sub-optimal with respect
to the full system dynamics. On the other hand, our
method is able to find the optimal solution, which vis-
its the blue region first and then visits the green re-
gion, as shown in Fig. 3(c). Compared to our method,
the two layered planner shown in Fig. 3(b) has a cost
value that is 26% higher.

(a) Two-layered method: zero initial velocity

(b) Two-layered method: non-zero initial velocity

(c) The proposed method: non-zero initial velocity

Fig. 3 Comparison with two-layered planning method. The
vehicle is tasked to visit two regions (green and blue
regions) in any order from a start position and stops
at a goal position

We also compare our method to the existing meth-
ods of adopting the point-wise semantics of the tem-
poral logics. The point-wise semantics interpreted the
state trajectory as timed words. As a result, temporal
constraints are only enforced on the individual points
of the trajectory. There is a risk that the constraints
will be violated when the sampling rate is not high
enough. In Fig. 4(a), The vehicle is tasked to reach
green and blue regions in any order while avoiding

No. 11
LAN Meng-lu et al: Integrated task and motion planning for quadrotors under

metric interval temporal logic specifications 1963

the red obstacle area. If we only enforce the obstacle
avoidance constraints on the sampled points (the tri-
angles) of the trajectory, it is possible that while all
the sampled points are collision free, but the trajecto-
ry is still not-safe.

(a) The method using point-wise semantics

(b) The proposed method

Fig. 4 Comparison with methods adopting the point-wise
semantics. The vehicle is tasked to reach green
and blue regions in any order while avoiding
the red obstacle area.

7 Conclusion
This paper presented an MIQP method for the

integrated task and motion planning problem for a
quadrotor. The task requirements were formalized by
metric interval temporal logic and were translated in-
to a set of mixed-integer constraints. The most cru-
cial component of our method is the B-Spline based
motion parameterization, which allows us to han-
dle continuous-time dynamics and interval wise con-
straints directly. We conducted various simulations to
verify the effectiveness of our system. The simula-
tion results showed that our method could success-
fully generate a smooth trajectory over continuous
domain while satisfying the temporal specification.
Our work can be naturally extended into a receding
horizon control framework or be extended to handle

the robustness satisfaction instead of Boolean satis-
faction. Another future direction is to study how to
generate a domain-dependent time-domain partition.

References:
[1] SRIVASTAVA S, RUSSELL S, PINTO A. Metaphysics of planning

domain descriptions. Proceedings of the 30th AAAI Conference on
Artificial Intelligence. Phoenix, USA: AAAI Press, 2016: 1074 –
1080.

[2] HAUSER K, LATOMBE J C. Integrating task and PRM motion plan-
ning: Dealing with many infeasible motion planning queries. ICAPS
2009 Workshop on Bridging the Gap between Task and Motion Plan-
ning. Thessaloniki, Greece: AAAI Press, 2009.

[3] SRIVASTAVA S, FANG E, RIANO L, et al. Combined task and mo-
tion planning through an extensible planner-independent interface
layer. Proceedings of the 2014 IEEE International Conference on
Robotics and Automation. Hong Kong, China: IEEE, 2014: 639 –
646.

[4] PLAKU E, LE D. Interactive search for action and motion planning
with dynamics. Journal of Experimental & Theoretical Artificial In-
telligence, 2016, 28(5): 849 – 869.

[5] DANTAM N T, KINGSTON Z K, CHAUDHURI S, et al. An in-
cremental constraint-based framework for task and motion planning.
The International Journal of Robotics Research, 2018, 37(10): 1134
– 1151.

[6] LAHIJANIAN M, MALY M R, FRIED D, et al. Iterative temporal
planning in uncertain environments with partial satisfaction guaran-
tees. IEEE Transactions on Robotics, 2016, 32(3): 583 – 599.

[7] DE SILVA L, PANDEY A K, ALAMI R. An interface for interleaved
symbolic-geometric planning and backtracking. Proceedings of the
2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Tokyo, Japan: IEEE, 2013: 232 – 239.

[8] KARAMAN S, SANFELICE R G, FRAZZOLI E. Optimal control
of mixed logical dynamical systems with linear temporal logic speci-
fications. Proceedings of the 47th IEEE Conference on Decision and
Control. Cancun, Mexico : IEEE, 2008: 2117 – 2122.

[9] RAMAN V, DONZÉ A, MAASOUMY M, et al. Model predictive
control with signal temporal logic specifications. Proceedings of the
53rd IEEE Conference on Decision and Control. Los Angeles, USA:
IEEE, 2014: 81 – 87.

