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Abstract

Micro Aerial Vehicles (MAVs) have great potentials to be applied for indoor
search and rescue missions. In this paper, we propose a modular lightweight
design of an autonomous MAV with integrated hardware and software. The
MAV is equipped with the 2D laser scanner, camera, mission computer and
flight controller, running all the computation onboard in real time. The onboard
perception system includes a laser-based SLAM module and a custom-designed
visual detection module. A dual Kalman filter design provides robust state
estimation by multiple sensor fusion. Specifically, the fusion module provides
robust altitude measurement in the circumstance of surface changing. In addi-
tion, indoor-outdoor transition is explicitly handled by the fusion module. In
order to efficiently navigate through obstacles and adapt to multiple tasks, a
task tree-based mission planning method is seamlessly integrated with path
planning and control modules. The MAV is capable of searching and rescu-
ing victims from unknown indoor environments effectively. It was validated by
our award-winning performance at the 2017 International Micro Air Vehicle
Competition (IMAV 2017), held in Toulouse, France. The performance video is
available on https://youtu.be/8H19ppS_VXM.
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1 INTRODUCTION

Recently, MAVs are widely applied to aerial photogra-
phy, infrastructures (e.g. bridge, power line) inspection,
onsite mapping and others. In most cases, human pilots
are required to control the drone manually. Some basic
autonomous maneuvers may be applied with the presence
of satisfactory GPS availability. However, a large variety
of applications for MAVs would rely on the autonomous
capabilities in GPS-denied environments to handle dif-
ficult, dirty, dangerous jobs. A typical scenario is a
post-disaster search and rescue mission, in which MAVs
must fly among buildings with GPS blocking or inside

buildings without any GPS signal. To this end, a fully
functional system incorporated with autonomous navi-
gation capabilities is in high demand. This paper aims
at developing a fully autonomous MAV working in typi-
cal GPS-denied environments, and applying it on indoor
search and rescue.

Development of autonomous MAVs is one of the most
active research areas in recent years. Early success on
autonomous indoor flight based on 2D laser scanner
are reported in [1] and [2]. They both emphasize the
localization and planning components which are actu-
ally adapted from previous research on ground robots for
autonomous indoor exploration. Later on, the accomplish-

© 2019 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

1732 wileyonlinelibrary.com/journal/asjc Asian J Control. 2019;21:1732–1744.

https://doi.org/10.1002/asjc.2162
https://orcid.org/0000-0002-5956-1326
https://youtu.be/8H19ppS_VXM


BI ET AL. 1733

ment of autonomous flight with a camera as the primary
sensor is shown in [3]. It is the very first systematic design
to deal with vision-based autonomous navigation. A lot
of recent attempts [4–6] focus on vision-based solutions.
However, it is still a challenging problem in real applica-
tions considering computation and robustness constraints.

Algorithm development on fully autonomous MAVs
are limited by the computational power of the platform.
The software components consist of perception, planning,
state estimation and control. In our designed system, the
perception module includes laser-based localization and
visual detection module. The planning module consists
of mission planning and motion planning. The mission
planning is necessary to juggle the demands of complex
task lists in autonomous missions. It is a key component
for fast deployment and can handle different situations in
a well-organized manner. The motion planning provides
collision-free and dynamically feasible tracking references
for MAVs. For control purpose, the state estimation mod-
ule provides high-frequency 6DOF estimation (3D position
and attitude) by fusing multiple sensor measurements.

In GPS-denied environments, the solution for localiza-
tion is a typical simultaneous localization and mapping
(SLAM) problem. 2D laser-based SLAM [7,8] has been
demonstrated to be a light-weight and high-accuracy
solution. The performance is achieved under the 2.5D
environment assumption, i.e, the environment in the ver-
tical direction has no significant changes. This is often
valid when MAVs fly with a fixed altitude. When the
assumption is violated, a multi-level strategy [9] can be
adapted. Vision-based SLAM [10,11] shows promising
progress recently. However, it is still sensitive to light con-
dition and tends to fail in featureless environments. There-
fore, in a typical structured indoor environment which
consists of texture-less walls, flying with a camera robustly
is still a challenge. In this paper, We adopt one of the best
laser SLAM algorithms [8] for localization purpose.

