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Abstract
We present in this paper a robust online path planning method, which allows a micro rotorcraft drone to fly safely in

GPS-denied and obstacle-strewn environments with limited onboard computational power. The approach is based on an effi-
ciently managed grid map and a closed-form solution to the two point boundary value problem (TPBVP). The grid map assists
trajectory evaluation whereas the solution to the TPBVP generates smooth trajectories. Finally, a top-level trajectory switching
algorithm is utilized to minimize the computational cost. Advantages of the proposed approach include its conservation of com-
putational resource, robustness of trajectory generation and agility of reaction to unknown environment. The result has been
realized on actual drones platforms and successfully demonstrated in real flight tests. The video of flight tests can be found at:
http://uav.ece.nus.edu.sg/robust-online-path-planning-Lai2015.html.
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1 Introduction
The ability to navigate through cluttered environments

is crucial to many higher level robotic applications such
as flocking, exploration and target tracking. A key to
achieve this capability is a sophisticated path planning
system, which is to produce trajectories that lead the
vehicle traveling safely through obstacles. The system

needs to observe the environment, make decisions ac-
cordingly and generate necessary commands for lower
level controllers. Based on these tasks, it usually con-
sists of modules that handle perception and planning
separately. A perception module is responsible for envi-
ronment observation that includes obtaining the states
of the vehicle (i.e., localization) and calculating the lo-
cation of obstacles (i.e., mapping). A planning module
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involves finding trajectories that satisfy the vehicle dy-
namics and environmental constraints. The lower level
controllers then take these trajectories as references to
drive the vehicle accordingly. Such a scheme is widely
adopted in the area of robotics [1–3]. The detailed ap-
proaches for the perception and planning phases vary
largely due to the difference on vehicle types, sensors,
targeted environments and applications. In this paper,
we focus on developing a path planning system for rotor-
craft drones in GPS-denied and cluttered environments.
The planning and perception modules are studied to
elaborate their connections that provide guidelines on
tailoring their algorithms to improve efficiency.

Many of the algorithms adopted by micro aerial vehi-
cles (MAVs) or drones are originated from the robotic
research community. Unfortunately, unlike the ground
robots or vehicles, MAVs come with very limited pay-
load and computational power. Those smaller drones,
such as the quadrotor adopted in our research as de-
picted in Fig. 1, normally carry less than 500 grams and
have low-speed onboard computers. For such drones,
it is hard to implement the commonly used methods
onboard. It is necessary to develop algorithms that con-
sume less memory and computational resources, which
is the subject of studies in this work.

Fig. 1 Frames used: the left corner shows the global frame
while the body frame is shown along with the vehicle.

To save memory space, a rolling map structure is
adopted to handle an infinitely large environment with
limited memory space. It also comes with algorithms
for evaluating trajectories on the map using voxel based
methods. On the other hand, it is noticed that the on-
line generation of smooth and collision-free trajectories
is usually computationally intensive and probably unre-
liable in real time if numerical solutions are required. We
propose an algorithm to split the trajectory generation

process into solving a series of TPBVPs. An closed-form
solution to the TPBVP is developed to further improve
the overall efficiency.

The rest of the paper is organized as follows: In
Section 2, we introduce the system design procedure,
which details the connection of the perception, plan-
ning and action phases in our proposed system. Sec-
tion 3 presents a discretized structure of expressing
the surrounding environment for the planning algo-
rithm, whereas Section 4 describes the path planning
and trajectory generation algorithms, which are capa-
ble of generating smooth trajectories to lead the UAV
to fly through an obstacle dense environment. The ex-
perimental results and analysis are given in Section 5.
Finally, we draw some concluding remarks in Section 6.

2 System design
The power source that lifts a quadrotor drone is its

four propellers. By controlling the rotating speed of each
propeller, it is able to manipulate the attitude and po-
sition of the drone. In our studies, we adopt both the
coordinate systems of the world frame W and the vehi-
cle body frame B, which are shown in Fig. 1. The Z-X-Y
Euler angles are used to define the roll (φ), pitch (θ) and
yaw (ψ) angles of the rotating body frame. The model
of the drone is adopted from [4] and it is proven to be
differentially flat. That is, with the chosen flat outputs of
the system:

σ = [x y z ψ], (1)

all the system’s states could be expressed as these out-
puts and their derivatives. Here, the [x y z] is the po-
sition of the mass center in coordinate W and ψ is the
yaw angle of the vehicle. Due to the differential flatness,
trajectories of the system can be studied in the reduced
space of flat outputs rather than the full state space. This
result helps to decrease the dimension of the planning
problem and enable the online trajectory generation.

