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This paper presents a bumpless hybrid supervisory control scheme for the formation of unmanned heli-
copters. The approach is based on the polar partitioning of the space, from which a finite bisimilar quo-
tient transition system of the original continuous variable control system is obtained. Then, to implement
the designed hybrid supervisory control algorithm, a hierarchical control structure is introduced with a
discrete supervisor on the top layer that is connected to the regulation layer via an interface layer. Trans-
iting over the partitioned space may cause jumps on the generated control signal which is harmful for a
real flight system. Hence, a smooth control mechanism is introduced that has no jump when the system’s
trajectory transits from one region to its adjacent region while preserving the bisimulation relation
between the abstract model and the original partitioned system. Several actual flight tests have been con-
ducted to verify the algorithm and the control performance.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction continuous controllers is problematic as unexpected behaviors
Formation of the Unmanned Aerial Vehicles (UAVs) can lever-
age the capabilities of the team to have more effective performance
in missions such as cooperative SLAM, coverage and recognisance,
and security patrol [1–3]. Hence, recent years have seen an increas-
ing interest in the study of UAV formation control from both theo-
retical and experimental points of view. In the literature there are
some methods that can partly address the formation problem. For
example, in [4–6], the problem of reaching the formation is investi-
gated using optimal control techniques, navigation function, and
potential field approaches. Keeping the formation can be seen as a
standard control problem in which the system’s actual position
has slightly deviated from the desired position for which many
control approaches have been developed such as feedback control,
rigid graph, and virtual structure [7–10]. Finally, in [11–13], differ-
ent mechanisms for collision avoidance have been introduced using
probabilistic methods, MILP programming, and behavioral control.
Most of these methods are suitable just for certain aspects of these
formation tasks. The traditional practice is to design controllers for
each task separately and switch between them based on different
situations. However, the separate design of switching logic and
could be generated due to switching between the sub-controllers.
This calls for a unified way to design formation controller and
switching logic. In our recent study [14], a unified framework
was introduced to address all aspects of a formation control mis-
sion based on hybrid control theory [15] which can integrate the
analysis and design of both the discrete-event dynamics and the
continuous evolution of the systems. In particular, the approach
introduced in [14] was rooted from hybrid supervisory control
[15]. The basic idea is to use polar abstraction of the motion space
and utilize the properties of multi-affine functions [16] over the
partitioned space. The abstraction technique [17] can convert the
original continuous system with infinite states into a finite state
machine for which one can use the well developed theory of super-
visory control of discrete event systems (DES) [18]. Subjected to
the bisimulation relation between the abstracted system and the
original continuous system, their behavior will be the same so that
the discrete supervisor, designed for the discrete finite model, can
be applied to the original system.

Here, the key is how to implement this hybrid controller. For
this purpose, we introduce a hierarchical hybrid supervisory con-
trol structure which has a discrete supervisor on the top and a con-
tinuous low level control on the low layer. To connect the discrete
supervisor to the continuous low level, an interface layer is intro-
duced which on the one hand interprets the continuous signals
for the discrete supervisor and on the other hand, converts the gen-
erated discrete symbols to continuous control signals to be applied
to the low layer. Based on the decision made by the supervisor, the
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Fig. 1. NUS cooperative UAVs test-bed.
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discrete commands would change when the system’s trajectory
passes from one region to another region in the partitioned space.
A very important problem here is that the generated control signal
may have jumps when the system transits from one region to an-
other one. These kind of jumps in the generated control signal may
cause serious problems for a real flight system. Therefore, here we
propose an algorithm which can generate a smooth control signal
applicable to the low level continuous layer. The basic idea is to
tune the value of the vector field at the vertices of the partitioning
elements at the common edges to provide a smooth control signal
while preserving the bisimilarity relation between the abstracted
model and the original continuous system.

Hence, this paper presents a smooth hybrid supervisory control
algorithm for the formation of UAV helicopters and focuses on the
implementation issues of the proposed algorithm. More specifi-
cally, our main contributions in this paper are that firstly, an inter-
face layer is introduced to connect the discrete supervisor layer to
the continuous plant. This interface layer is responsible for con-
verting the continuous signals of the plant into some symbols
understandable by the discrete supervisor, and vice versa. Sec-
ondly, the time scheduling of the events being generated by the
system has been investigated and has been correspondingly con-
sidered in the implementation of the supervisor. Thirdly, a control
scheme is proposed to smoothly transit through the partitioning
elements so that there is no jump in the generated control signal
when the system transits from one region to its adjacent regions.
Finally, a cooperative testbed is developed and the proposed algo-
rithm has been verified through actual flight tests.