The state estimation can be solved with variants of
Kalman filter conventionally [12], and also optimization-
based methods thanks to the improved computation power
recently [13]. Though optimization-based methods may
lead to a more accurate solution, the computational
resource limits their applicability to most of the embed-
ded systems. In contrary, Kalman filter based methods,
such as Extended Kalman Filter (EKF) [14] and Unscented
Kalman Filter (UKF) [15], are widely applied for onboard
sensor fusion and provide satisfactory results with bet-
ter efficiency. To fulfill the state estimation requirements,
we design dual Kalman filters for our system to han-
dle complex scenarios, such as surface changing and
indoor-outdoor transition.

Most of motion planning algorithms for MAVs adopt a
two-layered approach [4,16], which decouples the vehicle

dynamics and geometric constraints. Normally, a global
planner is used to find a free path first and then a trajec-
tory generation procedure is involved to handle the vehicle
dynamics. In [16], a standard A* algorithm is performed
in an octree-based map to generate a collision-free corri-
dor. Then they formulate the corridor constraints into a set
of convex position constraints and generate dynamically
feasible trajectories within the corridor using numerical
optimization techniques. The motion planning used in this
paper is based on our previous work [17], which also use
a two-layered approach and A* as the global planner. By
comparison, to avoid numerical instabilities, we utilize an
analytically two-point boundary value problem (TPBVP)
solver to generate jerk-limited time-optimal trajectory.

This paper is an extension of the conference paper
[18]. We introduce our light-weight MAV solution for
autonomous flight in GPS-denied environments. By
designing every component of the MAV, robust perfor-
mance is achieved. In this paper, we explain the system
in a more comprehensive manner, addressing the percep-
tion, state estimation and integrated planning methods
for complex search and rescue missions. we discuss the
improvement details to enhance the state estimator for
more complex flight conditions. Furthermore, we present
more experimental results to validate the MAV system.

This paper is organized as follows. Section 2 introduces
the MAV platform, onboard hardware and software design.
Section 3 describes the laser SLAM and visual target detec-
tion methods. Section 4 presents the multi-sensor state
estimation by assembling dual Kalman filters. Section 5
explains the integration of our task planning, motion plan-
ning and flight control. Section 6 shows results from vari-
ous experiments to validate the full system. Finally, we give
the conclusion and future direction in Section 7.

2 FLYING PLATFORM

2.1 Hexarotor platform
We design a hexarotor MAV, shown in Figure 1, as a
lightweight and versatile platform. It adopts a sandwich
mechanical structure to minimize the weight of airframe
and add the flexibility of changing onboard components.
The avionics are customized to fit the structure and
achieve an optimal center of gravity placement. The arm
is mainly made of carbon fiber to reduce the moment of
inertia. Also, Blade protector can be installed for indoor
applications in case of collisions.

2.2 Onboard avionics
A Hokuyo 2D laser scanner is mounted on top to pro-
vide range information in the horizontal direction. A
downward-facing camera is used for vision-based detection
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FIGURE 1 The hexarotor platform [Color figure can be viewed
at wileyonlinelibrary.com]

FIGURE 2 The hardware structure [Color figure can be viewed
at wileyonlinelibrary.com]

and guidance. The flight control module includes various
sensors such as gyroscopes, accelerometers, magnetome-
ters, to measure the state of the MAV. Power distribution
is implemented on a separate board to minimize electro-
magnetic interference. To balance between computation
power and weight, we use a small-size (80g) computer
with Intel Atom x5-Z8350 processor. With our optimized
onboard software, it is capable of running perception,
SLAM and planning simultaneously. The structure of
hardware components and interfaces is illustrated in
Figure 2. The Maximum take-off weight of the fully con-
figured MAV can reach 1.8kg, with optional 200g payload.

2.3 Onboard software
The software structure is modularized with a robust flight
controller and self-designed UAVOS middleware based on
the Robot Operating System (ROS). Figure 3 highlights
the structure of our onboard software system. The main
modules are perception, planning and flight control. Inside
each module, there are multiple submodules which can be
easily customized for different tasks.

The modular UAVOS architecture is necessary and effi-
cient to enable fast development and deployment accord-
ing to different mission elements. The ROS-based structure

FIGURE 3 The software structure [Color figure can be viewed at
wileyonlinelibrary.com]

can provide the capability thanks to the publish-subscribe
messaging pattern. For example, when a new sensor is con-
nected to the onboard computer, a driver module can be
included and every other module can use the sensor data
by only subscribing the topics accordingly. For applications
of autonomous indoor navigation, the MAV can be config-
ured with 2D laser scanner for 2.5D navigation (our case),
or with cameras for 3D navigation. Although the two con-
figurations differ a lot, only part of the perception module
needs to be changed.

