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This paper presents a mode switching control (MSC) scheme in discrete-time domain for fast and precise
set-point tracking in servo systems subject to control saturation and unknown disturbance. The basic
idea is to combine the proximate time-optimal servomechanism (PTOS) and the composite nonlinear
feedback (CNF) control, using the output position as the only measurable information for feedback.
The PTOS is responsible for fast targeting in servo systems when the tracking error is large, and once
the system trajectory enters into some specified region, the CNF will take over the control to ensure a
smooth settling without compromising the fast transient performance. A reduced-order extended state
observer is adopted to estimate the speed signal for feedback and the disturbance for compensation.
The asymptotical stability of the proposed MSC scheme is analyzed and the switching conditions are pro-
vided. Simulation and experimental results on a permanent magnet synchronous motor (PMSM) servo
system verify that the proposed control scheme is effective in improving the tracking performance for
a wide range of target set-points.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Rapid motion is required in a wide range of industrial produc-
tion and assembly lines, for which control technology can play a
vital role. In the context of point-to-point motion, two stages are
usually involved. The first stage is fast targeting, which drives
the system output from the present position into the neighborhood
of a specified destination in minimum time using a bounded con-
trol effort. Next comes the second stage, i.e., smooth settling, which
maintains the system output as close as possible to the destination
position, in the face of power limitation, various disturbances and
uncertainties in real application environment. Due to the different
specifications for targeting and settling modes, it is quite difficult
to design a controller that can achieve excellent performance in
both modes using one single control technology. Usually, different
control techniques will be used to design control laws for fast tar-
geting and smooth settling respectively, and then some switching
strategy is adopted to ensure the successful transition. This is the
principle of mode switching control (MSC).

For double-integrator systems, Workman [1] proposed the
proximate time-optimal servomechanisms (PTOS) (see also [2]),
which switches smoothly from the time optimal control (TOC)
law to a linear control law when the tracking error is small, thus
avoids the chattering problem of TOC and enhances the robustness,
at the cost of some degradation in transient performance. In
essence, the PTOS is some kind of MSC scheme, which can be easily
implemented and obtain almost optimal performance in tracking a
large stroke target. Hence, the PTOS emerges as a desirable solution
for fast targeting. However, when it comes to smooth settling,
there is scope for improvements on the linear part of PTOS. As is
well known, linear control laws always have to make a trade-off
between fast response and low overshoot, for the given closed-loop
bandwidth. During the past decade, there had been some research
efforts to improve PTOS. For example, Zhou et al. [3] combined the
PTOS with sliding-mode control and achieved smooth mode tran-
sition and better performance. Choi et al. [4] proposed a modified
PTOS scheme with a gain-scheduled damping which resulted in
faster settling. Both [3,4] assumed that the state variables are avail-
able for feedback control. Venkataramanan et al. [5] developed an
MSC scheme with measurement feedback in continuous-time do-
main by combining the PTOS with a robust perfect tracking (RPT)
control law. But the RPT suffers the same limitation of linear con-
trol, notwithstanding its robustness against external disturbances
and initial values. Moreover, the problem of disturbance compen-
sation was not considered.

In this paper, a composite nonlinear feedback (CNF) control law
is incorporated into the PTOS framework to develop an MSC con-
trol scheme in discrete-time domain. The CNF control law consists
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Fig. 1. Schematic diagram of MSC control.
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of a linear feedback part for yielding a fast response, and a nonlin-
ear feedback part to tune the closed-loop damping-ratio to smooth
out the overshoot (see [6,7]). By enforcing a dynamic closed-loop
damping ratio (from lightly damped to heavily damped), the CNF
control system can achieve fast and smooth transient performance
in set-point tracking tasks, and has been successfully implemented
in HDD servo system test-beds (see e.g., [7–10]) and unmanned
helicopter (see e.g., [11,12]). However, the operation range, or
the maximum amplitude of target reference of a CNF control
system is limited by its invariant set, which in turn depends on
the design parameters. To maintain the good transient perfor-
mance, the parameters of CNF may have to be re-tuned for differ-
ent target references. In [13], a unified control scheme (UCS) was
proposed for track seeking and following in disk drive servo sys-
tem. This control scheme is essentially some kind of multi-stage
MSC. However, the operation of UCS is still limited to short-span
tracking, once its design is fixed. In the MSC scheme proposed here,
the PTOS control law is initially used for large stroke tracking, and
as the tracking error gets smaller, the system state falls into some
defined region, then the CNF control will take over to ensure a fast
and smooth settling. An extended state observer is adopted to
estimate the speed signal for feedback and the disturbance for
compensation. With the proposed MSC, there is no limitation on
the operation range, for the given input saturation level. Moreover,
we would like to note that, in real applications, a controller de-
signed in continuous-time domain eventually has to be discretized
for digital implementation. Hence it seems more meaningful to de-
sign controllers directly in the discrete-time domain whenever
possible. Further, it turned out that the stability analysis in our dis-
crete-time MSC is quite different from that in the continuous case.

This paper is organized as follows. A discrete-time MSC control
method which combines PTOS and CNF control is presented in Sec-
tion 2. In Section 3, we apply the MSC control methodology to de-
sign a controller for a permanent magnet synchronous motor
(PMSM) servo system. Simulation and experimental results are
provided. Finally, we draw some concluding remarks in Section 4.