[10] SADRADDINI S, BELTA C. Formal synthesis of control strate-
gies for positive monotone systems. IEEE Transactions on Automatic
Control, 2019, 64(2): 480 – 495.

[11] WOLFF E M, MURRAY R M. Optimal control of nonlinear systems
with temporal logic specifications. INABA M, CORKE P. Robotics
Research: Springer Tracts in Advanced Robotics. Cham: Springer,
2016, 114: 21 – 37.

[12] VIELMA J P. Mixed integer linear programming formulation tech-
niques. SIAM Review, 2015, 57(1): 3 – 57.

[13] FOX M, LONG D. PDDL2.1: An extension to PDDL for express-
ing temporal planning domains. Journal of Artificial Intelligence Re-
search, 2003, 20: 61 – 124.

[14] PATRIZI F, LIPOVEZTKY N, DE GIACOMO G, et al. Computing
infinite plans for LTL goals using a classical planner. Proceedings
of the 22nd International Joint Conference on Artificial Intelligence.
Barcelona: AAAI Press, 2011.

[15] HOFFMANN J. FF: The fast-forward planning system. AI Magazine,
2001, 22(3): 57 – 62.

[16] CAMACHO A, BAIER J A, MUISE C, et al. Finite LTL synthesis as
planning. Proceedings of the 28th International Conference on Au-
tomated Planning and Scheduling. Delft, Netherlands: AAAI Press,
2018.

[17] PLAKU E, KAVRAKI L E, VARDI M Y. Discrete search leading
continuous exploration for kinodynamic motion planning. Proceed-
ings of Robotics: Science and Systems. Atlanta, USA: MIT Press,
2007: 326 – 333.

[18] PLAKU E, HAGER G D. Sampling-based motion and symbolic ac-
tion planning with geometric and differential constraints. Proceed-
ings of the 2010 IEEE International Conference on Robotics and Au-
tomation. Anchorage, Alaska: IEEE, 2010: 5002 – 5008.

1964 Control Theory & Applications Vol. 36

[19] GARRETT C R, LOZANO-PÉREZ T, KAELBLING L P. Sampling-
based methods for factored task and motion planning. The Interna-
tional Journal of Robotics Research, 2018, 37(13/14): 1796 – 1825.

[20] SMITH S L, TUMOVáJ, BELTA C, et al. Optimal path planning un-
der temporal logic constraints. Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Taipei,
China: IEEE, 2010: 3288 – 3293.

[21] SMITH S L, TUMOVáJ, BELTA C, et al. Optimal path planning for
surveillance with temporal-logic constraints. The International Jour-
nal of Robotics Research, 2011, 30(14): 1695 – 1708.

[22] MALY M R, LAHIJANIAN M, KAVRAKI L E, et al. Iterative tem-
poral motion planning for hybrid systems in partially unknown envi-
ronments. Proceedings of the 16th International Conference on Hy-
brid Systems: Computation and Control. Philadelphia, Pennsylvania,
USA: ACM, 2013: 353 – 362.

[23] GASTIN P, ODDOUX D. Fast LTL to Büchi automata translation.
BERRY G, COMON H, FINKEL A. Computer Aided Verification
(CAV 2001): Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2001, 2102: 53 – 65.

[24] DURET-LUTZ A, LEWKOWICZ A, FAUCHILLE A, et al. Spot2.0-
–a framework for LTL and ω-automata manipulation //ARTHO C,
LEGAY A, PELED D. Automated Technology for Verification and
Analysis (ATVA 2016): Lecture Notes in Computer Science. Cham:
Springer, 2016, 9938: 122 – 129.

[25] KANTAROS Y, ZAVLANOS M M. Sampling-based optimal control
synthesis for multirobot systems under global temporal tasks. IEEE
Transactions on Automatic Control, 2018, 64(5): 1916 – 1931.

[26] VASILE C I, BELTA C. Sampling-based temporal logic path plan-
ning. Proceedings of the 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 4817
– 4822.

[27] LAHIJANIAN M, ALMAGOR S, FRIED D, et al. This time the robot
settles for a cost: A quantitative approach to temporal logic planning
with partial satisfaction. Proceedings of the 29th AAAI Conference on
Artificial Intelligence. Austin, USA: AAAI, 2015.

[28] KIM K, FAINEKOS G, SANKARANARAYANAN S. On the min-
imal revision problem of specification automata. The International
Journal of Robotics Research, 2016, 34(12): 1515 – 1535.