3 PERCEPTION

3.1 Laser SLAM
For structured 2.5D environments, the 2D laser scanner
can provide accurate planar positioning information for
MAVs. In this paper, we evaluate two state-of-the-art laser
SLAM algorithms as the front-end of our state estimation
module. They are Hector SLAM [7] and Cartographer
SLAM [8]. To compare them, We briefly discuss and
differentiate these two methods here.

Hector SLAM calculates the pose by aligning incoming
laser scan with the map accumulated from all previous
scans. Gauss-Newton optimization is utilized to find an
optimal transformation. Moreover, a multi-resolution map
representation inspired by image pyramids is applied to
improve numerical stability. In comparison, Cartographer
SLAM shares similar scan to map matching method as
Hector SLAM. But it cooperates submaps and real-time
loop closure algorithm to further reduce the position drift.
The key idea is to build multiple submaps and generate
constraints on a graph. The real-time loop closure is
achieved by a branch-and-bound approach. Cartographer
SLAM is a representative modern SLAM method, while
Hector SLAM is regarded as accurate odometry that may
drift without the help of loop closure.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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3.2 Visual target detection
We develop a visual detection module which supports
both fiducial markers and color targets. It is an important
supplement for the search and rescue mission. The relative
position and orientation of targets can be calculated in
real-time. We use the fiducial marker for precision landing
on a moving platform, and color visual detection for
searching the victims. The fiducial marker deployed in
our system is Apriltag [19]. It is based on a near-optimal
lexicographic coding system. Four corners on a marker
can be detected with corresponding order under different
lighting conditions and view angles. Utilizing the exact
size of the marker, the camera pose and target position
in body frame are completely determined with OpenCV
solvePnP function. The Apriltag detection flowchart is
shown in Figure 4.

For the color target detection, a color segmentation on
HSV channel is first applied on the image. Thanks to
the flexible task planning, we can restrict the searching
area to improve detection efficiency. Therefore, a larger
HSV threshold range is applied to increase the detec-
tion robustness. In our implementation with OpenCV, the
HSV range for red color is from (165, 40, 50) to (179, 255,
255) and from (0, 40, 50) to (15, 255, 255). Contours are
detected and analyzed in the binary image after segmenta-
tion. The detected contour which has the largest area and
satisfies the minimum area requirement is regarded as the
correct target. The target center is extracted and the target
position can be computed considering the MAV's current
state and assuming the target is on the ground plane.
The color target detection algorithm is explained in
Algorithm 1.

FIGURE 4 The fiducial target detection flowchart [Color figure
can be viewed at wileyonlinelibrary.com]

4 STATE ESTIMATION

4.1 Sensor fusion structure
To get a consistent state estimation for the autonomous
MAV, we design a two-stage multi-sensor fusion structure.
The multi-sensor fusion structure is shown in Figure 5.
The attitude and position are estimated with dual Kalman
filters. The attitude filter takes angular rates, accelerations,
heading from laser SLAM or magnetometer to estimate
attitude. At the same time, the position filter utilizes posi-
tion measurement from laser SLAM or GPS, height mea-
surement from a distance sensor, altitude measurement
from a barometer, accelerations and attitude estimation to
provide a smooth position output. The design of dual filters
decouples the attitude and position estimations, therefore
is easy to tune in practical applications.

To be consistent with the frame definition of the
control system, we define all the related frames in
North-East-Down (NED) order. Figure 6 depicts our frame
definition. OG is the global navigation frame fixed on the
takeoff position, and OL is the local frame fixed on the posi-
tion when a positioning sensor is available. In an indoor
flight without GPS, OG and OL are coincident since only
SLAM is working all the time. In an indoor-outdoor tran-
sition flight, the local frame is decided according to the
starting position of each positioning sensor. Ol,Oc,Od rep-
resents onboard laser frame, camera frame and distance
sensor frame accordingly. They are attached on respective
sensors rigidly. The body frame Ob is fixed on the position
of inertial management unit (IMU). The relative transfor-

http://wileyonlinelibrary.com
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FIGURE 5 The sensor fusion structure [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 6 The sensor frame definition [Color figure can be
viewed at wileyonlinelibrary.com]

mation T between body frame and each sensor frame is
assumed to be calibrated offline. All sensor measurements
are transformed into body frame before fusion.