2. Discrete-time mode switching control

In this section, we present a discrete-time MSC control method
for typical servo systems characterized by a double-integrator, of
which a discretized state-space model can be formulated as
follows:

xðkþ 1Þ ¼ A � xðkÞ þ B � ½satðuðkÞÞ þ d�; ð1Þ

with

xðkÞ ¼
yðkÞ
vðkÞ

� �
; A ¼

1 T

0 1

� �
; B ¼

1
2 aT2

aT

" #
:

where xðkÞ 2 R2 and uðkÞ are the state and control variables respec-
tively of the plant. yðkÞ is the only measurable output (position) and
vðkÞ represents the velocity signal. d is the unknown constant or
slowly-varying disturbance. T is the sampling period, a is the accel-
eration constant and assumed to be positive for simplicity.
sat : R! R represents the actuator saturation defined as

satðuðkÞÞ ¼ sgnðuðkÞÞ �minfumax; juðkÞjg; ð2Þ

with umax being the saturation level, and sgnð�Þ represents the sign
function. The plant (1) can be reformulated as follows,

eðkþ 1Þ
vðkþ 1Þ

� �
¼

1 �T
0 1

� �
eðkÞ
vðkÞ

� �
þ � 1

2 aT2

aT

" #
½satðuðkÞÞ þ d�; ð3Þ

where eðkÞ ¼ r � yðkÞ is the tracking error, and r is the target
reference.
The MSC is a special type of variable structure control systems
with the switching action occurring in a unidirectional way.
Fig. 1 is a schematic diagram of the proposed MSC control. There
are two servo modes for tracking tasks. Each mode can be designed
independently. The critical issue in MSC control is the design of a
switching mechanism, which is still a headache to date, although
there have been a lot of research efforts on it. In the proposed
MSC scheme, the PTOS control law is effective in the region of large
tracking error because it can diminish the large tracking error in a
near minimal time, almost same as the time optimal control does
[1]. The CNF control law is applied to the small tracking error to
achieve fast and smooth settling. In the following three subsec-
tions, we will present the MSC control scheme in details together
with stability analysis. Mode switching conditions will also be
discussed.

2.1. Discrete-time observer-based robust PTOS control

In this section, we will present the discrete-time robust PTOS
control with measurement feedback for the plant (1). The dis-
crete-time PTOS control law, originally proposed by Workman [1]
and lately modified in [2], is based on state feedback and can be gi-
ven by

uPðkÞ ¼ satðk2½f ðeðkÞÞ � vðkÞ�Þ; ð4Þ

f ðeðkÞÞ ¼
k1
k2

eðkÞ; jeðkÞj 6 yl;

sgnðeðkÞÞ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aumaxajeðkÞj

p
� J0�; jeðkÞj > yl;

(
ð5Þ

where k1 and k2 are respectively the feedback gains for position and
velocity, a 2 ð0;1Þ is a constant referred to as the acceleration dis-
count factor, yl is the size of the linear region, and J0 is an offset
for velocity signal. The feedback gains k1 and k2 can be designed
by using pole placement for a conjugate pair of poles with the
damping ratio f and natural frequency x as two independent design
parameters,

k1 ¼
p1 þ p0 þ 1

aT2 ; k2 ¼
p1 � p0 þ 3

2aT
: ð6Þ

where

p1 ¼ �2e�fxT cosðxT
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
Þ;p0 ¼ e�2fxT :

Further more,

J0 ¼
aaumaxT

4
p1 � p0 þ 3
p1 þ p0 þ 1

� �
; yl ¼

2J2
0

aaumax
: ð7Þ

It was proved by Workman in [1] that the closed-loop system
comprising the discrete-time PTOS control law with state feedback
(4) and the plant (3) without disturbance is asymptotically stable
provided that the following conditions are satisfied.

Conditions:

1. aTk2 2 ð0;2Þ;
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2. f ð0Þ ¼ 0;
3. f ðeÞe > 0, for 8e – 0;
4. lime!1

R e
0 f ðrÞdr ¼ 1;

5. _f ðeÞ exists for 8e;
6. j _f ðeÞj < 2

T for 8e; and
7. jf ðeþ DeÞ � ðv þ DvÞj < umax

k2
for 8ðe;vÞ in the unsaturated

region, where
De ¼ �vT � 1
2 aT2sat k2½f ðeÞ � v �ð Þ;

Dv ¼ aTsat k2½f ðeÞ � v�ð Þ:

(

Here it should be noted that the condition 6 was mistakenly for-
mulated in [1] as ‘‘j _f ðeÞj < 1

2T for 8e’’. The condition 7, as Workman
pointed out in [1], is to guarantee the system state will remain in
the unsaturated region, once in the unsaturated region. It was also
shown that the trajectory of the closed-loop system starting from
the saturated region will enter the unsaturated region in a finite
time eventually.

Generally, as the velocity v is not measurable, an observer is
needed to estimate the velocity. Further, there are always some
disturbances in practical servo systems, which will cause steady-
state error without proper compensation. Since the unknown dis-
turbance is assumed to be piecewise constant or slowly varying
and appear in the input channel (as an equivalent input distur-
bance), it can then be modeled by a difference equation
dðkþ 1Þ ¼ dðkÞ. Combining this equation with the plant model,
we can obtain an augmented model, from which a reduced-order
extended state observer can be designed to estimate the un-mea-
sured velocity and unknown disturbance. Choosing a conjugate
pair of poles with the damping ratio f0 and natural frequency x0

for the observer, the corresponding characteristic equation is
z2 þ q1zþ q0 ¼ 0, with

q1 ¼ �2e�f0x0T cosðx0T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

0

q
Þ; q0 ¼ e�2f0x0T :

The dynamic equation of the observer is then given by

xvðkþ 1Þ ¼ Av � xvðkÞ þ Bu � satðuðkÞÞ þ By � yðkÞ;
v̂ðkÞ
d̂ðkÞ

 !
¼ xvðkÞ þ Ly � yðkÞ

8><
>: ð8Þ

where

Av ¼
q0�q1�1

2
aT
4 ð1þ q0 � q1Þ

� 1þq0þq1
aT

1�q0�q1
2

" #
;