To track trajectories of flat outputs, a cascaded con-
trol structure is adopted from [5]. The inner loop is in
charge of the attitudes control whereas the outer loop
handles the position tracking. This design is based on the
fact that the inner loop bandwidth of the drone is much
higher than its outer loop. The functional structure of the
system is shown in Fig. 2. The detail of position and atti-
tude controllers can be found in [6]. The localization of
the vehicle can be done using either velocity estimation
methods such as the optical flow or complex ones like
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simultaneous localization and mapping (SLAM) [7]. The
path planner considers current target and surrounding
environment to generate jerk limited trajectories in the
space of flat output as in (1). For a rotorcraft, its trajec-

tory consists of position, velocity, acceleration and jerk
information. The target for the path planner is either pro-
vided by a human commander or by other higher level
task manager.

Fig. 2 System structure of 7 different functional blocks. The attitude controller tracks the angle reference by controlling the
rotating speed of propellers [w1 w2 w3 w4]. The position controller tracks the trajectory provided by the path planner.

3 Perception of the environment
We discuss in this section the localization and map-

ping methods that transform the environmental infor-
mation into efficient data structure to serve the path
planning algorithm. The two basic tasks of analyzing the
environment are to localize the vehicle itself and build
a map of the world. The SLAM technique is commonly
adopted to localize the vehicle in GPS-denied environ-
ment. The implementation of SLAM algorithms depends
on the type of perception sensors used, such as RGB-D
sensors and 2D laser range finders. The use of RGB-
D sensors was first presented in [8] and more details
are covered in [9]. The main idea is to match sparse vi-
sual features associate with dense depth information to
obtain an initial estimate of the relative frame transfor-
mation, which is then refined by using iterative closet
point (ICP). The 3D mapping provided by RGB-D sen-
sors requires complicated data structure to represent
the map and perform query search in the map, which
is too time-consuming to be implemented on mobile
computers onboard a MAV. On the other hand, 2D laser
range finders provide accurate distance measurements
in a 2D plane, making them ideal sensors for environ-
ments such as indoor offices or urban canyons. SLAM
using 2D laser range finders have been extensively cov-
ered in the literature. Open source packages like GMap-
ping [10] and Hector-SLAM [11] are available for indoor
environments. Algorithms describing SLAM in forest en-
vironment are covered in [12]. In this paper, we use

Hector-SLAM for localization in indoor offices.
Following the localization, an environmental map with

necessary data structures and analyzing functions is re-
quired for planning algorithms. Among all the map an-
alyzing functions, the most important ones are i) to ef-
ficiently determine the distance of a given point on the
map to its closest obstacle, and ii) to evaluate a given tra-
jectory so that its property can be assigned with a score.
The former is used to check the minimum distance be-
tween the vehicle and obstacles, whereas the latter is
used for collision checking and closeness assessment.

Since our task is not to map the whole flying area,
a grid based rolling map is chosen to store the world
information, which is essentially a fix-size grid structure
that allows vehicles to move out of its boundary and
re-enter into the map. Transforming from a given real
world position to the cell number of the rolling grid map
is given in Algorithm 1 below:

Algorithm 1 (Mapping from real position to rolling map grid)

Input: Real world position p;
Output: Grid on rolling map g;
pdiscret ← floor((p −Origin)/GridSize + 0.5);
g← positive_ modulo(pdiscret,MapSize).

Here the “Origin′′ is the real world position on the
grid map’s (0, 0, 0). The “GridSize′′ is the width of the
grid and the positive_modulo function performs the
rolling action. Each grid g is represented by three in-
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teger numbers g.x, g.y, g.z, respectively, corresponding
to its grid number along each axis. The size of the rolling
map must be larger than the vehicle’s sensor range to
keep the continuity of information. For every obstacle
captured by the sensors, its position is projected onto
the map by first performing a coordinate transformation
from the body frame B to the world frame W and then
mapped onto the grid map. The true position of the ve-
hicle is acquired through the state estimation module,
which is obtained through the Hector-SLAM algorithm
in our case.

A simple way to access the shortest distance of a given
point on the map to obstacles is to scan through grids
around each obstacle and assign distance values to each
grid within the radius of interest. Other methods based
on the Euclidean distance transformation (EDT) algo-
rithms (see, for example, [13]) could also be used. To
our experience, if the sensor returns very limited infor-
mation of the environment, the above mentioned simple
method would perform better than the EDT based ones.
However, if the sensor, such as an RGB-D camera, is
capable of providing rich information, the EDT methods
would give a better result.

