
Automatica 50 (2014) 287–290
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Technical communique

Bisimilarity enforcing supervisory control for
deterministic specifications✩

Yajuan Sun a,1, Hai Lin b, Ben M. Chen a

a Department of Electrical and Computer Engineering, National University of Singapore, Singapore
b Department of Electrical Engineering, University of Notre Dame, USA

a r t i c l e i n f o

Article history:
Received 18 March 2013
Received in revised form
23 June 2013
Accepted 10 September 2013
Available online 11 November 2013

Keywords:
Supervisory control
Bisimulation
Discrete event systems

a b s t r a c t

This paper studies the supervisory control of nondeterministic discrete event systems to achieve a bisim-
ulation equivalence between the controlled system and the deterministic specification. In particular, a
necessary and sufficient condition is given for the existence of a bisimilarity enforcing supervisor, and
a polynomial algorithm is developed to verify such a condition. When the existence condition holds, a
bisimilarity enforcing supervisor is constructed. Otherwise, two methods are provided for synthesizing
supremal feasible sub-specifications.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The notion of bisimulation, introduced by Milner (1989) and
Park (1981), has been successfully used as a behavior equivalence
in model checking, software verification and analysis of contin-
uous, hybrid and discrete event systems. What makes bisimula-
tion appealing is its capability in complexity mitigation, especially
when we deal with large or infinite states. In the recent literature
of robotic symbolic motion planning, a bisimulation equivalence
between the abstracted finite state quotient systemand the contin-
uous robotic dynamics needs to be obtained (Belta et al., 2007; Pap-
pas & Tabuada, 2006), which is the key to guarantee the existence
of a feasible continuous path corresponding to the synthesized
symbolic sequence that satisfies logical specifications. Addition-
ally, a supervisor designed for the abstracted quotient system
needs to enforce bisimilarity with respect to logical specifications.
This brings a new challenge to the discrete event supervisory con-
trol society since most existing results on supervisor synthesis are
based on language enforcement. However, it is known that lan-
guage equivalence cannot imply bisimulation equivalence.

✩ Financial supports from NSF-CNS-1239222 and NSF-EECS-1253488 for this
work are greatly acknowledged. The material in this paper was not presented at
any conference. This paper was recommended for publication in revised form by
Associate Editor Jan Komenda under the direction of Editor André L. Tits.

E-mail addresses: elesuya@nus.edu.sg (Y. Sun), hlin1@nd.edu (H. Lin),
bmchen@nus.edu.sg (B.M. Chen).
1 Tel.: +65 9152 8061; fax: +65 6779 1103.

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.09.025
An early effort on bisimilarity supervisory control can be found
in Qin and Lewis (1990), where a supervisor was developed to en-
force bisimulation equivalence between the supervised systemand
the deterministic specification, under the assumption that all the
events are controllable. Tabuada (2008) solved the controller syn-
thesis problem for bisimulation equivalence in a wide variety of
scenarios including continuous systems, hybrid systems and dis-
crete event systems, in which the bisimilarity controller is a mor-
phism in the context of category theory. Zhou, Kumar, and Jiang
(2006) proposed a necessary and sufficient condition for the exis-
tence of a bisimilarity supervisor, where the plant and specifica-
tion are nondeterministic. However, this work does not provide a
systematic way to design the bisimilarity supervisor when it ex-
ists. To address this problem, Zhou and Kumar (2011) focused on
deterministic supervisors, where the construction of deterministic
bisimilarity supervisors and infimal superspecificationswas devel-
oped.

Despite these progresses, the main obstacle of the existing lit-
erature to real applications is the expansively computational com-
plexity (double exponential complexity in state sizes of the plant
and the specification (Zhou et al., 2006) and single exponential
complexity in state sizes of the plant and the specification (Zhou
& Kumar, 2011)). Due to these concerns, we investigate bisimilar-
ity control for deterministic specifications in this paper, forwhich a
necessary and sufficient condition is proposed for the existence of
a bisimilarity supervisor that can be effectively verified in polyno-
mial complexity. Another important issue missing in the literature
is how to change the specificationwhen there does not exist such a

http://dx.doi.org/10.1016/j.automatica.2013.09.025
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2013.09.025&domain=pdf
mailto:elesuya@nus.edu.sg
mailto:hlin1@nd.edu
mailto:bmchen@nus.edu.sg
http://dx.doi.org/10.1016/j.automatica.2013.09.025

288 Y. Sun et al. / Automatica 50 (2014) 287–290
bisimilarity supervisor for the original specification. To address this
problem, the calculation of supremal feasible sub-specifications is
investigated in this paper.