Bu ¼
aT
4 ð1þ q0 � q1Þ
� 1þq0þq1

2

" #
;

By ¼
� 4�4q0þ3q1�q0q1þq2

1
2T

� 2þ2q0þ3q1þq0q1þq2
1

aT2

2
4

3
5;

Ly ¼
q1�q0þ3

2T
1þq0þq1

aT2

" #
:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Based on the above observer, a discrete-time PTOS control law
with disturbance compensation is given as follows,

uPðkÞ ¼ sat k2½f ðeðkÞÞ � v̂ðkÞ� � d̂ðkÞ
� �

: ð9Þ

Next, let

~vðkÞ ¼ v̂ðkÞ � vðkÞ; ~dðkÞ ¼ d̂ðkÞ � d; wðkÞ ¼
~vðkÞ
~dðkÞ:

 !
It is easy to verify that

wðkþ 1Þ ¼ Av �wðkÞ:

Choose a positive definite symmetric matrix Q v 2 R2�2 , and
solve the following Lyapunov equation

Pv ¼ AT
vPvAv þ Q v; ð10Þ

for a matrix Pv > 0. Such a Pv always exists as Av is asymptotically
stable.

The PTOS control law (9) can be rewritten as

uPðkÞ ¼ sat k2½f ðeðkÞÞ � vðkÞ� � k2Kv �wðkÞ � dð Þ

with Kv ¼ 1 1
k2

h i
.

Then, the closed-loop system comprising (3) and (9) can be
rewritten as

eðkþ 1Þ ¼ eðkÞ � vðkÞT � 1
2 aT2ðuPðkÞ þ dÞ;

vðkþ 1Þ ¼ vðkÞ þ aTðuPðkÞ þ dÞ;
wðkþ 1Þ ¼ Av �wðkÞ;
uPðkÞ ¼ sat k2½f ðeðkÞÞ � vðkÞ � Kv �wðkÞ� � dð Þ:

8>>><
>>>:

ð11Þ

Note that from the state feedback PTOS control (4) to the obser-
ver-based PTOS control (11), there are two additional terms of wðkÞ
and d in the latter case, while wðkÞ converges to zero gradually.
Similar to the state feedback case presented in [1], any trajectory
of the closed-loop system (11) starting from the saturated region
will enter the unsaturated region in a finite time eventually and
will remain in the unsaturated region, once in the unsaturated re-
gion provided that the condition 7 is replaced by the following
conditions:

7A. jk2½f ðeþ DeÞ � ðv þ DvÞ � KvAvw� � dj < umax for 8ðe;v ;wÞ in
the unsaturated region, where De ¼ �vT � 1

2 aT2ðuP þ dÞ, Dv ¼
aTðuP þ dÞ.

7B. The unknown disturbance is bounded, i.e., jdj 6 dumaxfor
some positive parameter d 2 ð0;1Þ.

7C. The initial estimation error wð0Þ belongs to a two-dimen-
sional set defined as

X :¼ fw 2 R2 : wT Pvw < kdg;

where kd > 0 is the largest positive value such that

wðkÞ 2 X) k2 1½ �wðkÞj j 6 ð1� dÞumax: ð12Þ

The meaning of the condition 7A is the same as that of the condi-
tion 7 in the state feedback case. Conditions 7B and 7C ensure that
the existence of disturbance and estimation error does not change
the direction of acceleration when the control is saturated. Following
the similar lines of reasoning as in [1], we can show that, the closed-
loop system (11) is stable when the control input is saturated. For the
case that the control input signal does not exceed the saturation le-
vel, the closed-loop system (11) can be written as follows,

eðkþ 1Þ ¼ eðkÞ � vðkÞT � mT
2 ½f ðeðkÞÞ � vðkÞ � Kv �wðkÞ�;

vðkþ 1Þ ¼ vðkÞ þm½f ðeðkÞÞ � vðkÞ � Kv �wðkÞ�;
wðkþ 1Þ ¼ Av �wðkÞ:

8><
>: ð13Þ

where m ¼ aTk2.
To prove that the closed-loop system (13) is asymptotically sta-

ble, the following Lyapunov function is defined,

VPðkÞ ¼ pvv2ðkÞ þ
Z eðkÞ

0
f ðrÞdrþwTðkÞPvwðkÞ; ð14Þ

where pv is a positive scalar to be selected later. The increment of
the Lyapunov function (14) along the trajectory of the closed-loop
system (13) is given by
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DVPðkÞ ¼ VPðkþ 1Þ � VPðkÞ

¼ pv½v2ðkþ 1Þ � v2ðkÞ� þ
Z eðkþ1Þ

eðkÞ
f ðrÞdrþwTðkþ 1ÞPvw

� ðkþ 1Þ �wTðkÞPvwðkÞ ð15Þ

Note that the integration term can be expressed using the Tay-
lor expansion as follows,Z eðkþ1Þ

eðkÞ
f ðrÞdr ¼ f ðeðkÞÞ½eðkþ 1Þ � eðkÞ�

þ 1
2

_f ðnÞ½eðkþ 1Þ � eðkÞ�2

6 f ðeðkÞÞ½eðkþ 1Þ � eðkÞ�

þ c½eðkþ 1Þ � eðkÞ�2: ð16Þ

for n between eðkÞ and eðkþ 1Þ (k ¼ 0;1;2; . . .), and

c :¼ supj1
2

_f ðnÞj;