Fig. 3 shows a typical grid map with updated obstacle
and distance information.

Fig. 3 A cost map generated by laser scanner.

For a given grid g on the map, its distance to the clos-
est obstacle is denoted as EDT(g). In our implementa-
tion, instead of just taking the distance information, we
have also assigned a cost Cost(g) for each grid accord-
ing to their EDT value. The cost value is reciprocal to
the distance of a grid to an obstacle. The area blocked by
obstacles are marked as unknown and given a medium
cost value. This is used for path planning, in which we

run an A* algorithm based on this cost map.
Another problem of mapping are the moving obsta-

cles. If we only project the sensed obstacles and ac-
cumulate them in the map, a moving object would
leave its trace as a wall of obstacles in the grid map,
which would render the map useless. A common way
of solving such a problem is to reduce the cost value of
each grid in every scan frame before adding the newly
sensed information. That is, for each grid on the map,
do Cost(g) := Cost(g) · k with 0 < k < 1 for every
scan. However, this leads to losing of history informa-
tion when an object is out of the sensor’s range for
a certain period of time. To tackle this problem, it is
noticed for most of the range sensors, such as sonars,
laser scanners and depth cameras, there is a line-on-
sight relationship between the obstacle and the sensor.
Moreover, the space in between are obstacle free. This
property is utilized along with a voxel traversal method
in Algorithm 4 to clean the space between the sensor
and the obstacle. The procedure of mapping in our im-
plementation is given in Algorithm 2.

Algorithm 2 (Mapping)

Input: List of obstacles ObsL, sensor position ps;
Output: Map with distance information;
for each Obstacle Obs ∈ ObsL do

Grids← VoxelTraversal(ps,Obs.pos);
for each Grid g ∈ Grids do

Map(g)← UNOCCUPIED,
Map(Obs.pos)← OCCUPIED,

DistanceTransform(Map).

On the other hand, to perform the collision checking
and trajectory assessment, a foot-print of the vehicle fol-
lowing a given trajectory on the map is needed. In our
case, this is made easy by the fact that the vehicle has a
similar width, length and height, which could be treated
as a sphere in 3D or a circle in 2D space with distance
rv. For a given trajectory S, the minimum distance to
obstacles when vehicle travel through it is given by

Distancemin(S) = min
g∈G
{EDT(g) − rv}, (2)

where G is a set of grids covered by the trace of the
trajectory S. An approximation method is then used to
extract the trace of a given trajectory and project it onto
the grid map. Since the trajectory could be in the form
of polynomials, splines or results of forward simulation,
a general solution to project the trajectory onto the grid
map and retrieve a list of grids is rather difficult and time
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consuming. For our implementation, all trajectories are
approximated by a series of line segments, which are
acquired by sampling the original trajectory at discrete
time instances. Afterwards, each of these segments is
examined by a fast voxel traversal algorithm [14].

Let Plist be a list of points in the configuration space
that is generated by sampling the trajectory S at dis-
crete time t0, t1, t2, . . .. The algorithm of retrieving a list
of grids, through which the trajectory passes, is given in
Algorithm 3:

Algorithm 3 (Trajectory to grids)

Input: Trajectory S;
Output: List of grids covered by S, G;
Plist ← DiscreteSampling(S);
Line segment list← Split&merge(Plist);
for each Line segment ∈ Line segment list do

G.append(VoxelTraversal(Linesegment)).

Each line segment is represented by its starting point,
pstart, and the end point, pend, respectively. The voxel
traversal algorithm in 2D is shown in Algorithm 4.

Algorithm 4 (Voxel traversal)

Input: 2 points pstart, pend;
Output: Grids covered by the line segment, L;
g0 ← point2grid(pstart); g1 ← point2grid(pend);
StepX← sign(g1.x − g0.x); StepY← sign(g1.y − g0.y);
Dx← abs(g1.y − g0.y); Dy← abs(g1.y − g0.y);
tDeltaX← 2Dy; tDeltaY← 2Dx;
tMaxX← Dy; tMaxY← Dx;
g← g0;
loop

L.append(g)
if g.x = g1.x and g.y = g1.y then

break.
if tMaxX < tMaxY then

tMaxX← tMaxX + tDeltaX,
g.x← g.x + StepX,

else
tMaxY← tMaxY + tDeltaY,
g.y← g.y + StepY.