Compared to the literature, the contributions of this paper
mainly lie on the following aspects. First, a new necessary and suf-
ficient condition is introduced for the existence of a bisimilarity
enforcing supervisor, which helps to shed light on what characters
should a deterministic specification possess for bisimilarity con-
trol. Second, a test algorithm is proposed to verify the existence
condition, which is shown to be of polynomial complexity. When
the existence condition holds, we further present a systematic way
to construct bisimilarity enforcing supervisors. Third, when a given
specification does not always guarantee the existence of a bisim-
ilarity enforcing supervisor, an important question arises that is
how to find a maximally permissive specification which enables
the synthesis of bisimilarity enforcing supervisors. Two methods
are proposed to answer the question. One is based on a recursive
algorithm to calculate the supremal feasible sub-specifications and
the other directly computes such sub-specifications by formulas.

The rest of the paper is organized as follows. Section 2 presents
the existence condition for bisimilarity enforcing supervisors. The
algorithm for checking the existence condition can be found in Sec-
tion 3. Section 4 explores the calculation of maximally permissive
sub-specifications. This paper concludes with Section 5.

2. Existence condition for bisimilarity enforcing supervisors

The plant is modeled by a nondeterministic automaton G =

(X, Σ, x0, α, Xm), where X is a finite state set, Σ is a finite event
set, α : X × Σ → 2X is a transition function, x0 is an initial state
and Xm ⊆ X is a marked state set. The active event set at state
x is defined as EG(x) = {σ ∈ Σ | α(x, σ)is defined}. Let Σ∗ be
the set of all the finite strings over Σ including the empty string
ϵ. The transition function α can be extended from events to traces,
α : X × Σ∗

→ 2X , which is defined inductively as: for any x ∈

X, α(x, ϵ) = {x}; for any s ∈ Σ∗ and σ ∈ Σ, α(x, sσ) =


x′∈α(x,s)
α(x′, σ). If the transition function is a partial map α : X × Σ →

X,G is said to be deterministic. For X1 ⊆ X , the notation α|X1×Σ

meansα is restricted froma smaller domainX1×Σ to 2X1 . Consider
three languages K , K1, K2 ⊆ Σ∗. The Kleene closure of K , denoted
as K ∗, is the language K ∗

= ∪n∈N K n, where K 0
= {ϵ} and for any

n ≥ 0, K n+1
= K nK . The prefix closure of K , denoted as K , is the

language K = {s ∈ Σ∗
| (∃t ∈ Σ∗) st ∈ K}. If K = K , K is called

to be prefix closed. The quotient of K1 with respect to K2, denoted
as K1/K2, is the language K1/K2 = {s ∈ Σ∗

| (∃t ∈ K2) st ∈ K1}.
The language and the marked language generated by G are defined
by L(G) = {s ∈ Σ∗

| α(x0, s)is defined} and Lm(G) = {s ∈ Σ∗
|

α(x0, s)∩Xm ≠ ∅} respectively. For a nondeterministicG, let det(G)
be a minimal deterministic automaton such that L(det(G)) = L(G)
and Lm(det(G)) = Lm(G).

The plant G is controlled by a supervisor S = (Y , Σ, y0, β, Ym).
The supervisor can disable the events inside the controllable event
set. This form of control can be captured by the parallel composi-
tion of the plant and the supervisorwhich is denoted byG ∥ S (Cas-
sandras, 2008). To find the synchronized state pairs of G and S, the
synchronized state map XsynGS : X → 2Y from G to S is defined as
XsynGS(x1) = {x2 ∈ Y | (∃s ∈ Σ∗) x1 ∈ α(x0, s) ∧ x2 ∈ β(y0, s)}
(Zhou et al., 2006). Most literature on supervisory control aims to
achieve a language equivalence between the supervised system
and the specification. The necessary and sufficient condition for the
existence of a language enforcing supervisor is language controlla-
bility. We denote Σc and Σuc := Σ \ Σc as the controllable event
set and the uncontrollable event set respectively. A language K ′