Hence,

DVPðkÞ 6 pv½v2ðkþ 1Þ � v2ðkÞ� �wTðkÞQvwðkÞ þ f ðeðkÞÞ½eðk

þ 1Þ � eðkÞ� þ c½eðkþ 1Þ � eðkÞ�2; ð17Þ

Note that

v2ðkþ 1Þ � v2ðkÞ ¼ ðm2 � 2mÞv2ðkÞ þm2f 2ðeðkÞÞ þ ð2m

� 2m2ÞvðkÞf ðeðkÞÞ þm2wTðkÞKT
vKvwðkÞ

� 2m2KvwðkÞf ðeðkÞÞ þ ð2m2 � 2mÞKvwðkÞvðkÞ;

and

eðkþ 1Þ � eðkÞ ¼ �mT
2

f ðeðkÞÞ þ m
2
� 1

� �
TvðkÞ þmT

2
KvwðkÞ;

Thus,
DVPðkÞ 6 pvðm2 � 2mÞ þ c 1�m
2

� �2
T2

� �
v2ðkÞ þ pvm2 �mT

2
þ 1

4
cm2T2

� �
f 2ðeðkÞÞ þ pvð2m� 2m2Þ þ m

2
� 1

� �
T

h i
vðkÞf ðeðkÞÞ

þ c m�m2

2

� �
T2vðkÞf ðeðkÞÞ þwTðkÞ pvm2 þ 1

4
cm2T2

� �
KT

vKv � Q v

� �
wðkÞ þ �2pvm2 þmT

2
� 1

2
cm2T2

� �
KvwðkÞf ðeðkÞÞ

þ pvð2m2 � 2mÞ þ c
1
2

m2 �m
� �

T2
� �

KvwðkÞvðkÞ ¼
vðkÞ
wðkÞ

� �T

P
vðkÞ
wðkÞ

� �
þ

vðkÞ
wðkÞ

� �T

Mf ðeðkÞÞ þ Nf 2ðeðkÞÞ; ð18Þ
where

P ¼ PT ¼
p11 p12

pT
12 p22

� �
; M ¼

m1

m2

� �
;

with

p11 ¼ pvðm2 � 2mÞ þ c 1� m
2

	 
2T2;

p12 ¼ 1
2 pvð2m2 � 2mÞ þ c 1

2 m2 �m
	 


T2
h i

Kv;

p22 ¼ pvm2 þ 1
4 cm2T2

� �
KT

vKv � Q v;

m1 ¼ pvð2m� 2m2Þ þ m
2 � 1
	 


T þ c m� 1
2 m2

	 

T2;

m2 ¼ �2pvm2 þ 1
2 mT � 1

2 cm2T2
� �

KT
v ;

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ

and

N ¼ pvm2 � 1
2

mT þ 1
4

cm2T2:
Obviously, to ensure the right-hand side of (18) is negative definite,
the following conditions must be satisfied:

P < 0;
N � 1

4 MT P�1M 6 0:

(
ð20Þ

First, to ensure P < 0, we need

p11 < 0 and p22 � pT
12p�1

11 p12 < 0;

The first inequality implies that,

0 < m < 2 and pv >
cT2ð2�mÞ

4m
: ð21Þ

The second inequality is satisfied if Qv is chosen as follows,

Qv > pvm2 þ 1
4

cm2T2
� �

KT
vKv � pT

12p�1
11 p12: ð22Þ

To ensure N � 1
4 MT P�1M 6 0, it requires that

N 6 0 and 4Np11 �m2
1 P Sð�p12m1 � p11 �m2Þ2; ð23Þ

with

S ¼ Kvðp11p22 � pT
12p12Þ

�1KT
v ;

�p12 ¼ 1
2 pvð2m2 � 2mÞ þ c 1

2 m2 �m
	 


T2
h i

;

�m2 ¼ �2pvm2 þ 1
2 mT � 1

2 cm2T2:

8>>><
>>>:

ð24Þ

Note that

4Np11 �m2
1 ¼ � 2pvm� T þ 1

2 mT
	 
2

;

�p12m1 � p11 �m2 ¼ �pvm 2pvm� T þ 1
2 mT

	 

;

(

and S > 0, thus the second inequality in (23) leads to

ðSp2
vm2 þ 1Þ 2pvm� T þ 1

2
mT

� �2

6 0; ð25Þ
which implies that

2pvm� T þ 1
2

mT ¼ 0; ð26Þ

or

pv ¼
Tð2�mÞ

4m
: ð27Þ

The inequality N 6 0 is equivalent to

pv 6
Tð2� cTmÞ

4m
: ð28Þ

Combining the above results with (21), we can obtain

0 < cT < 1: ð29Þ
Note that (21) and (29) are actually guaranteed by the condition 1
and 6 respectively. Hence, it is obvious that the appropriate
pv > 0 and Qv > 0 always exist such that,
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DVPðkÞ 6 0: ð30Þ

As in its continuous-time counterpart, it is then straightforward
to verify the closed-loop system comprising the PTOS control law
with measurement feedback and the given plant is asymptotically
stable.

2.2. Discrete-time observer-based CNF control

In this subsection, we proceed to design a discrete-time CNF
control law for the plant (1), which eventually will be employed
in our MSC framework.