The rest of this paper is organized as follows. First, the devel-
oped cooperative testbed is explained in Section 2. Then, Section 3
describes the preliminaries of the hybrid supervisory control algo-
rithm for a formation mission. In Section 4, a hierarchical hybrid
control structure is proposed which has a discrete supervision
layer on the top that is connected to the continuous low layer via
an interface layer. Section 5 describes implementation issues for
the algorithm and provides a mechanism to generate a smooth
control signal. Flight test results are demonstrated in Section 6.
The paper is concluded in Section 7.
2. Test-bed infrastructure

For the implementation of the proposed hybrid formation algo-
rithm we have used a set of two UAV helicopters, HeLion and
SheLion (Fig. 1) which are developed by our research group at
the National University of Singapore.

These UAVs are radio-controlled helicopter, Raptor 90. The size
of these helicopters is 1410 mm in length and 190 mm in width of
the fuselage. The maximum takingoff weight is 11 kg including
5 kg as the dry weight of helicopter and 6 kg as the effective pay-
load. Their main rotors and tail rotors have the diameter of
1605 mm and 260 mm, respectively.
Fig. 2. The control structu
These helicopters have been provided with an avionic system
that make them able to autonomously accomplish different indi-
vidual or cooperative maneuvers. Their avionic systems are
equipped with a PC/104 ATHENA, as an onboard airborne computer
system which has four RS-232 serial ports, a 16-pin digital to ana-
log (D/A) port, two counters/timers and runs at 600 MHz.

Moreover, for the navigation a compact fully integrated INS/
GPS, NAV 420, Crossbow, is used to provide three-axis velocities,
acceleration, and angular rates in the body frame, as well as longi-
tude, latitude, relative height, and heading, pitch, and roll angles.
For the reliable communication between the UAVs, and also be-
tween the UAVs and the ground station, we have used serial wire-
less radio modems, IM-500X008, FreeWave, with the working
frequency of 2.4 GHz, which can cover a wide range up to 32 km
in an open field environment.

The onboard program is implemented using QNX Neutrino real
time operating system. For this onboard program a multi-thread
structure is developed which includes several threads for flight
control; reading from data acquisition board; driving the servo
actuators; making dual-directional wireless communication with
other UAVs or with the ground station; and logging data in an on-
board compact flash card.

Furthermore, for these helicopters, a hardware-in-the-loop sim-
ulation software has been developed by integrating the developed
hardware and embedded software together with the nonlinear dy-
namic model of the UAV helicopters. In this platform, the nonlinear
dynamics of the UAVs have been replaced with their nonlinear
model, and all software and hardware components that are in-
volved in a real flight test, remain active during the simulation.
Consequently, the simulation results of this simulator are very
close to the actual flight tests, and it can provide a safe and reliable
environment for the pre-evaluation of the control algorithms.

The modeling and low level control structure of the NUS UAV
helicopters are explained in [19–21]. For the regulation layer of
re of the NUS UAVs.
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these helicopters we have proposed a two-layer control structure
in which the inner-loop controller stabilizes the system using H1
control design techniques, and their outer-loop is used to derive
the system towards the desired location (Fig. 2). As it has been dis-
cussed in [20], in this control structure, the inner-loop is fast en-
ough to track the given references, so that the outer-loop
dynamics can be approximately described as follows:

_x ¼ u; x 2 R2; u 2 U # R2; ð1Þ

where x is the position of the UAV; u is the UAV velocity reference
generated by the formation algorithm, and U is the convex set of
velocity constraints.

3. Preliminaries on hybrid formation control

In a leader follower formation scenario, consider the follower
velocity in the following form:

Vfollower ¼ Vleader þ Vrel: ð2Þ

For these helicopters, our aim is to design the formation con-
troller to generate the relative velocity of the follower, Vrel, such
that starting from any initial point inside the control horizon, it
eventually reaches the desired relative distance with respect to
the leader, while avoiding the collision between the leader and
the follower. Moreover, after reaching the formation, the follower
UAV should remain at the desired position with respect to the
leader.