⊆

L(G) is said to be language controllablewith respect to L(G) andΣuc
if K ′Σ∗

uc ∩ L(G) ⊆ K ′. As a stronger behavior equivalence than lan-
guage equivalence, bisimulation is stated as follows (Milner, 1989).
Given G1 = (X1, Σ, x01, α1, Xm1) and G2 = (X2, Σ, x02, α2,
Xm2), a simulation relation is a binary relation φ ⊆ X1 × X2 such
that (x1, x2) ∈ φ implies
(1) (∀σ ∈ Σ)[∀x′

1 ∈ α1(x1, σ) ⇒ ∃x′

2 ∈ α2(x2, σ) such that
(x′

1, x
′

2) ∈ φ];
(2) x1 ∈ Xm1 ⇒ x2 ∈ Xm2.

If there is a simulation relation φ ⊆ X1 × X2 such that (x01, x02)
∈ φ, G1 is said to be simulated by G2, denoted by G1 ≺φ G2. For
φ ⊆ (X1 ∪ X2) × (X1 ∪ X2), if G1 ≺φ G2, G2 ≺φ G1 and φ is symmet-
ric, φ is called a bisimulation relation between G1 and G2. If there
is a bisimulation relation φ between G1 and G2, G1 is called to be
bisimilar to G2, denoted by G1 ∼=φ G2. We sometimes omit the sub-
script φ from ≺φ or ∼=φ when it is clear from the context.

This paper investigates supervisory control to enforce a bisim-
ulation equivalence between the supervised system and the given
deterministic specification R. The supervisor which enables all the
uncontrollable events and enforces bisimulation equivalence is
formalized by the following notion. Unless otherwise stated we
will use G = (X, Σ, α, x0, Xm), R = (Q , Σ, δ, q0,Qm) and S =

(Y , Σ, β, y0, Ym) to denote the nondeterministic plant, the deter-
ministic specification and the supervisor (possibly nondeterminis-
tic) respectively in the rest of the paper.

Definition 1. Given a plant G and a specification R, a supervisor S
is said to be a bisimilarity enforcing supervisor for G and R if
(1) there is a bisimulation relation φ such that G ∥ S ∼=φ R;
(2) (∀y ∈ Y)(∀σ ∈ Σuc) β(y, σ) ≠ ∅.

First, we focus on the following problem: given a nondeter-
ministic plant G and a deterministic specification R, what property
should R possess to guarantee the existence of a bisimilarity en-
forcing supervisor S for G and R? The result of Zhou and Kumar
(2011) indicates that G ∥ det(R) ∼= R and language controllability
of L(R) are necessary and sufficient conditions for the existence of a
deterministic bisimilarity supervisor. In particular, G ∥ det(R) ∼= R
is reduced to G ∥ R ∼= Rwhen R is deterministic. However, in these
conditions, R gets entangled with G, which fails to provide an in-
sight into the character of R for bisimilarity control. Moreover, the
complexity of checking these condition is high. To address these
problems, we introduce the following property.

Theorem 1. Given a plant G and a deterministic specification R, there
exists a bisimulation relation φ such that G ∥ R∼=φ R if and only if
there exists a simulation relation φ′ such that (q, x) ∈ φ′ for any
q ∈ Q and x ∈ XsynRG(q).

Proof. For sufficiency, let φ1 = {((x, q), q) | (∀q ∈ Q) x ∈ XsynRG
(q)}, it is obvious that G ∥ R∼=φ1∪φ−1

1
R. For necessity, we consider

a relation φ2 = {(q, x) | (((x, q), q), (q, (x, q))) ∈ φ}. Since R is
deterministic, φ2 is a simulation relation such that (q, x) ∈ φ2 for
any q ∈ Q and x ∈ XsynRG(q).

If there exists a simulation relation φ such that (q, x) ∈ φ for
any q ∈ Q and x ∈ XsynRG(q), then R is called to be synchronously
simulated by G, denoted as R≺synφ G. The subscript φ can be omit-
ted from ≺synφ when it is clear from the context. We can see that
if R≺synφ G, then G possesses the branches which are bisimilar to
R and the branches outside L(R). Hence, R≺synφ G iff G ∥ R ∼= R.
Therefore, the specification satisfying language controllability and
synchronous simulation guarantees the existence of a bisimilar-
ity enforcing supervisor. Moreover, the result of Theorem 1 offers
computational advantages for checking the existence of a bisim-
ilarity enforcing supervisor, which will be illustrated in the next
section. Here, we show how to synthesize a bisimilarity enforcing
supervisor when it exists. The following concept is developed.