Here the point2grid function is given in Algorithm 1.
The approach is different from the commonly used Bre-
senham’s algorithm, which does not return all the grids
covered by the line segment, providing weaker checking
for each trajectory. The difference between Bresenham’s
algorithm and ours is highlighted in Fig. 4.

Our approach actually passes through all the grids
whereas the Bresenham’s algorithm ignores some along

the way. It would cause problems if the ignored grid
happens to be an obstacle.

Lastly, by checking each of the grid g ∈ G in Algo-
rithm 3 for its EDT(g), we could determine the safeness
of the trajectory generated. With all these basic tools,
fast planning and checking of a trajectory is made pos-
sible.

Fig. 4 Comparison between Bresenham’s algorithm, the
adopted algorithm provides more safety by returning all grids
covered by the line segment.

4 Path planning algorithm
Path planning, like many other engineering problems,

can be cast as an optimization problem. For a linear
time-invariant discrete-time system:

⎧⎪⎪⎨⎪⎪⎩
xk+1 = Axk + Buk,

yk = Cxk,
(3)

where A, B and C are constant matrices with appro-
priate dimensions, xk, uk and yk are respectively the
state, input and output variables of the system at time k.
We denote U = [u0 u1 u2 · · · uN−1]. The path planning
problem can be described as

min
U
{J(U) = x′NPxN +

N−1∑
k=0

(x′kQxk + u′kRuk)}
s.t. x0 = xstart, xN = xgoal, xk+1 = Axk + Buk,

yk = Cxk,

xmin � xk � xmax, ∀k ∈ [0,N],
umin � uk � umax, ∀k ∈ [0,N − 1],
x � O, ∀k ∈ [0,N],

(4)

where P, Q and R are positive definite, xstart and xgoal

are the initial and end states of the vehicle, O is a sub-
set of the state space that is not allowed to enter which
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includes all the real obstacles and human-set boundary.
Unfortunately, there is no explicit solution to this opti-

mization problem. Though numerical methods exist [4],
its performance is usually limited by the size and com-
plexity of the optimization space. Furthermore, numer-
ical methods suffer from the possibility of divergence
and providing a control sequence that could potentially
damage the vehicle. Therefore, extra checking and val-
idation of the trajectory are required and further slow
down the computation process. In this work, we adopt
a two-step solution to tackle the problem. Firstly, we
largely ignore the vehicle dynamics and focus on the
topological information of the environment to search
for a safe pass way on the map. We then design smooth
trajectories following these pass ways with the vehicle
dynamics considered.

Since a rotorcraft is capable of performing hovering
and moving to all directions, we simplify it as a checker
moving on the grid map. For a 2D map case, the checker
could move towards 8 different directions: left, right, up,
down, top left, bottom left, top right and bottom right.
For the left, right, up and down movement, the traveled
distance is 1 unit and for the top left, bottom left, top
right and bottom right movement, the traveled distance
is
√

2 unit. Here we choose the classical A* algorithm
which is also frequently considered as a graph search
method to generate a safe pass way. Inputs to the A* al-
gorithm are the start and goal point in the configuration
space. Results of the algorithm is a sequence of map
grids. A typical A* pass way is shown in Fig. 5.

Fig. 5 The safe pass way is shown as green line segments. The
end state point is picked around the last point stay line-on-sight
to the start point.

However, due to the overly simplified dynamics, the
pass way itself cannot be directly used as an outer loop
reference for the actual vehicle. To generate a feasible
trajectory, the vehicle dynamics must be considered.

As stated in Section 2, the trajectories of a rotorcraft
are designed in the flat-output space where it consists
of [x y z ψ] and their derivatives (a.k.a. velocities, ac-
celerations, jerk, snap, etc.). The most widely adopted
method is numerical optimization based [4, 15]. This
approach handles multiple “key-frame” problem and
generate minimum snap trajectory that takes into ac-
count of the full dynamics of the drone. Here, a key-
frame means one more extra constraints in the form
of xk = xchosen for the optimization problem in (4). In
general, this method gives a well-formed, smooth tra-
jectory that stays close to the safe pass way. Unfortu-
nately, direct optimization methods usually result in a
huge optimization space [16]. It is a common practice
to utilize spline approximation to reduce the size of the
problem [15].