To solve this problem, in [14], a method is introduced for the
polar abstraction of the motion space which uses the properties
of multi-affine vector fields over the polar partitioned space. With-
in this framework, a DES model can be achieved for which we can
design a decentralized supervisor to achieve three major goals:
reaching the formation, keeping the formation, and collision avoid-
ance. This method is briefly explained in the following sections.

3.1. Polar partitioning of the state space

Consider a relatively fixed frame, in which the follower moves
with the velocity of Vrel and the leader has a relatively fixed
position. In this framework, imagine a circle with the radius of
Rm that is centered at the desired position of the follower. With
the aid of the partitioning curves fri ¼ Rm

nr�1 ði� 1Þ; i ¼ 1; . . . ;nrg
and fhj ¼ 2p

nh�1 ðj� 1Þ; j ¼ 1; . . . ;nhg, this circle can be partitioned
into (nr � 1)(nh � 1) partitioning elements. An element
Ri,j = {p = (r,h)jri 6 r 6 ri+1, hj 6 h 6 hj+1}, has four vertices, v0, v1, v2,
v3 (Fig. 3(a)), four edges, Eþr ; E�r ; Eþh ; E�h (Fig. 3(b)), and correspond-
ingly, four outer normal vectors nþr , n�r , nþh , n�h (Fig. 3(c)). In region
Ri,j, the notation Ep,q is used for the edge which is incident with the
vertices vp and vq, and correspondingly, np,q is used to denote its
outer normal vector.

To implement the formation algorithm, we will deploy
multi-affine functions over the partitioned space. A multi-affine
function f : Rn ! Rm, has the property that for any 1 6 i 6 n and
any a1, a2 P 0 with a1 þ a2 ¼ 1; f ðx1; . . . ; ða1xi1 þ a2xi2 Þ; xiþ1;

. . . xnÞ ¼ a1f ðx1; . . . ; xi1 ; xiþ1; . . . xnÞ þ a2f ðx1; . . . ; xi2 ; xiþ1; . . . xnÞ. The
following proposition shows that the value of a multi-affine
function over the partitioning element Ri,j, can be uniquely ex-
pressed in terms of the values of the function at the vertices of Ri,j.

Proposition 1 [14] Consider a multi-affine function gðxÞ : R2 ! R2

over the region Ri,j. The following property always holds true:

8x ¼ ðr; hÞ 2 Ri;j : gðxÞ ¼
X3

m¼0

kmgðvmÞ; ð3Þ

where km, m = 0, . . . , 3, are obtained as follows:

km ¼ kWrðvmÞ
r ð1� krÞ1�WrðvmÞkWhðvmÞ

h ð1� khÞ1�WhðvmÞ; ð4Þ
where kr ¼ r�ri
riþ1�ri

; kh ¼
h�hj

hjþ1�hj
, WrðvmÞ ¼

0 m ¼ 0;2
1 m ¼ 1;3

�
and

WhðvmÞ ¼
0 m ¼ 0;1
1 m ¼ 2;3

�
.

Remark 1. It can be verified that the resulting coefficients km,
m = 0, 1, 2, 3, have the property that km P 0 and

P
mkm ¼ 1.

The above proposition holds true for the edges as described in
the following corollary.

Corollary 1. For a multi-affine function g(x) defined over the element
Ri,j and for all of the edges Es

q of Ri,j, q 2 {r,h} and s 2 {+,�}, the
following property holds true:

8x ¼ ðr; hÞ 2 Es
q : gðxÞ ¼

X
vm2Vð Es

qÞ
kmgðvmÞ; ð5Þ

where km can be obtained as follows:

� For edges Eþr and E�r : km ¼ kWhðtÞ
h ð1� khÞ1�WhðtÞ.

� For edges Eþh and E�h : km ¼ kWr ðuÞ
r ð1� krÞ1�Wr ðuÞ.

Using these properties of multi-affine functions, it is possible to
flexibly design a hierarchical control structure for the formation
control of the UAVs as described in the following section.
4. Hierarchical control structure for the formation of
unmanned helicopters

For the above discussed model of the plant defined over the par-
titioned space, we will design a discrete supervisor which pushes
the system trajectories to pass through the desired regions to
achieve the desired behavior. The designed discrete supervisor
cannot be directly connected to the continuous plant. Hence, it is
required to construct an interface layer which can translate contin-
uous signals of the plant to a sequence of discrete symbols under-
standable for the supervisor. Also, the interface layer is responsible
for converting discrete commands received from the supervisor,
to continuous control inputs to be given to the plant. These two
jobs are respectively realized by the blocks Detector and Actua-
tor embedded in the interface layer as it is shown in Fig. 4. The
elements of this control hierarchy are discussed in the following
parts.
4.1. The interface layer

4.1.1. The detector block
When the system’s trajectory crosses the boundaries of the re-

gion, a detection event will be generated which informs the super-
visor that the system has entered a new region.