4.2 Sensor models
The IMU provides 3-axis accelerations and 3-axis angular
rates with respect to body frame. The measurement model
contains the Gaussian white noise term n(t) and a slowly
varying sensor bias b(t). The acceleration measurement
am(t) and angular rate measurement𝜔m(t) on each axis are
therefore written as:

𝜔m(t) = 𝜔(t) + b𝜔(t) + n𝜔(t) , (1)

am(t) = a(t) + ba(t) + na(t) . (2)

We use a barometer as a sensor that measures altitude
change. The altitude change in meters can be converted
from the pressure measured in Pascal [20] by

Δh = 44330 ·
(

1 − ( P
P0

)0.19
)
− hinit , (3)

where P0 = 101.325kPa is the standard condition for pres-
sure, and hinit is the initial altitude calculated at the take-
off position. The barometer measurement is sensitive to
atmospheric pressure change and contains thermal noise,
which makes it unsuitable to track highly dynamic move-
ments due to high noise level and low update rate. The
solution in [20] models the altitude measurement from

barometer as a zero-mean Gaussian white noise (stan-
dard deviation of 1m) and use a reference barometer to
eliminate the atmospheric pressure change. They achieved
sufficient accuracy, but the reference barometer is not
applicable on MAVs which is common to encounter air
disturbance while flying. Therefore, we model the altitude
measurements with one more term of time-varying drift
which is the barometer altitude bias bbaro:

hbaro = h(t) + bbaro(t) + nbaro(t) . (4)

The barometer bias can be observed when distance sen-
sor is available. For the distance sensor, we model it with
a zero-mean additive Gaussian white noise by considering
the height of underlying surface:

hdist = h(t) − hsur(t) + ndist(t) , (5)

where hsur(t) is the ground surface height which is updated
when a valid surface change is detected.

4.3 Attitude estimation
The orientation estimation is based on a Kalman filter
represented with quaternion [21]. Based on gravity mea-
surements, only roll and pitch angle are observable but
the heading angle is not. The heading angle is observed by
fusing the heading measurement from laser SLAM. This
intrinsically solves the issue of severe magnetic interfer-
ence in indoor environments and provides an accurate and
smooth orientation for flight control.

The state vector includes angular velocities 𝝎b, angu-
lar accelerations .𝛚b, vector of gravity rg, vector of laser
heading rl in body frame. The measurement vector con-
tains angular velocities, the vector of gravity, the vector of
heading measured directly from laser SLAM:

x =
⎡⎢⎢⎢⎣
𝛚b.𝛚b
rg
rl

⎤⎥⎥⎥⎦ , z =

[ �̄�b
r̄g
r̄l

]
. (6)

A constant angular acceleration is assumed in the pro-
cess model. The velocity .r of any vector in body frame is
related with the rotation of body frame 𝝎b. The relation-
ship is

.r = .rb + 𝛚∧
b rb , (7)

in which [·]∧ represents the skew symmetric matrix. We
have .rb = 0 since there is no time dependent motion for
gravity and heading vector. The non-linear dynamic model
is

xk+1 = 𝑓 (xk,w) =
⎛⎜⎜⎜⎝

𝛚k +
.𝛚kΔt + w𝛚.𝛚k + w .𝛚

rg,k + 𝛚∧
k rg,kΔt + wrg

rl,k + 𝛚∧
k rl,kΔt + wrl

⎞⎟⎟⎟⎠ , (8)

where w[·] represents the relevant Gaussian white noise.
For a standard EKF algorithm, the linearized Jacobian
matrices are

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Ak = 𝜕f(xk,wk)
𝜕xk

=
⎡⎢⎢⎢⎣

I IΔt 0 0
0 I 0 0

−r̃g,kΔt 0 I + 𝛚∧
kΔt 0

−r̃m,kΔt 0 0 I + 𝛚∧
kΔt

⎤⎥⎥⎥⎦ ,
(9)

Wk = 𝜕f(xk,wk)
𝜕wk

= I . (10)

The observation model is represented as a linear func-
tion

zk =

[ I 0 0 0
0 0 I 0
0 0 0 I

]
xk . (11)