Definition 2. Given G = (X, Σ, x0, α, Xm), the Σuc completion of
G, denoted by Guc , is an automaton

Guc = (X ∪ {D}, Σ, x0, αuc, Xm),

Y. Sun et al. / Automatica 50 (2014) 287–290 289
where for any x ∈ X ∪ {D} and σ ∈ Σ , the transition function is
defined as

αuc(x, σ) =


α(x, σ) σ ∈ EG(x);
{D} (σ ∈ Σuc \ EG(x)) ∨ (x = D ∧ σ ∈ Σuc);
∅ otherwise.

It is immediate to see thatRuc canbe chosen as a candidate of bisim-
ilarity enforcing supervisors because it naturally satisfies the con-
dition (2) required in Definition 1. Further, since R is deterministic
and synchronously simulated by G, we have G ∥ R ∼= R. More-
over, language controllability of R indicates G∥R = G∥Ruc . Thus,
G∥Ruc = G∥R ∼= R, i.e., Ruc is a bisimilarity enforcing supervisor.
The proposed bisimilarity enforcing supervisor has been success-
fully implemented on a multi-robot system cooperative tasking
scenario (Karimadini & Lin, 2011).

3. Algorithm for checking the existence condition

Based on the result of Theorem 1, this section proposes an al-
gorithm to test the existence of a bisimilarity enforcing supervisor.
First, we introduce the notion of synchronously simulation-based
controllable product, which will be used in the test algorithm.

Definition 3. Given a plant G and a specification R, the syn-
chronously simulation-based controllable product of R and G is an
automaton

R ∥sync G = ((Q × X) ∪ {qd, q′

d}, Σ, αsync, (q0, x0),Qm × Xm),

where for any (q, x) ∈ Q × X and σ ∈ Σ , the transition function
is defined as

αsync((q, x), σ)

=


δ(q, σ) × α(x, σ) σ ∈ ER(q) ∩ EG(x);
{qd} σ ∈ ER(q) \ EG(x);
{q′

d} σ ∈ Σuc ∩ (EG(x) \ ER(q));
∅ otherwise.

Then, we present the following theorem to verify the existence
of a bisimilarity enforcing supervisor.

Theorem 2. Given a plant G and a deterministic specification R, there
exists a bisimilarity enforcing supervisor for G and R if and only if qd
and q′

d are not reachable in R ∥sync G and x ∈ Xm for any reachable
state (q, x) in R ∥sync G with q ∈ Qm.

Proof. Theorem 1 and the result of Zhou and Kumar (2011) imply
that there exists a bisimilarity enforcing supervisor iff R satisfies:
(1) there exists a simulation relation φ s.t. (q, x) ∈ φ for any q ∈ Q
and x ∈ XsynRG(q), and (2) L(R) is language controllable. It is obvi-
ous that any (q, x) satisfying x ∈ XsynRG(q) is a state reachable in
R ∥sync G, and any (q, x) ∉ {qd, q′

d} × X satisfies x ∈ XsynRG(q). If (1)
is violated, we have two cases. Case 1: there exist (q, x) and σ ∈ Σ
s.t. x ∈ XsynRG(q) and σ ∈ ER(q) \ EG(x). So qd ∈ αsync((q, x), σ).
Case 2: there is (q, x) such that x ∈ XsynRG(q), x ∉ Xm and q ∈ Qm.
If (2) is violated, there exist (q, x) and σ ∈ Σuc s.t. x ∈ XsynRG(q)
and σ ∈ EG(x) \ ER(q). So q′

d ∈ αsync((q, x), σ). It follows that qd
and q′

d are reachable in R ∥sync G or x ∉ Xm for any reachable state
(q, x) in R ∥sync Gwith q ∈ Qm iff there does not exist a bisimilarity
enforcing supervisor for G and R.