[29] MONTANA F J, LIU J, DODD T J. Sampling-based reactive motion
planning with temporal logic constraints and imperfect state infor-
mation. PETRUCCI L, SECELEANU C, CAVALCANTI A. Critical
Systems: Formal Methods and Automated Verification (AVoCS 2017,
FMICS 2017): Lecture Notes in Computer Science. Cham: Springer,
2017, 10471: 134 – 149.

[30] ZHOU Y, MAITY D, BARAS J S. Timed automata approach for mo-
tion planning using metric interval temporal logic. Proceedings of
the 2016 European Control Conference (ECC). Aalborg, Denmark:
IEEE, 2016: 690 – 695.

[31] BRIHAYE T, GEERAERTS G, HO HM, et al. MightyL: A compo-
sitional translation from mitl to timed automata. MAJUMDAR R,
KUNČAK V. International Conference on Computer Aided Verifi-
cation: Lecture Notes in Computer Science. Cham: Springer, 2017,
10426: 421 – 440.

[32] BELTA C, SADRADDINI S. Formal methods for control synthesis:
An optimization perspective. Annual Review of Control, Robotics and
Autonomous Systems, 2019, 2(1): 115 – 140.

[33] SAHA S, JULIUS A A. An MILP approach for real-time optimal
controller synthesis with metric temporal logic specifications. Pro-
ceedings of the 2016 American Control Conference (ACC). Boston,
USA: IEEE, 2016: 1105 – 1110.

[34] PANT Y V, ABBAS H, MANGHARAM R. Smooth operator: Con-
trol using the smooth robustness of temporal logic. Proceedings of
the 2017 IEEE Conference on Control Technology and Applications
(CCTA). Mauna Lani, USA: IEEE, 2017: 1235 – 1240.

[35] MEHDIPOUR N, VASILE C I, BELTA C. Arithmetic-geometric
mean robustness for control from signal temporal logic specifica-
tions. Proceedings of the 2019 American Control Conference (ACC).
Philadelphia, PA, USA: IEEE, 2019: 1690 – 1695.

[36] ALUR R, FEDER T, HENZINGER T A. The benefits of relaxing
punctuality. Journal of the Association for Computing Machinery,
1996, 43(1): 116 – 146.

[37] MALER O, NICKOVIC D. Monitoring temporal properties of
continuous signals. LAKHNECH Y, YOVINE S. Formal Tech-
niques, Modelling and Analysis of Timed and Fault-Tolerant Systems
(FTRTFT 2004, FORMATS 2004): Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2004, 3253: 152 – 166.

[38] KANO H, FUJIOKA H, MARTIN C F. Optimal smoothing and in-
terpolating splines with constraints. Applied Mathematics and Com-
putation, 2011, 218(5): 1831 – 1844.

[39] KANO H, FUJIOKA H. Velocity and acceleration constrained trajec-
tory planning by smoothing splines. Proceedings of the IEEE 26th In-
ternational Symposium on Industrial Electronics (ISIE). Edinburgh,
UK: IEEE, 2017: 1167 – 1172.

[40] MELLINGER D, KUMAR V. Minimum snap trajectory generation
and control for quadrotors. Proceedings of the 2011 IEEE Interna-
tional Conference on Robotics and Automation. Shanghai, China:
IEEE, 2011: 2520 – 2525.

[41] HEHN M, D’ANDREA R. Real-time trajectory generation for
quadrocopters. IEEE Transactions on Robotics, 2015, 31(4): 877 –
892.

[42] LAI S, LAN M, CHEN B M. Optimal constrained trajectory gener-
ation for quadrotors through smoothing splines. Proceedings of the
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Madrid, Spain: IEEE, 2018: 4743 – 4750.

[43] LAI S, LAN M, GONG K, et al. Axis coupled trajectory generation
for chains of integrators through smoothing splines. Control Theory
and Technology, 2019, 17(1): 48 – 61.

作者简介:
蓝蓝蓝梦梦梦露露露 博士研究生, 目前主要研究方向为无人机运动及任务规

划, E-mail: lanmenglu@u.nus.edu.sg;

赖赖赖叔叔叔朋朋朋 博士, 目前主要研究方向为无人系统、运动规划等,

E-mail: elelais@nus.edu.sg;

陈陈陈本本本美美美 教授, 目前研究方向为无人系统及控制应用等, E-mail:

bmchen@ieee.org.