The orientation is represented as the rotation matrix Rbn
and extracted after every iteration step of the Kalman filter:

Rbn =
[

enx
b en𝑦

b enz
b

]
. (12)

The base vector in z-direction can be calculated using the
vector of gravity:

enz
b = −

rg
b‖‖‖rg
b
‖‖‖ . (13)

The base vector in y-direction is calculated according to
the orthogonality:

en𝑦

b =
enz

b × rg
b‖‖‖enz

b × rg
b
‖‖‖ . (14)

Consequently, the x-direction base vector can be deter-
mined as:

enx
b =

enz
b × en𝑦

b‖‖‖enz
b × en𝑦

b
‖‖‖ . (15)

The assumption for the presented attitude filter relies
on the gravity vector to provide a valid angle estimation.
This assumption is violated during aggressive flight. To
alleviate this effect, we compensate for the acceleration
measurements when a valid position sensor is available.

4.4 Position estimation
The general position estimation is fused using a linear
kalman filter formulation [22]. For each axis, the state vec-
tor includes position p, velocity v and acceleration bias ba:

x =

[ p
v

ba

]
, z =

[
p̄
v̄

]
. (16)

The system input is linear accelerations measured by the
onboard accelerometer. The system model is:[ .p.v.

ba

]
=

[ 0 1 0
0 0 −1
0 0 0

][ p
v

ba

]
+

[ 0
1
0

]
a +

[ 0
wa
wba

]
, (17)

where w[·] represents the noise. The discrete-time system
matrices are

Ak =
⎡⎢⎢⎣

1 ts − t2
s
2

0 1 −ts
0 0 1

⎤⎥⎥⎦ , (18)

Bk =
[

t2
s
2

ts 0
]
, (19)

in which ts is the sampling time. The discrete-time covari-
ance matrix for process model is

Qk =

⎡⎢⎢⎢⎢⎣

(
t3
s
3
𝜎2

a + t5
s

20
𝜎2

ba

)
( t2

s
2
𝜎2

a + t4
s
8
𝜎2

ba
) − t3

s
6
𝜎2

ba

( t2
s
2
𝜎2

a + t4
s
8
𝜎2

ba
) (ts𝜎

2
a + t3

s
3
𝜎2

ba
) − t2

s
2
𝜎2

ba

− t3
s
6
𝜎2

ba
− t2

s
2
𝜎2

ba
ts𝜎

2
ba

⎤⎥⎥⎥⎥⎦
, (20)

where 𝜎2
[·] represents the power spectral density of noise.

The observation can be position measurements from
SLAM or GPS. Since the position measurement is usually
delayed comparing with IMU data, we use a buffer to save
all the states in a time window. We assume the delay time is
constant and can be acquired by experiments. When new
measurement arrives, it is first matched to the respective
timestamp and then used to calculate state correction. The
observation model is a trivial linear function

zk =
[

1 0 0
]

xk . (21)

As each sensor data are not necessarily updated at the
same frequency, the observation model can be easily sep-
arated to handle different sensors when data arrive. The
discrete-time system covariance is approximated accord-
ing to sampling time ts or frequency fs:

Rk ≈ R(t)
ts

= R(t) · 𝑓s . (22)

Altitude estimation model is an extension on the z-axis
position filter with one more barometer altitude bias state
bbaro. We denote the basic position state vector with alti-
tude h, velocity vh, acceleration bias ba. The measurement
state includes altitude from barometer hbaro, and height
from distance sensor hdist − hsur:

x̃ =
⎡⎢⎢⎢⎣

h
vh
ba

bbaro

⎤⎥⎥⎥⎦ , z̃ =
[

hbaro
hdist − hsur

]
. (23)

The system input is z-direction acceleration, and the
discrete-time process model is augmented from Ak in posi-
tion filter formulation:

Ãk =
[

Ak 0
0 1

]
, (24)

B̃k =
[

t2
s
2

ts 0 0
]
. (25)

The discrete-time covariance matrix for process model is

Q̃k =
[

Qk 0
0 ts𝜎

2
bbaro

]
. (26)
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The observation model can be derived as

z̃k =
[

1 0 0 1
1 0 0 0

]
x̃k . (27)