Next, we discuss the complexity of Theorem 2. Since G is non-
deterministic and R is deterministic, their numbers of transitions
areO(|X |

2
|Σ |) andO(|Q ||Σ |) respectively. Then, the complexity of

constructing R ∥sync G is O(|X |
2
|Q |

2
|Σ |). So the complexity of The-

orem 2 is O(|X |
2
|Q |

2
|Σ |). On the other hand, the complexity of

verifying the existence condition (G ∥ R ∼= R and language con-
trollability of R) in Zhou and Kumar (2011) isO(|X |

2
|Q |

2
|Σ | log(|X |

|Q |)). Hence, the method proposed in this paper is more effective.
4. Supremal feasible sub-specifications

Since a given specification does not always satisfy the condi-
tions like synchronous simulation and language controllability, a
natural question arises: how to find amaximally permissive speci-
fication, for which there exists a bisimilarity enforcing supervisor?
To answer this question, the synthesis of supremal feasible sub-
specifications is studied in this section.We start by introducing the
notion of supremum.

Given two sets A and A′
⊆ A and a transitive and reflexive

relation ≤⊆ A × A over A, x ∈ A is said to be a supremum of A′,
denoted by supA′, if

(1) ∀y ∈ A′: y ≤ x;
(2) ∀z ∈ A : [∀y ∈ A′

: y ≤ z] ⇒ [x ≤ z].
When we define the supremum of A′, a pair of (A, ≤) should

be given according to the elements of A′. If the elements of A′ are
languages, then (2Σ∗

, ⊆) should be applied since 2Σ∗

includes all
the languages over alphabet Σ and language inclusion fully cap-
tures the comparison between two languages. However, if the el-
ements of A′ are automata, we should apply (B, ≺), where B is a
full set of automata with alphabet Σ and ≺⊆ B × B is a simula-
tion relation. This is because language inclusion is not adequate for
automata (possibly nondeterministic) comparison, whereas a finer
simulation relation is needed. Please note that the supremum de-
fined over (2Σ∗

, ⊆) is unique. However, such uniqueness does not
hold with respect to (B, ≺) because A1 ≺ A2 and A2 ≺ A1 do not
imply A1 = A2.

The class of feasible sub-specifications which guarantee the ex-
istence of a bisimilarity enforcing supervisor is described as fol-
lows:
C1 := {R′

| R′ is deterministic, R′
≺ R, R′

≺syn G and L(R) is
language controllable w.r.t. L(G) and Σuc}.

It is difficult to directly calculate the supremum of C1 because C1 is
not closed under the upper bound (join) operator over (B, ≺) (Zhou
& Kumar, 2011). Thus, we would like to convert the automaton set
C1 into equivalently expressed language sets which are closed un-
der the upper bound (set union) operator over (2Σ∗

, ⊆) (Cassan-
dras, 2008). The conversion can be done item by item. First, for two
deterministic automata R′ and R, the condition R′

≺ R is equivalent
to the language conditions L(R′) ⊆ L(R) and Lm(R′) ⊆ Lm(R). Sec-
ond, language controllability is naturally a language description. It
remains to convert R′

≺syn G to an equivalent language condition.
The following concept is in need to complete the conversion.

Definition 4. Given G = (X, Σ, x0, α, Xm), the synchronous state
merger operator on G is an automaton

Fsyn(G) = (Xsyn, Σ, {x0}, αsyn, Xmsyn),

where Xsyn = 2X , Xmsyn = {Y1 | Y1 ⊆ Xm}, and for any A ∈ Xsyn and
σ ∈ Σ , the transition function is defined as

αsyn(A, σ) =


∪
x∈A

α(x, σ) σ ∈ ∩
x∈A

EG(x);

undefined otherwise.

Intuitively, the construction of Fsyn(G) starts with the initial
state {x0}. It then identifies the event that is defined in the active
event set of any state in the set {x0}. A collection of this kind of
events is the active event set of {x0}. For each event σ in this active
event set, the initial state {x0} can transit to a new state A, where A
consists of all the states in X that are reached starting from a state
in {x0}. Then, the process continues from the updated state A. By
using Fsyn(G), the requirement G1 ≺syn G is equivalent to language
conditions L(G1) ⊆ L(Fsyn(G)) and Lm(G1) ⊆ Lm(Fsyn(G)), which
can be described as the following proposition.

Proposition 1. Given a plant G and a deterministic automaton G1,
there exists a simulation relation φ such that G1 ≺synφ G iff L(G1) ⊆

L(Fsyn(G)) and Lm(G1) ⊆ Lm(Fsyn(G)).