First we note that the same observer in (8) is adopted here. Fol-
lowing the procedure in [9], a CNF control law with disturbance
compensation is designed as

ucðkÞ ¼ F
yðkÞ
v̂ðkÞ

� �
þ Gr þ qðeðkÞÞFn

yðkÞ � r

v̂ðkÞ

� �
� d̂ðkÞ; ð31Þ

where F ¼ f1 f2½ � is the linear feedback gain matrix such that the
eigenvalues of Aþ BF are on the desired locations. The feed-forward
gain for target reference can be determined as G ¼ �f1. The nonlin-
ear feedback gain matrix Fn ¼ fn1 fn2½ � is given by

Fn ¼ BT PxðAþ BFÞ; ð32Þ

where Px > 0 is the solution to the following Lyapunov equation

Px ¼ ðAþ BFÞT PxðAþ BFÞ þWx; ð33Þ

for any chosen symmetric positive definite matrix Wx 2 R2�2 . Such
a Px always exists as Aþ BF is asymptotically stable. The gain func-
tion qðeðkÞÞ is a smooth and non-positive function of jeðkÞj, and is
used to tune the control laws so as to improve the performance of
closed-loop system as the controlled output yðkÞ approaches the
target reference r.

Define

xe ¼
r

0

� �
; ~xðkÞ ¼ xðkÞ � xe:

Note that the CNF control law in (31) can be rewritten as,

ucðkÞ ¼ ð F Fv½ � þ qðeðkÞÞ Fn Fnv½ �Þ
~xðkÞ
wðkÞ

� �
� d; ð34Þ

with Fv ¼ f2 �1½ �; Fnv ¼ fn2 0½ �, wðkÞ ¼
~vðkÞ
~dðkÞ

� �
.

Next, choose the symmetric positive definite matrix Qv 2 R2�2

to satisfy (22) and the following condition:

Q v > FvBT ½Px þ PxðAþ BFÞW�1
x ðAþ BFÞT Px�BFT

v ð35Þ

and solve the Lyapunov equation in (10) for a matrix Pv.
Now, assuming the disturbance is bounded by dumax for some

positive variable d 2 ð0;1Þ, we define a set

X :¼
~x

w

� �
2 R4 :

~x

w

� �T Px 0
0 Pv

� �
~x

w

� �
6 cd

( )
; ð36Þ

where cd > 0 is the largest positive value such that

~x

w

� �
2 X) F Fv½ �

~x

w

� �����
���� 6 ð1� dÞumax: ð37Þ

The error dynamics equation of the plant in (1) can be ex-
pressed as,

~xðkþ 1Þ ¼ xðkþ 1Þ � xe ¼ ðAþ BFÞ~xðkÞ þ BFvwðkÞ þ B sðkÞ; ð38Þ
where

sðkÞ :¼ satðucðkÞÞ � F Fv½ �
~xðkÞ
wðkÞ

� �
þ d: ð39Þ

For simplicity of presentation, we will omit the time index ðkÞ in
the following derivation so long as no confusion is caused. We may
also omit the variable eðkÞ of nonlinear function qðeðkÞÞ as
appropriate. Now, for the disturbance bounded by dumax and

~xðkÞ
wðkÞ

� �
2 X,

F Fv½ �
~xðkÞ
wðkÞ

� �
� d

����
���� 6 umax;

hence the value of sðkÞ can be written in three cases according to the
range of control uc ,

q Fn Fnv½ �
~x

w

� �
< s < 0; uc < �umax;

s ¼ q Fn Fnv½ �
~x

w

� �
; jucj 6 umax;

0 < s < q Fn Fnv½ �
~x

w

� �
; uc > umax:

8>>>>>>>><
>>>>>>>>:

ð40Þ

Obviously, for all possible situations, we can always write s as

s ¼ qq Fn Fnv½ �
~x
w

� �
; ð41Þ

for some non-negative variable q 2 ½0;1�. Thus, for the case when
~x
w

� �
2 X, the closed-loop system comprising the given plant (1)

and the control law (8) and (31) can be expressed as follows,

~xðkþ 1Þ
wðkþ 1Þ

� �
¼

Aþ BF þ qqBFn Aq

0 Av

� �
~xðkÞ
wðkÞ

� �
; ð42Þ

where

Aq ¼ BFv þ qqBFnv:

Define a Lyapunov function

VCðkÞ ¼
~xðkÞ
wðkÞ

� �T Px 0
0 Pv

� �
~xðkÞ
wðkÞ

� �
; ð43Þ

and evaluate its increment along the trajectories of the closed-loop
system (42),

DVCðkÞ ¼ VCðkþ 1Þ � VCðkÞ

¼ �~xTðkÞWx~xðkÞ þ ~xðkÞT FT
nð2qqþ q2q2BT PxBÞFn~xðkÞ

þ 2~xTðkÞðAþ BFÞTðPx þ qqPxBBT PxÞAqwðkÞ

þwTðkÞAT
qPxAqwðkÞ �wTðkÞQvwðkÞ:

If the nonlinear gain function q is chosen such that
q 2 ½�2ðBT PxBÞ�1

;0�, then

2qqþ q2q2BT PxB 6 0:

Hence, we have

DVCðkÞ 6 �~xðkÞT Wx~xðkÞ þ 2~xTðkÞðAþ BFÞT PqAqwðkÞ �wTðkÞðQv

� AT
qPxAqÞwðkÞ ¼ �

~xwðkÞ
wðkÞ

� �T Wx 0
0 Q s

� �
~xwðkÞ
wðkÞ:

� �
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where

Pq ¼ Px þ qqPxBBT Px;

~xwðkÞ ¼ ~xðkÞ �W�1
x ðAþ BFÞT PqAqwðkÞ;

Q s ¼ Q v � AT
q½Px þ PqðAþ BFÞW�1

x ðAþ BFÞT Pq�Aq:

By the choice of Qv in (35), there exists a scalar q̂ > 0 such
that for any smooth and non-positive function qðeðkÞÞ with
jqðeðkÞÞj 6 q̂, we have Q s > 0. Clearly, the closed-loop system
with those assumptions, has DVCðkÞ 6 0 and thus is asymptoti-
cally stable. Hence, we conclude that xðkÞ ! xe as k!1, and
the output yðkÞ asymptotically tracks the target reference r. Obvi-
ously, X is an invariant set of the closed-loop system comprising
the reduced-order CNF controller. The trajectory of the closed-
loop system will remain in X and converge to the origin, once
it enters into X.