4.5 Indoor-outdoor transition
For the indoor-outdoor transition problem, we adopt the
stochastic cloning method [23]. The idea is to add past
states in the filter, and update the filter with relative mea-
surements from SLAM. The advantage of doing this is to
maintain a correct covariance estimation and output a con-
sistent position. When the drone operate in both indoor
and outdoor environments, we treat GPS as global mea-
surement and SLAM output as relative measurement. The
state vector includes past position pl, position p, velocity v,
acceleration bias ba:

x̌ =
⎡⎢⎢⎢⎣

pl
p
v

ba

⎤⎥⎥⎥⎦ , ž =

[Δp
p
v

]
. (28)

The process model is augmented respectively:

Ǎk =
[

1 0
0 Ak

]
, (29)

B̌k =
[

0 t2
s
2

ts 0
]
. (30)

The discrete time covariance matrix for process noise is

Q̌k =
[

0 0
0 Qk

]
. (31)

By applying stochastic cloning technique on the filter,
the covariance matrix need to be augmented with the
position variance Ppl when past state pl is initialized:

P̌k =
⎡⎢⎢⎢⎣

Ppl Ppl 0 0
Ppl
0
0

Pk

⎤⎥⎥⎥⎦ (32)

The respective observation model is

žk =

[−1 1 0 0
0 1 0 0
0 0 1 0

]
x̌k . (33)

5 PLANNING AND CONTROL

5.1 Task planning
We use a tree-based framework [24] to manage multiple
tasks of different types. The tasks are organized into a tree
structure and executed in a manner of depth-first traversal.
Figure 7 shows a typical tree structure. Each leaf node task
contains only one single action. In other words, executing
that leaf node task is equivalent to executing the corre-
sponding action. Some flight action examples are ‘take-off’,
‘fly to a global coordinate’, ‘fly to a local coordinate’, ‘drop
a payload’, ‘land’.

FIGURE 7 The task planning structure [Color figure can be
viewed at wileyonlinelibrary.com]

The task planning is further enhanced with a reactive
planning scheme triggered by events. An event is an occur-
rence of the asynchronous external activity that requires
an action to take. As a result, the current action is ter-
minated and a special action is inserted and executed to
handle the event. For example, when a visual target is
detected during a target searching mission, a ‘target found’
event will be triggered and a ‘navigate to found target’
action takes over. If the event is not triggered, the default
action will be completed.

5.2 Path planning
The MAV adopts a two-layered planning structure [17] to
achieve online path planning and obstacle avoidance. First
of all, a search-based global planner, specifically, A* is used
to find the geometric collision-free path on the updated
map without considering any vehicle dynamics. Then,
the dynamically-feasible trajectory is generated along the
collision-free path by solving a series of two-point bound-
ary value problems. Figure 8 illustrates the procedure of
our path planning. The local target will be switched if the
trajectory of current path enters the deceleration phase.

5.3 Cascaded control
A cascaded control structure [25] is applied for precise and
robust maneuvering. The controller structure is displayed
in Figure 9. Outer loop controller, which adopts robust
perfect tracking (RPT) algorithm, transfers the user com-
mand into acceleration reference. Whereas the LQR based
inner loop controller takes in acceleration reference and
generates motor control signals.

http://wileyonlinelibrary.com
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FIGURE 8 The path planning structure [Color
figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 The flight controller structure

TABLE 1 Comparison of SLAM methods

SLAM methods Accuracy (ATE) CPU usage
Cartographer 0.059m 60%

Hector 0.071m 40%

6 EXPERIMENTAL RESULTS

6.1 Onboard perception
6.1.1 SLAM comparison
We carefully evaluate two SLAM methods, which are Car-
tographer [8] and Hector [7]. Figure 10 shows the position
outputs from both methods. Also, ground truth data from
VICON motion capture system is plotted for comparison.
The result indicates that both methods can provide com-
petitive accuracy compared with ground truth. It is notable
that the result of Cartographer is closer to ground truth in
the area near the starting point. This should be the con-
tribution of loop closure, which is not implemented in
Hector.

We also examine the real-time performance of each
method by checking the approximate CPU usage of the
onboard computer. The quantitative results for accuracy
and computation efficiency are shown in Table 1.