290 Y. Sun et al. / Automatica 50 (2014) 287–290
Proof. Let Fsyn(G) = (Xf , Σ, {x0}, αf , Xmf) and G1 = (X1, Σ, x01,
α1, Xm1). For sufficiency, consider φ1 = {(x1, x) ∈ X1 × X | x ∈

XsynG1G(x1)}. Obviously, G1 ≺synφ1 G. For necessity, we can use the
induction method to prove L(G1) ⊆ L(Fsyn(G)). Further, we would
like to prove Lm(G1) ⊆ Lm(Fsyn(G)). For any s′ ∈ Lm(G1), there is
x1 ∈ α1(x01, s′) such that x1 ∈ Xm1. Because G1 ≺synφ G, we have
x′

∈ Xm for any x′
∈ α(x0, s′). It implies s′ ∈ Lm(Fsyn(G)). Thus,

Lm(G1) ⊆ Lm(Fsyn(G)).
Hence, we can convert the automaton set C1 into the following

language sets.

C2 := {L1 ⊆ L(R) ∩ L(Fsyn(G)) | L1 = L1 and L1 is language

controllable w.r.t. L(G) and Σuc};

C3 := {L1 ∩ Lm(R) ∩ Lm(Fsyn(G)) | L1 ∈ C2}.

The computation of supC1 over (B, ≺) is then achieved through the
computation of the supremal languages of C2 and C3 over (2Σ∗

, ⊆),
which is stated in the following proposition. For two languages
K1, K2 ∈ Σ∗, where K1 is nonempty and prefix closed and K2 ⊆ K1,
let G(K1,K2) be a deterministic automaton such that L(G(K1,K2)) = K1
and Lm(G(K1,K2)) = K2.

Proposition 2. Given a plant G and a deterministic specification R,
the automaton G(supC2,supC3) ∈ supC1 iff supC2 ≠ ∅.

Proof. The necessity holds due to the existence of G(supC2,supC3).
For sufficiency, let L1 = supC2 ≠ ∅ and L′

1 = supC2 ∩ Lm(R) ∩

Lm(Fsyn(G)) = supC3. We first show that G(L1,L′1)
∈ C1. Since L1 =

supC2, we have L1 ∈ C2, which implies L1 is language controllable
and L1 ⊆ L(Fsyn(G)). Further, L′

1 ⊆ Lm(Fsyn(G)). Proposition 1 im-
plies G(L1,L′1)

≺syn G. Since R and G(L1,L′1)
are deterministic and L1 ∈

C2 implies L1 ⊆ L(R) and L′

1 ⊆ Lm(R), we have G(L1,L′1)
≺ R. There-

fore, G(L1,L′1)
∈ C1. Next, we show that R1 ≺ G(L1,L′1)

for any R1 ∈ C1.
Suppose there is R1 ∈ C1 such that R1 ⊀ G(L1,L′1)

. Since R1 ∈ C1,
it implies R1 ≺ R. Moreover, R1 and R are deterministic. It follows
that L(R1) ⊆ L(R) and Lm(R1) ⊆ Lm(R). In addition, R1 ∈ C1 implies
L(R1) is language controllable and R1 ≺syn G, which implies L(R1) ⊆

L(Fsyn(G)) and Lm(R1) ⊆ Lm(Fsyn(G)) by Proposition 1. Hence,
L(R1) ∈ C2. Moreover, Lm(R1) ⊆ L(R1). Then, L(R1) ⊆ supC2 = L1
and Lm(R1) ⊆ supC3 = L′

1. Further, R1 andG(L1,L′1)
are deterministic.

Thus, R1 ≺ G(L1,L′1)
, which introduces a contradiction. Hence, the

assumption is not correct. Therefore, R1 ≺ G(L1,L′1)
for any R1 ∈ C1,

i.e., G(L1,L′1)
= G(supC2,supC3) ∈ supC1.

Next, we present a recursive algorithm method to compute
the supremal feasible sub-specification. For an automaton G′

=

(X ′, Σ, x′

0, α
′, X ′

m) and a state set X1 ⊆ X ′ with x′

0 ∈ X1, the sub-
automaton of G′ with respect to X1 is defined as FG′(X1) = (X1, Σ,
x′

0, α1, Xm1), where α1 = α′
|X1×Σ and Xm1 = X1 ∩ X ′

m.