2.3. Discrete-time MSC control scheme

In this subsection, a discrete-time MSC control scheme which
combines the PTOS and CNF control laws with reduced-order ob-
server for the plant (1) is presented, which takes the form as
follows,

uðkÞ ¼
uPðkÞ; k < ks;

uCðkÞ; k P ks;

�
ð44Þ

where ks is the time index that the MSC control switches from PTOS
to CNF, and is determined by the mode switching conditions given
by

~xðksÞ
wðksÞ

� �
2 X and jeðksÞj 6 yl; ð45Þ

where yl is the size of the linear region of the PTOS control law. The
PTOS control law uPðkÞ and the CNF control law ucðkÞ are as follows,

uPðkÞ ¼ satfk2½f ðeðkÞÞ � v̂ðkÞ� � d̂ðkÞg;

ucðkÞ ¼ ½F þ qðeðkÞÞFn�
yðkÞ � r

v̂ðkÞ

� �
� d̂ðkÞ;

8><
>: ð46Þ

where r is the target reference and eðkÞ ¼ r � yðkÞ is the tracking er-
ror. v̂ðkÞ and d̂ðkÞ are the output of the observer in (8), which is
shared by the PTOS control law with the CNF control law. The
CNF nonlinear function qðeðkÞÞ is chosen as

qðeðkÞÞ ¼ �b� arctan k� eðkÞ
eðksÞ

����
����� ks

����
����

� �
ð47Þ

with 0 6 b 6 4
p ðB

T PxBÞ�1
. The parameter k > 0 is used to determine

the speed of change in qðeðkÞÞ, and eðksÞ represents the tracking er-
ror upon mode switching. The value of ks can be chosen to ensure
that the magnitude of qðeðkÞÞ is increscent as jeðkÞj tends to zero
and that there is no jerk in the control signal during mode switch-
ing, i.e.,

ks ¼ 1þ 1
k

tan
ð½k1 k2� þ FÞ~̂xðksÞ

bFn~̂xðksÞ

�����
�����

 !
; ð48Þ

where ~̂xðksÞ ¼
yðksÞ � r
v̂ðksÞ

� �
.

Next, we proceed to analyze the stability of the closed-loop sys-
tem comprising the discrete-time MSC control law (44) and the
plant (1). For the case that the control input is saturated, where
only the PTOS control is effective, it has been proved that the
closed-loop system is stable, and any trajectory starting from the
saturated region will enter the unsaturated region in finite time
eventually and the trajectory will remain in the unsaturated
region, once in the unsaturated region. Hence, we only need to
analyze the stability in the unsaturated region for the closed-loop
system with the MSC control law (44).

We re-express (14) using the Taylor expansion as follows:

VPðkÞ¼pvv2ðkÞþ1
2

_f ðsÞe2ðkÞþwT ðkÞPvwðkÞ¼
~xðkÞ
wðkÞ

� �T
1
2

_f ðsÞ 0 0
0 pv 0
0 0 Pv

2
64

3
75 ~xðkÞ

wðkÞ

� �
;

ð49Þ

where s is an appropriate scalar between 0 and eðkÞ. Let

c ¼min
1
2

_f ðsÞ;pv; kminðPvÞ
� 


=maxfkmaxðPxÞ; kmaxðPvÞg: ð50Þ

The Lyapunov function for the overall closed-loop system with
the MSC control law (44) can be chosen as

VðkÞ ¼ VPðkÞ½1� 1ðk� ksÞ� þ cVCðkÞ � 1ðk� ksÞ; ð51Þ

where

1ðk� ksÞ ¼
0; k < ks;

1; k P ks:

�

It is simple to verify that

DVðkÞ ¼ DVPðkÞ½1� 1ðkþ 1� ksÞ� þ cDVCðkÞ � 1ðkþ 1� ksÞ
þ ðcVCðkÞ � VPðkÞÞ½1ðkþ 1� ksÞ � 1ðk� ksÞ�:

It has already been proved that the increment of the Lyapunov func-
tion VPðkÞ and VCðkÞ are negative definite when they are effective
respectively. The last item is always non-positive in view of the def-
inition of c in (50). Hence, DVðkÞ 6 0 and the resulting closed-loop
system comprising the given plant and the MSC control law is
asymptotically stable. Furthermore, (45) gives the mode switching
condition for the proposed MSC scheme.

There are some guidelines for choosing the controller parame-
ters. For the PTOS control law, the natural frequency x is
consistent with the desired closed-loop servo bandwidth. The
acceleration discount factor a takes value between 0 and 1, and
normally the largest possible value is desired. But, to allow for
the plant uncertainty, a sensible range for a is [0.9, 0.95]. The
damping ratio f is chosen such that the overshoot is kept within
the specified level. Specifically, if the PTOS control law is imple-
mented as an independent controller, f should be no smaller than
0.8 to ensure an overshoot below 2%. For the MSC control scheme,
since the settling process will be taken over by CNF, the PTOS
damping ratio f can be reduced to around 0.7 for faster targeting.
The initial damping ratio of CNF should be small (typically 0.3),
and the natural frequency should also be consistent with the
desired servo bandwidth. The matrix Wx can be chosen to be

diagonal, while the parameters b 2 0; 4
Pi ðB

T PxBÞ�1
h i

and k > 0 can

be determined from the root locus by choosing the desired stea-
dy-state locations of closed-loop poles (see [9] for more details)
or by some tuning methods (see e.g., [10]). For the parameter cd

of the CNF invariant set, an estimation which might be conserva-
tive, is given by Ref. [19]

cd ¼
½ð1� dÞumax�2

FP�1
x FT

: ð52Þ

with F ¼ F Fv½ � and Px ¼
Px 0
0 Pv

� �
. Finally, for the extended state

observer, the natural frequency x0 of its poles should be no smaller
than three times the desired closed-loop bandwidth, and damping

ratio f0 can be simply fixed as
ffiffi
2
p

2 (Butterworth pattern).