The major drawback of this approach is the numer-
ical instability which requires extra effort to take care
and increase the overall complexity of the algorithm.
In this paper, we adopt a rather different bang-bang
control based trajectory generation idea. The method
could solve for TPBVP with differential constraints and
we use it to generate jerk-limited trajectories. Unlike the
minimum snap trajectory, jerk limited trajectory ignores
some of the vehicle dynamics but is proven to be good
enough for normal flight. According to [17], with a prop-
erly designed attitude feedback control law, the tracking
error caused by the ignored dynamics of the jerk lim-
ited trajectory is insignificant compared to disturbances
and sensor noises. Another important reason is the jerk
limited trajectory could be solved analytically without
worrying the performance of the numerical optimiza-
tion. Nonetheless, according to [4], the angular speed
p, q, r of the vehicle can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p = −hw · yB,

q = −hw · xB,

r = ψ̇zw · zB,

hw =
m
Tr

(ȧ − zB · ȧ)zB,

(5)

where a is the acceleration of the center of mass, Tr is
the net body force from the propellers and xB, yB, zB, zw

are the base vectors of the body frame as shown in Fig.1.
From (5), it is clear that the angular velocity of the

vehicle is bounded by choosing a jerk limited trajectory.
Thus, a smooth flight experience can also be achieved
by limiting the jerk.

Since this is a TPBVP solver, only two-key-frames
problem can be handled. Naturally, we set these two
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key-frames to be the initial and end states of the tra-
jectory. The initial state is chosen as the current state
of the vehicle to avoid reference discontinuity during
switching of trajectories. The end state is required to be
at hover condition due to safety consideration. By satis-
fying conditions given in (6) below, even the algorithm
fails due to unexpected reason, the vehicle will end up
with a safe hover.

⎧⎪⎪⎨⎪⎪⎩
(ẋend, ẏend, żend) = (0, 0, 0),

(ẍend, ÿend, z̈end) = (0, 0, 0).
(6)

As in Fig. 5, the end state point [xend yend zend] is cho-
sen to be a point around the last line-on-sight point on
the safe pass way to the vehicle. This choice is made to
force the vehicle to stay close to the safe pass way. One
could imagine a trivial case where the vehicle picks such
an end state point, flies towards it in straight line and
hover, then picks another end state point and repeat the
process. In such a case, the vehicle will stay close to the
safe pass way while avoiding all static obstacles.

After the boundary values are properly set, the TPBVP
is solved by an algorithm proposed in [18], which is
depicted below with modifications to suit our task. We
introduce the algorithm with an acceleration limited tra-
jectory solver where it could be extended to solve jerk
limited problems as in [19]. A second order integrator
with acceleration as input is given as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(t) = sini +

� t

0
v(t̃)dt̃,

v(t) = vini +
� t

0
a(t̃)dt̃.

(7)

The task is to solve the following optimization problem:

min
a(t),t∈[0,T]

{J(a(t)) =
� T

t=0
dt}

s.t. s(0) = s0, s(T) = pgoal,

v(0) = v0, v(T) = 0,
a(0) = a0, a(T) = 0,
ṡ(t) = v(t),
v̇(t) = a(t),
− vmax � v(t) � vmax, ∀t ∈ [0,T],
− amax � a(t) � amax, ∀t ∈ [0,T].

(8)

Due to the minimum time requirement, it is proven that
the acceleration can only be chosen between amax,−amax

and 0 [20]. With such a choice, the velocity profile would

form a trapezoidal shape consists of three phases as
given in Fig. 6.

Fig. 6 A trapezoidal velocity profile, the corresponding accel-
eration is discontinuous but bounded. The trapezoidal profile
could be represented as acceleration phase, cruising phase
and deceleration phase.

Let us denote

R(t, s0, v0, a0) = s0 + v0 · t + 1
2

a · t2. (9)

These three phases could be expressed as i) the accel-
eration phase:

s(t) = R(t − 0, s0, v0, aacc) for 0 � t < t1; (10)

ii) the deceleration phase:

s(t) = R(t − t2, s2, v2, adec) for t2 � t < t3; (11)

and iii) the cruising phase:

s(t) = R(t − t1, s1, d · vmax, 0) for t1 � t < t2, (12)

where d ∈ {−1, 1} is the cruising direction. To solve for
the trajectory, we need to solve for t1, t2 and t3, respec-
tively. We first determine the direction of the cruising
phase as

d = sign(pgoal − pstop), (13)

where pstop denotes the point reached if the vehicle is
immediately slowed down to zero velocity. By check-
ing the relative position of pstop to the final target pgoal,
we could determine the direction d at which the vehicle
should travel further to reach its goal.