More specifically, a detection event di,j will happen at t(di,j)
when the system’s trajectory x(t) satisfies the following conditions:

� $s > 0 such that x(t) R Ri,j for t 2 (t(di,j) � s, t(di,j)).
� $sd > 0 such that x(t) 2 Ri,j for t 2 [t(di,j), t(di,j) + sd).

Also, if the leader position is on the way of the follower towards
the desired position, the event Ob will be generated to inform the
supervisor about the risk of collision.
4.1.2. The actuator block
Having the information about the newly entered region, the

supervisor can issue a discrete command to push the system tra-
jectory to move towards the desired region. However, the discrete
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symbols generated by the supervisor need to be translated to a
continuous form. For this purpose, the properties of multi-affine
functions are utilized by which we can design continuous
controllers that drive the system’s trajectory to either stay in
the current region for ever (invariant region) or exit from one
of its edges (exit edge). Next, the invariant region and the exit
edge are formally defined and the sufficient conditions which
make a region invariant or one of its edges an exit edge are
investigated.

Definition 1 (Invariant region). In the circle CRm and the vector
field _x ¼ gðxÞ; g : R2 ! R2, the region Ri,j is said to be invariant
region, if "x(0) 2 int(Ri,j), and x(t) 2 Ri,j for t P 0.

The following theorem and corollary show how we can con-
struct an invariant region:

Theorem 1. Given a continuous multi-affine vector field
_x ¼ gðxÞ; g : R2 ! R2, defined over the region Ri,j, the systems trajec-
tory cannot leave the region through the edge Ep,q with the outer
normal np,q if np,q(y)T�g(vm) < 0, for all vm 2 {vp,vq} and all y 2 Ep,q.
Proof. According to Corollary 1, 8x 2 Ep;q : gðxÞ ¼
P

vm
kmgðvmÞ;

vm 2 fvp; vqg. Substituting this value of g(x), we will have
np,q(y)T�g(x) = np,q(y)T.

P
vm

kmgðvmÞ ¼
P

vm
km np;qðyÞT � gðvmÞ. Since,

np,q(y)T�g(vm) < 0 for both vm = vp and vm = vq, and all y 2 Ep,q, and
since km P 0 and

P
m2fp;qgkm ¼ 1, it can be concluded that

np,q(y)T.g(x) < 0 for all x, y 2 Ep,q, which means that the trajectories
of the system cannot leave Ri,j through the edge Ep,q. h
Corollary 2 (Sufficient condition for Ri,j to be an invariant
region). For a continuous multi-affine vector field
_x ¼ hðx;uðxÞÞ ¼ gðxÞ; h : R2 ! R2; Ri;j is an invariant region if there
exists a controller u : R2 ! U # R2, such that for each vertex vm,
m = 0, 1, 2, 3, with incident edges Es

q 2 EðvmÞ, and corresponding outer
normals ns

q; q 2 fr; hg and s 2 {+,�}:

Um ¼ U \ u 2 R2jns
qðyÞ

T � gðvmÞ < 0;
n

for all Es
q 2 EðvmÞ; and for all y 2 Es

q

o
– ;; ð6Þ

where the convex set U represents the velocity bounds.
Proof. If (6) holds true, since Um – ;, there exists um 2 Um, m = 0, 1,
2, 3, such that based on Theorem 2, the value of the vector field at
the vertices does not let the trajectory of the system leave the
region from any of the edges. h

The exit edge then can be defined as follows:

Definition 2 (Exit edge). In the circle CRm and the vector field
_x ¼ gðxÞ; g : R2 ! R2, the edge Es

q; q 2 fr; hg and s 2 {+,�}, is said
to be an exit edge, if "x(0) 2 int(Ri,j), there exist s(finite) > 0 and
sd > 0 satisfying:

1. x(t) 2 int(Ri,j) for t 2 [0,s),
2. xðtÞ 2 Es

q for t ¼ s,
3. x(t) R Ri,j for t 2 (s,s + sd).