Table 1
PID parameters for current loops.

kp ki kd

iq Loop 19.053 0.1905 18.1
id Loop 43.301 0.1443 0

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

t/s

(a) Position response (normalized)

0 0.05 0.1 0.15 0.2 0.25 0.3
−1.5

−1

−0.5

0

0.5

1

1.5

t/s

(b) Control current i q−ref  /A

2π

Solid line:  MSC

Dashed line: PTOS

Solid line:  MSC

Dashed line: PTOS

π

π/4

π/4

4π

π 2π 4π

Fig. 2. Comparisons of simulation results between the MSC and PTOS control with a
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3. Application in PMSM position regulation

In this section we apply the discrete-time MSC control scheme
to design a position controller for permanent magnet synchronous
motor servo systems. PMSM has found extensive applications in
high speed and precision servo systems (see e.g., [14–18]), due to
the advantages of light weight, high efficiency and compact struc-
ture. In this paper, we deal with the surface-mounted PMSMs, with
the dq model given by

uq ¼ Rsiq þ Lq
diq
dt þ npxrLdid þ npxrwf

ud ¼ Rsid þ Ld
did
dt � npxrLqiq

Te ¼ 1:5npwf iq ¼ J dxr
dt þ kbxr þ TL

dhr
dt ¼ xr

8>>>>><
>>>>>:
where ud and uq are the input voltages in dq frame, id and iq are the
electric currents, Ld and Lq are the inductances, Rs is the stator resis-
tance, np is the number of pole pairs, wf is the flux linkage estab-
lished by permanent magnet, xr and hr are the mechanical
angular speed and angle, Te is the electromagnetic torque, TL is
the load torque, J is the moment of inertia of motor, kb is the viscous
friction coefficient.

In conventional PMSM servo systems, the cascaded structure of
position–speed–current loops is adopted, with PID as the dominant
control method. In our study, the electric current loops are still
controlled by PID, but the position and speed loops have been uni-
fied and controlled by the MSC control law. Taking the angular po-
sition hr (rad) of motor as the system output y, and iq as the control
signal u (to be used as the target reference for the iq control loop),
we obtain a double integrator plant, as characterized by (1), with

the parameter a ¼ 1:5npwf

J .

The PMSM in our study is of model 60CB020C, with 3000RPM as
the rated speed of rotation, and a rated torque of 0.6 Nm, the num-
ber of pole pairs is 4. It has an optical encoder of 2500 counts per
revolution for position measurement. The amplitude of the electric
current iq is limited by 1.5 A, i.e., umax ¼ 1:5 A. The value of system
parameter has been identified as a = 1120, and a sampling period
of T = 0.002 s is chosen for digital control of PMSM position servo
system.

Following the design procedure of MSC, we first choose the
damping ratio, natural frequency, and the acceleration discount
factor of the PTOS control law as follows,

f ¼ 0:68; x ¼ 35; a ¼ 0:9;

then the feedback gains and relevant parameters of PTOS are com-
puted as,

k1 ¼ 1:0429; k2 ¼ 0:0416; J0 ¼ 30:144; yl ¼ 1:2019:

Now the PTOS control law can be given by

uPðkÞ ¼ sat k2½f ðeðkÞÞ � v̂ðkÞ� � d̂ðkÞ
� �

; ð53Þ

where eðkÞ ¼ r � yðkÞ, and f ðeðkÞÞ is as given in (5).
The estimated velocity v̂ðkÞ and disturbance d̂ðkÞ are provided

by the observer for which the conjugate poles are chosen to have
a damping ratio 0.707 and a natural frequency 110. The dynamic
equation of the observer is given by

xvðkþ 1Þ ¼
0:7119 1:9174
�0:0185 0:9793

� �
� xvðkÞ

þ
1:9174 �23:758
�0:0207 �2:8553

� �
�

satðuðkÞÞ
yðkÞ

� �
;

v̂ðkÞ
d̂ðkÞ

 !
¼ xvðkÞ þ

144:03
9:2474

� �
� yðkÞ

8>>>>>>>>><
>>>>>>>>>:

ð54Þ
Next, to design the CNF control law, we choose a damping ratio 0.3
and a natural frequency 35 for the pair of closed-loop poles, and ob-
tain the linear feedback gain matrix as

F ¼ � 1:0707 0:0194½ �:

We choose a positive definite matrix Wx ¼ diagð0:002;0:002Þ and
solve the Lyapunov equation in (33) to obtain

Px ¼
29:224 1:0208� 10�3

1:0208� 10�3 2:4843� 10�2

" #
:

The CNF nonlinear feedback gain is computed as

Fn ¼ �0:0659 0:0534½ �:

Based on the observer in (54), the CNF control law is given by,

uCðkÞ ¼ ½F þ qðeðkÞÞFn�
yðkÞ � r

v̂ðkÞ

� �
� d̂ðkÞ; ð55Þ

where qðeðkÞÞ is as given in (47) with b ¼ 0:5, k ¼ jeð0Þj, and the
parameter ks is computed according to (48) at the switching instant.
disturbance d ¼ �0:3 A.



Table 2
Comparison of settling time (s) in simulation.