The algorithm to determine the parameters of a
acceleration-limited, minimum-time trajectory is given
in Algorithm 5.
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Algorithm 5 (Acceleration limited trajectory generation)

d← sign(pgoal − pstop);
vcruse ← d · vmax;
Δt1 ← abs(vcruse − v0)/amax;
aacc ← amax ∗ sign(vcruse − v0);
p1 ← p0 + v0 · Δt1 + 0.5 · aacc · Δt2

1;
Δt3 ← abs(−vcruse)/amax;
adec ← amax ∗ sign(−vcruse);
p̄3 ← vcruse · Δt3 + 0.5 · adec · Δt2

3;
p̄2 ← pgoal − p1 − p̄3;
if d = 0 then

Δt2 ← 0,
else

Δt2 ← p̄2/vcruse.
if Δt2 < 0 then

vnorm ← d ·
√

d · aM · (pgoal − p0) + 0.5 · v2
0,

Δt1 ← abs(vnorm − v0)/amax,
Δt2 ← 0,
Δt3 ← abs(−vnorm)/amax.

t1 ← Δt1;
t2 ← Δt1 + Δt2;
t3 ← Δt1 + Δt2 + Δt3.

Note that, whenΔt2 < 0, it requires the cruising phase
to have a negative time endurance, the cruising phase
does not exist. For a second order system, its velocity
trajectory ends up with a wedge-shaped profile where
the vmax is never going to be achieved. We would thus
need to calculate the achievable maximum velocity and
the corresponding time for acceleration and decelera-
tion phases.

For multi-dimensional cases, we notice that the end
state is at the full-stop, the trajectory will eventually
reach the final state for each dimension. However, since
the time consumption for each dimension is unequal,
the trajectory might be counterintuitive as illustrated
in Fig. 7. One possible solution is to find the dimen-
sion that takes the longest time Tlong to reach the tar-
get and we explicitly require other dimensions to slow
down and take Tlong time to finish [21]. However, this
involves much more calculation compared to the one-
dimensional case, especially to solve jerk-limited prob-
lem. We employ a coordinate rotating procedure to
solve such a problem by creating a new frame based on
the safe pass way’s location and orientation as shown in
Fig. 7.

In the new frame, the trajectory for each dimension is
calculated separately and transformed back to the orig-
inal coordinate. It results a trajectory that will converge
to the rotated axis x′ in minimum time, which is pre-
ferred in our case since now the axis x′ corresponds to

the safe pass way.
To extend the solution to the jerk limited case as

in [19], the same approach that solves the accelera-
tion limited problem is adopted. Firstly, it determines
the sign of cruse direction. It then checks if the maxi-
mum cruse velocity is reachable. If it can be achieved,
the curse time is then calculated. Otherwise, if it cannot
be achieved (i.e., the cruse time is negative), the reach-
able maximum velocity needs to be calculated. For the
limited jerk trajectory, the acceleration profile is either
trapezoidal (T) or wedged (W) for each acceleration or
deceleration phase. It is shown in [19] that the over-
all acceleration profile is either T-T, T-W, W-T or W-W
shaped and for each case a closed-form solution exists.
Therefore, to determine the reachable cruse velocity,
each of the T-T, T-W, W-T and W-W cases are tried until
one of them gives a possible solution where time du-
rations for acceleration, curse and deceleration phases
are all nonnegative. The detailed expressions of these
closed-form solution can be found in [17–19].

Fig. 7 The left figure represent the result of performing un-
synchronized trajectory generation in global frame. The result
is counterintuitive and away from the safe pass way. The right
figure shows the result of un-synchronized trajectory genera-
tion in a new frame by aligning its x axis to the safe pass way.
The result is intuitive and close to the safe pass way.

Given a closed-form solution to the TPBVP bounded
with the end state condition in (6), the vehicle will enter
hover state each time when it finishes a trajectory. This
is, however, not desirable for fast and efficient flight. A
common solution is to combine the TPBVP solver with
a receding horizon control (RHC) strategy. This is also
referred to as the model predictive equilibrium point
control (MPEPC) [22]. The idea is to follow each newly
generated trajectory for only a certain amount of time,
which is usually shorter than the full time length of the
trajectory. Then switch to a new trajectory based on a
newly picked end state point and the current tracked ref-
erence as initial state. As such, the vehicle would travel
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continuously without pausing. However, since a new
plan and trajectory are generated every short amount
of time, the computational power consumed would in-
crease. Moreover, when using the proposed trajectory
generator, discontinuity of jerk is likely to appear be-
cause of switching. This is due to the time optimal nature
of the bang-bang strategy, which always uses the maxi-
mum control effort. According to (5), a discontinuity on
jerk causes sudden change on the angular rate p and q.
Though the effect is minor when p and q are bounded, it
could decrease the tracking control performance during
aggressive maneuver where the angular speed is large.