The average translation error (ATE) of Hector SLAM is
0.071m, whereas ATE of Cartographer SLAM is 0.059m.
The CPU usage of Hector SLAM is around 40% of one CPU
core while that of Cartographer SLAM is 60%. In summary,
Cartographer SLAM maintains comparable efficiency and
outperforms Hector SLAM in terms of accuracy. There-
fore, we deploy Cartographer SLAM onboard for a variety

FIGURE 10 The comparison of SLAM accuracy in VICON room
[Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 11 Occupancy maps built with Cartographer SLAM.
(A) shows map of Vicon room (around 8x6m, 0.1m resolution), (B)
shows map of a larger test field (around 20x15m, 0.1m resolution)
[Color figure can be viewed at wileyonlinelibrary.com]

of applications. Examples of built occupancy grid map by
Cartographer SLAM are shown in Figure 11.

6.1.2 Visual detection
The color target detection can handle partial occlusion
as long as the target occupies a large enough region
in the image. The detection is further confined with a
mission-level searching area to improve the robustness.
The Apriltag detection is robustness to scale, rotation
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(A) (B)

(C) (D)

FIGURE 12 Visual target detection. The first row (A,B) shows
the detection of red target, green line shows the bounding circle of
target. The second row (C,D) shows the detection of Apriltag target,
red dot shows the center and green and blue lines show the
bounding box [Color figure can be viewed at wileyonlinelibrary.com]

and light change. The number of false positives is neg-
ligible to guarantee the stability of guidance. We use an
A4-size Apriltag as our landing pad marker. To reduce
the computational consumption, an image resolution of
320x240 is applied and the detection rate is up to 10Hz. The
detection is valid between 0.4m and 3m with this setup.
Figure 12 demonstrates the effectiveness of our detection
algorithms.

6.2 State estimation
6.2.1 Indoor flight
We fuse sensor data from IMU, barometer and distance
sensor to estimate flight altitude. This configuration intro-
duces sensor redundancy, which can handle the sur-
face change problem and give robust altitude estimation.
The raw measurements from barometer are depicted in
Figure 13. The measurements are captured by flying the
MAV with changing altitudes. It can be observed that there
is a static bias on barometer altitude. This indicates that
we can trust barometer in the long-term by considering the
bias. On the other hand, short-term measurement is prob-
lematic in some cases. Since the air pressure is susceptible
to air disturbance, we can observe significant large errors
during the altitude changing. This is because of the chang-
ing air distance when the motor speed is changing. Also,
if the MAV flies near surfaces, the air disturbance would
change due to ground effect. Based on this observation, we
do not trust the barometer altitude in a very short time
when the distance sensor is regarded as failures.

FIGURE 13 Different altitude measurments [Color figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 14 Lidar distance measurements with surface changing
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 14A shows raw measurements from the distance
sensor under the circumstance of different surfaces. Obvi-
ous data jumps can be seen when the surface changes.
Moreover, there are some unexpected errors which give
extreme large values. The results suggest that surface dif-
ference must be detected and errors must be rejected.
Intuitively, we can decide the sudden jump by differentiat-
ing the distance value. However, it is hard to detect it with a
fixed threshold due to the progressive variance of distance
measurements. Figure 14B shows the differential result on
lidar distance to illustrate this problem.

Considering all the discussed cases, the overall altitude
sensor fusion strategy is shown in Figure 15. The system
continuously monitors the health status of each sensor. If
none of the sensors fails, we use all the measurements.
Otherwise, we detect sensor failure and reject unexpected
measurements. When the surface is changing, the dis-
tance sensor is not trustworthy, and the barometer in a
short time is suspicious with air disturbance. The IMU info
is passed through directly to predict the altitude. When
the distance sensor gives stable output, we can subtract it
with the current altitude to determine the surface height.
On the other hand, if the distance sensor fails for a long
time, the barometer will help to bound the IMU drift.

http://wileyonlinelibrary.com
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FIGURE 15 Altitude fusion strategy [Color figure can be viewed
at wileyonlinelibrary.com]

FIGURE 16 Altitude estimation performance [Color figure can
be viewed at wileyonlinelibrary.com]

By complementing different characteristics of the dis-
tance sensor and barometer, our method provides a robust
altitude estimation, which is shown in Figure 16. In our
implementation, variance of acceleration 𝜎2

a, variance of
acceleration bias 𝜎2

ba
, variance of baro bias 𝜎2

bbaro
, variance

of barometer altitude 𝜎2
hbaro

, variance of distance sensor
altitude 𝜎2

hdist
are as follows:

𝜎2
a = 0.09 , 𝜎2

ba
= 0.01 ,

𝜎2
bbaro

= 1 , 𝜎2
hbaro

= 0.09 ,

𝜎2
hdist

= 0.01 .