Target angle h (rad) p
4 p 2p 4p

PTOS 0.117 0.124 0.148 0.191
MSC 0.101 0.110 0.134 0.178
Improvement 13.7% 11.3% 9.5% 6.8%
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Fig. 3. Simulation results with MSC for target angle 2p with disturbance d ¼ �0:5 A
and perturbations in system parameter a.

Fig. 4. Experimental setup of PMSM servo system.

Fig. 5. Block diagram of PMSM position servo system.
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For the cases when the initial system state is within the CNF invari-
ant set, the CNF control law will be effective from the beginning
without the need for control switching, and the parameters of
qðeðkÞÞ are chosen as b ¼ 0:5; k ¼ 2:8, and ks ¼ 1.

Now, the MSC control law which combines PTOS and CNF is
given by

uðkÞ ¼
uPðkÞ; k < ks;

uCðkÞ; k P ks;

�
ð56Þ
with the time index ks determined by the first instant that the sys-
tem enters into the following region:

jeðkÞj 6 yl and
yðkÞ � r

v̂ðkÞ

� �T

Px
yðkÞ � r

v̂ðkÞ

� �
6 cd ¼ 41:38: ð57Þ

For the two current control loops of id and iq, digital PID con-
trol laws with anti-windup feedback are adopted, with the sam-
pling frequency of 20 kHz for control implementation and PWM
generation. The parameters of PID controllers are summarized
in Table 1.

To verify the design, simulations have been carried out in
MATLAB/Simulink, using the nominal double integrator as the
plant model (ignoring the electric current loops). For compari-
son, we also test a PTOS controller with parameters f ¼ 0:8;
x ¼ 35;a ¼ 0:95 and the same observer in (54). Simulations
were done for various target angles. The results are shown in
Fig. 2, and the performances in terms of settling time (with 2%
error bound) are summarized in Table 2. It is clear that the
MSC controller achieves faster settling in all the tracking tasks.
Note that for a ¼ 0:95, the PTOS controller is supposed to
achieve almost optimal performance (Workman [1]). However,
the MSC controller works even better. This is because the MSC
utilizes the advantages of both PTOS and CNF and the mode
switching is smooth. To check the robustness of the MSC scheme
with respect to system perturbations, simulations were done to
track the target angle 2p with a disturbance d ¼ �0:5 A and vari-
ations in the system parameter a. The results in Fig. 3 indicate
that in the face of plant perturbations of up to 25%, the MSC
controller with nominal design parameters can maintain a satis-
factory performance with an overshoot below 2%, and no steady-
state error. Obviously, the MSC scheme has some degree of
robustness against the plant uncertainty.

Next, real-time implementations were conducted using the
experimental setup shown in Fig. 4. A TMS320F2812DSP board
(from Texas Instruments) was adopted for motor control under
the Space Vector PWM pattern, with the proposed MSC scheme
for position control. The structure of the servo system is given in
Fig. 5. Experimental data were collected via the Code Composer
Studio software system and then processed in MATLAB. Experi-
ments were first carried out for various target angles of motor
under the load torque 0.12 Nm (equivalently 20% of rated torque,
note that there is some other disturbance besides the load torque
in the system), the results are shown in Figs. 6–9. In these figures,
the waveforms for the angular position, speed, control signal (the
reference for iq loop) and the estimated disturbance are provided.
It is interesting to note that for target angle p

4, the PTOS control
leads to an overshoot of 6% and a sluggish settling. Table 3
summarizes the performance in terms of settling time (with a 2%
error bound), which clearly indicates the MSC control out-performs
the PTOS control, with the overshoot kept within 2% and no
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Fig. 6. Comparisons of experimental results between the MSC and PTOS control for target angle p
4.

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

t/s

MSC
PTOS

0 0.2 0.4 0.6 0.8
−20

0

20

40

60

t/s

MSC
PTOS

0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

t/s

MSC
PTOS

0 0.2 0.4 0.6 0.8
−0.5

0

0.5

t/s

MSC
PTOS

(b) Speed (rad/s) 

(a) Position response (normalized) (c) Control current iq−ref /A

(d) Disturbance estimation /A

Fig. 7. Comparisons of experimental results between the MSC and PTOS control for target angle p.
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steady-state error. Fig. 10 gives the results of the MSC control for
the target angle p under various load torques (respectively 0%,
20%, 40% of rated torque). It is clear that the overall performance
is still desirable and consistent in the face of unknown disturbance
(among which is the load torque). With the proposed MSC control
scheme, fast and smooth tracking can be achieved for a wide range
of target references, with some robustness to the amplitude of load
disturbance.
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Fig. 8. Comparisons of experimental results between the MSC and PTOS control for target angle 2p.
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Fig. 9. Comparisons of experimental results between the MSC and PTOS control for target angle 4p.

Table 3
Comparison of settling time (s) in experiments.

Target angle h (rad) p
4 p 2p 4p

PTOS 0.272 0.128 0.142 0.180
MSC 0.082 0.102 0.128 0.170
Improvement 69.9% 20.3% 9.9% 5.6%

1200 G. Cheng et al. / Mechatronics 23 (2013) 1191–1201
4. Concluding remarks

A discrete-time MSC control scheme has been proposed by
combining the PTOS control and CNF control with an extended
state observer. The closed-loop stability has been analyzed
theoretically. The method has been adopted to design the position
controller for a permanent magnet synchronous motor servo
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Fig. 10. Experimental results with MSC for target angle p under various load torques (a close-up view).
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system. MATLAB simulation and experimental results based on
TMS320F2812 show that the proposed MSC design is capable of
tracking a wide range of target positions smoothly and accurately
with a faster settling time. The proposed MSC control method can
be easily applied to other servo systems with a double integrator
model.
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