To improve the situation, it is needed to reduce the
amount of trajectory switching. The solution is to ex-
amine if the current trajectory is about to enter the
deceleration phase before generating a new trajectory
and switching to it. It carries the idea to remain on a
trajectory as long as possible and only switches when
unnecessary pausing is about to happen. However, due
to dynamic obstacle or sudden environment change,
the current trajectory could become invalid. In such a
case, we need to solve for a new trajectory which leads
the vehicle safely away from collision and switch to the
new trajectory immediately. If we denote the current
trajectory as CT, a possible trajectory as PT and the
emergency trajectory as ET, the overall algorithm for
trajectory checking and trajectory switching is shown in
Algorithm 6.

In Algorithm 6, the lastTarget is used to record the end
state point from the previous cycle. It is initialized as the
current position of the vehicle. The localTargetSearch()
function returns the last line-on-sight point on the safe
pass way to the vehicle, and the BVPS() function is the
boundary value problem solver introduced above. To

check the validity of a trajectory, not only the trajec-
tory itself is considered but also a group of trajectories
that are distributed based on the current tracking er-
ror. These trajectories predict the future evolution of
the tracking error in a linear term.

Algorithm 6 (Trajectory switching algorithm)

lastTarget← CurrentPosition;
loop

if Goal reached then
break.

if CT is invalid then
ET← ETSearching(),
CT← ET,

else
if CT is in deceleration phase then

Pass way← A ∗ Searching(lastTarget),
EndState← localTargetSearch(Pass way),
P← randomSample(EndState),
MinDist←MAXDOUBLE,
for each point p ∈ P do

PT← BVPS(CurrentState,EndState),
Dist←MinDistToObstacle(PT),
if DIST < MINDIST then

if PT is valid then
CT← PT,
MinDist← Dist,
lastTarget← p.

If the CT is still valid and it is entering the decelera-
tion phase, the safe pass way is searched using the grid
map with its starting point as the lastTarget. Then, we
randomly sample multiple points around the last line-on-
sight point on the safe pass way and generate trajectory
for each of them. Finally, the trajectory that is farthest
from obstacles is chosen. The process is illustrated by
Fig. 8.

Fig. 8 (a) Step 1: Safe pass way is generated, the first end point is picked around the first sharp turn. (b) Step 2: vehicle starts to
pick new end point when it is about to enter the deceleration phase of the first trajectory. (c) Step 3: by repeating the process in
Step 2, vehicle could reach its target.
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On the other hand, if the CT is not valid, an emergency
avoiding trajectory is generated and used immediately
as shown in Algorithm 7.

Algorithm 7 (Avoiding trajectory searching algorithm)

Success← false;
Pass way← A ∗ Searching(currentPosition);
EndState← localTargetSearch(Pass way);
P← randomSample(EndState);
MinDist =MAXDOUBLE;
for each point p ∈ P do

PT← BVPS(CurrentState,EndState),
Dist←MinDistToObstacle(PT),
if DIST < MINDIST then

if PT is valid then
CT← PT,
MinDist← Dist,
lastTarget← p,
Success← true.

if Success = false then
Increase acceleration and jerk limit,
P← randomSample(currentPosition),
for each point p ∈ P do

PT← BVPS(CurrentState,EndState),
if PT is valid then

CT← PT,
break.

Decrease acceleration and jerk limit.

During avoiding trajectory searching, we first focus
on trajectories that lead closer to the target and also
away from collision. If these trajectories are not appli-
cable, the vehicle is possibly in a dangerous situation.
The limit on jerk and acceleration will be increased to
allow the vehicle to perform more aggressive maneuver
to avoid the possible collision.

A comparison between our algorithm and the tradi-
tional RHC method is shown in Fig. 9. For each algo-
rithm, the vehicle is required to pass through the same
environment with the same starting point and goal point.