The error between distance sensor altitude and current
altitude estimation ehdist is utilized to detect suspicious and
surface changing:

hdist =
{

suspicious, i𝑓 ehdist > 𝜎hdist .
changing, i𝑓 ehdist > 3𝜎hdist in 0.2s .

As can be seen from the result in Figure 16, surface differ-
ences are successfully detected all the time, and barometer
bias is correctly estimated. As a result, the altitude output
is very stable and matched with the reference.

The whole estimated states include 3D position, veloc-
ity and attitude. In addition, the system is designed to be

robust by utilizing sensor redundancy. Figure 17 shows the
complete 6D state estimation result with laser SLAM and
robust altitude estimation. Since laser SLAM is accurate,
the filtered position follows SLAM result very well. In the
zoom-in view, It can be seen that the filtered position is
smoother than SLAM data, which is good for control pur-
pose. Moreover, smooth velocity estimation on each axis is
also presented to demonstrate the filter performance.

6.2.2 Indoor-outdoor transition
To demonstrate the filter performance for indoor-outdoor
transition flight, we fly the MAV in an outdoor basketball
court where both GPS and laser SLAM is available. GPS

FIGURE 17 Kalman filter based state estimation result [Color
figure can be viewed at wileyonlinelibrary.com]
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can be disabled or enabled at any time using a switch from
a transmitter. GPS is updated at 5Hz, and laser SLAM is
updated at 20Hz. We use parameters of 𝜎2

pgps
= 4, 𝜎2

pslam
=

0.25. The state estimation result for indoor-outdoor transi-
tion is shown in Figure 18. Laser SLAM result is regarded
as a reference due to its high accuracy. The data is sep-
arated into three parts in the figure. The first part uses
GPS as a position source, the filter follows GPS measure-
ments but smoother by compensating GPS errors with
IMU. The second part disables GPS and switches to laser
SLAM, the filter follows the relative measurements from
SLAM with high confidence. The third part disables laser
SLAM and resumes to use GPS. We can see that the filter
track GPS output as expected. The result demonstrates the
effectiveness of our filter by switching between global mea-
surements (GPS) and relative measurements (SLAM). The
position estimation variance on one axis validates a reason-
able change with stochastic cloning method. When SLAM
is used as relative measurements, variance increases based

FIGURE 18 State estimation result for indoor-outdoor transition
(GPS-SLAM-GPS) [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 19 The red curve shows the reference, and the blue one
gives the measurement [Color figure can be viewed at
wileyonlinelibrary.com]

on previous converged variance. When GPS is used again,
variance decreases since it provides global measurements.

6.3 Flight performance
Our system has been exhaustively tested in different
indoor environments. As a case study, we demonstrate the
proposed system in the 2017 International Micro Air Vehi-
cles Competition (IMAV 2017) held in Toulouse, France,
and won the championship*. The competition simulates
a rescue mission in a damaged building. The mission ele-
ments include takeoff and landing on a moving platform,
navigating through obstacles, searching and identifying
casualties inside, also resisting wind disturbance.

The flight performance evaluation with 3D reference
and measurements is depicted in Figure 19. The track-
ing error is relatively small given the trajectory that is
generated and always changing in real-time. It can be
observed that our system handles multiple types of tasks
and maneuvers very well in one flight. The tracking accu-
racy is very impressive with an average tracking error of
0.095m. A short period of obvious large tracking error can
be observed from the result. This is corresponding to the
flight area simulating wind disturbance with industry fans.
The MAV can recover to the reference trajectory with a
bounded drifting error.

7 CONCLUSIONS

In this paper, we have presented our autonomous MAV
solution for completing search and rescue in GPS-denied

*http://www.imavs.org/2017/
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environments. Comprehensive hierarchical structures for
both hardware and software make our system robust
enough to accomplish versatile tasks. We have developed
the perception, planning and state estimator with con-
strained onboard computational power. The system perfor-
mance is validated in a variety of real flights. Currently, we
are working on a vision-based navigation solution for our
system. In the near future, We will expand the autonomous
capabilities of the system to general 3D environments by
incorporating vision-based navigation.
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