Algorithm 1. Given a plant G and a deterministic specification R,
the algorithm for computing the supremal feasible sub-specifi-
cation with respect to G and Σuc is described as follows:
Step 1: obtain det(G) = (Xdet , Σ, x0det , αdet , Xmdet), G′
= (Fsyn(G) ∥

R)uc = (X ′, Σ, x′

0, α
′, X ′

m) and G′′
= G′

∥ det(G) = (X ′′, Σ, x′′

0,
α′′, X ′′

m);
Step 2: Z0 := {(x′

1, x2) ∈ X ′
× Xdet | x′

1 = D};
Step 3: ∀k ≥ 0, Zk+1 = Zk ∪ {z ∈ X ′′

− Zk | (∃σ ∈ Σuc) α′′(z, σ) ∈

Zk};
Step 4: if there exists k ∈ N such that Zk+1 = Zk ≠ X ′′ and x′′

0 ∉ Zk,
then FG′′(X ′′

− Zk) of G′′ is the supremal feasible sub-specification
with respect to G and Σuc .

The correctness of Algorithm 1 is obvious according to Proposi-
tion 2. Because the state set X ′′ is finite and the state numbers of
Fsyn(G) and det(G) are both O(2|X |), Algorithm 1 is terminated with
complexity O(22|X |

|Q ||Σ |). Moreover, a formula-basedmethod in-
duced by Propositions 1 and 2 is presented to compute supremal
feasible sub-specifications.

Proposition 3. Given a plant G, a deterministic specification R and a
language M = L(R) ∩ L(Fsyn(G)) − [(L(G) − L(R) ∩ L(Fsyn(G)))/Σ∗

uc]

Σ∗, the automaton G(M,M ′) is the supremal feasible sub-specification
w.r.t. G and Σuc iff M ≠ ∅, where M ′

= M ∩ Lm(R) ∩ Lm(Fsyn(G)).

5. Conclusion

In this paper,we investigated bisimilarity enforcing supervisory
control of nondeterministic plants for deterministic specifications.
A necessary and sufficient condition for the existence of a bisimi-
larity enforcing supervisorwas deduced from synchronous simula-
tion and language controllability of the specification, which can be
verified by a polynomial algorithm. For those specifications fulfill-
ing the existence condition, a bisimilarity enforcing supervisor has
been constructed. In addition, when the existence condition does
not hold, a recursive method and a formula-based method have
been developed to calculate supremal feasible sub-specifications.

References

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., & Pappas, G. (2007).
Symbolic planning and control of robot motion (grand challenges of robotics).
IEEE Robotics and Automation Magazine, 14, 61–70.

Cassandras, C. (2008). Introduction to discrete event systems. Spinger.
Karimadini, M., & Lin, H. (2011). Guaranteed global performance through local

coordinations. Automatica, 47, 890–898.
Milner, R. (1989). Communication and concurrency. Prentice-Hall.
Pappas, G., & Tabuada, P. (2006). Linear time logic control of discrete-time linear

systems. IEEE Transactions on Automatic Control, 51, 1862–1877.
Park, D. (1981). Concurrency and automata on infinite sequences. Spinger.
Qin, H., & Lewis, P. (1990). Factorization of finite statemachines under observational

equivalence. In CONCUR’90: theories of concurrency–unification and extension
(pp. 427–441).

Tabuada, P. (2008). Controller synthesis for bisimulation equivalence. Systems &
Control Letters, 57, 443–452.

Zhou, C., & Kumar, R. (2011). Bisimilarity enforcement for discrete event
systems using deterministic control. IEEE Transactions on Automatic Control, 56,
2986–2991.

Zhou, C., Kumar, R., & Jiang, S. (2006). Control of nondeterministic discrete-event
systems for bisimulation equivalence. IEEE Transactions on Automatic Control,
51, 754–765.

http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref1
http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref2
http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref3
http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref4
http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref5
http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref6
http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref8
http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref9
http://refhub.elsevier.com/S0005-1098(13)00458-5/sbref10

	Bisimilarity enforcing supervisory control for deterministic specifications
	Introduction
	Existence condition for bisimilarity enforcing supervisors
	Algorithm for checking the existence condition
	Supremal feasible sub-specifications
	Conclusion
	References