The RHC method is executed at 5 Hz. Due to the
lack of energy minimization term in the TPBVP solver
and the frequent shifting of target, the trajectory con-
sists of many unnecessary acceleration and decelera-
tion. On the other hand, our proposed method gener-
ates smoother trajectory with less wobbling. Further-
more, our method reaches the target 5 seconds faster
than the RHC based algorithm. We note that the RHC
based method can be improved by using more compli-
cated trajectory generation algorithm that provide mini-
mum jerk or minimum snap trajectory. However, these

algorithms usually requires numerical optimization and
more complex solution is also resulted.

The advantage of our approach is obvious. It allows
us to use TPBVP solver to generate nonstop and smooth
trajectories for the vehicle. Unlike other numerical op-
timization based methods, which formulate complex or
non-convex problems, the analytical closed-form solu-
tions for the TPBVP are more reliable.

Fig. 9 The RHC based strategy compared to the proposed
trajectory switching algorithm. The proposed algorithm gen-
erates smoother, faster trajectory.

5 Experimental results
The platform employed to test our path planning

scheme is a BlackLion-068 (BL-068) shown in Fig. 10,
which is an AeroLion Technologies product. BL-068 is
an octocopter with an X8 configuration using 8 motors
that are mounted on an “X” shaped frame with four
sets of clockwise (CW) and counter clockwise (CCW)
propellers.

The overall dimension is 26 cm in height and 68 cm
from tip-to-tip including the propeller protection, with
a maximum take-off weight of 4 kg. The bare platform
weighs about 1 kg including motors, propellers and pro-
tections. The compact size, light weight and large pay-
load capability makes the platform an ideal testbed for
confined environment navigation.

BL-068 comes with an inner loop flight controller, a
TeraRanger One distance sensor and an Intel Next Unit
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of Computing (NUC) computer. The TeraRanger One
distance sensor has a maximum measurement range
of 14 m with accuracy of ±2 cm. A Hokuyo 30 m laser
range finder is then installed on the platform for SLAM
and path planning.

Fig. 10 The X8 configuration octocopter BL-068 from ALT.

The experiment is done in an indoor clustered envi-
ronment as depicted in Fig. 11.

Fig. 11 Experiment environment consists of pillars and other
obstacles.

In such an environment, the vehicle is able to navigate
through it safely with speed around 1.5 m/s. The trace of
trajectory flying through obstacles is shown in Fig. 12.

Fig. 12 Obstacle avoidance trajectory using a well tuned con-
troller.

The corresponding velocity profile of the trajectory
and tracking performance are given in Fig. 13.

Fig. 13 Tracking control performance of the well tuned con-
troller.
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The top speed combining both axis is at 1.4 m/s. With
a well designed control structure, the position tracking
error is limited within 0.25 m.

As mentioned in Section 4, in the trajectory validat-
ing process, we have also taken into consideration of
tracking errors to reject trajectories that are risky due
to bad control performance. To simulate such a situa-
tion, the control gains of the vehicle are tuned off from
its optimal point so that the maximum position tracking
error can reach 0.6 m which is more than twice com-
pared to that in the previous case. The vehicle is still
able to navigate through the cluttered environment and
the resulting trace of trajectory is shown in Fig. 14.

Fig. 14 Avoidance trajectory with high tracking error.

Furthermore, to demonstrate the reliability of our ap-
proach, a simulated vehicle is made to fly successfully
through a 500 m×500 m forest as shown in Fig. 15. Due
to the rolling map we adopted, the whole mapping and
planning modules consumes less than 128 MB of mem-
ory. All these results have proven the proposed path
planning approach is robust and reliable. More impor-
tantly, it is suitable for real-time implementation.

Fig. 15 UAV flying through a simulated forest.

6 Conclusions
We have studied in this paper a computationally effi-

cient and stable method to guide the rotorcraft drones
to fly through cluttered and GPS-denied environments.
The importance of map building and its connection to
the following planning stage is made clear. The map
and its associated data structure needs to be compatible
with the planning algorithm and provide efficient func-
tions to evaluate given trajectories. A two-step approach
is adopted to generate sub-optimal solutions to the gen-
eral planning problem. A closed-form TPBVP solvers
are used for trajectory generation. A top-level trajectory
switching algorithm is proposed to further reduce the
computational cost and increase tracking performance.
The key advantage of our approach is the adoption of a
closed-form trajectory generator, which is made possi-
ble by decomposing the path planning problem into a
series of TPBVP. It thus does not have numerical insta-
bility issues as compared to other common approaches.
Our future task is to upgrade the A* algorithm with other
more efficient sampling based searching methods. More
sophisticated TPBVP solvers are also to be investigated
to generate smoother trajectories for more aggressive
maneuvers.
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