The following theorem shows the way that we can construct an
exit edge:

Theorem 2 (Sufficient condition for an exit edge). For a continuous
multi-affine vector field _x ¼ hðx;uðxÞÞ ¼ gðxÞ; g : R2 ! R2, the edge
Es

q with the outer normal ns
q, q 2 fr; hg and s 2 {+,�}, is an exit edge if

there exists a controller u : R2 ! U # R2, such that for each vertex vm,
m = 0, 1, 2, 3, the following property holds true:
Um ¼U \ u 2 R2j ns
qðyÞ

T � gðvmÞ > 0; for all vm and all y 2 Es
q

n o
\

u 2 R2jns0
q0 ðyÞ

T � gðvmÞ < 0; for all vm 2 V Es0

q0

� �
with

n
Es0

q0 – Es
q and all y 2 Es0

q0

o
– ;; ð7Þ

where the convex set U represents the velocity bounds.
Proof. If Um – ;, there exists um 2 Um, such that
ns0

q0 ðyÞ
T � gðvmÞ < 0, for all Es0

q0 – Es
q and all y 2 Es0

q0 . Therefore, based
on Theorem 1, the trajectories of the system do not leave Ri,j

through the non-exit edges. On the other hand, we have
ns

qðyÞ
T � gðvmÞ > 0 for all vm and all y 2 Es

q. According to Proposi-
tion 1, for the multi-affine function g, there exist km such that
8x 2 Ri;j : gðxÞ ¼

P
mkmgðvmÞ; m ¼ 0; 1; 2; 3. Since km P 0 andP

mkm ¼ 1, then ns
qðyÞ

T � kmgðvmÞP 0 for all vm and all y 2 Es
q. This

will lead to have ns
qðyÞ

T � gðxÞ > 0 for all x 2 Ri;j, which means that
the trajectories of the system have a strictly positive velocity in
the direction of ns

q steering them to leave Ri,j through the edge
Es

q. h

Solving the inequalities given in Theorem 2 and Corollary 2,
for the system dynamics given in (1), the following control val-
ues at the vertices of the region Ri,j can make it an invariant re-
gion or can make one of its edges an exit edge. For the invariant
controller, the control label is C0 and the control values at the
vertices are:

uðv0Þ ¼ 1\ hj þ 0:5 hj � hjþ1 þ p
2

�� ��� �
uðv1Þ ¼ 1\ hj þ p� 0:5 hj � hjþ1 þ p

2

�� ��� �
uðv2Þ ¼ 1\ hjþ1 � 0:5 hj � hjþ1 þ p

2

�� ��� �
uðv3Þ ¼ 1\ hjþ1 þ pþ 0:5 hj � hjþ1 þ p

2

�� ��� �

8>>>><
>>>>:

To have the edge Eþr as the exit edge, the control label is Cþr and
the control values at the vertices are:

uðv0Þ ¼ uðv1Þ ¼ 1\ hj þ 0:5 hj � hjþ1 þ p
2

�� ��� �
uðv2Þ ¼ uðv3Þ ¼ 1\ hjþ1 � 0:5 hj � hjþ1 þ p

2

�� ��� �
(

To have the edge E�r as the exit edge, the control label is C�r and
the control values at the vertices are:

uðv0Þ ¼ uðv1Þ ¼ 1\ hj þ p� 0:5 hj � hjþ1 þ p
2

�� ��� �
uðv2Þ ¼ uðv3Þ ¼ 1\ hjþ1 þ pþ 0:5 hj � hjþ1 þ p

2

�� ��� �
(

To have the edge Eþh as the exit edge, the control label is Cþh and
the control values at the vertices are:

uðv0Þ ¼ 1\ hj þ 0:5 hj � hjþ1 þ p
2

�� ��� �
uðv1Þ ¼ 1\ hj þ p� 0:5 hj � hjþ1 þ p

2

�� ��� �
uðv2Þ ¼ 1\ hjþ1 þ 0:5 hj � hjþ1 þ p

2

�� ��� �
uðv3Þ ¼ 1\ hjþ1 þ p� 0:5 hj � hjþ1 þ p

2

�� ��� �

8>>>><
>>>>:

To have the edge E�h as the exit edge, the control label is C�h and
the control values at the vertices are:

uðv0Þ ¼ 1\ hj � 0:5 hj � hjþ1 þ p
2

�� ��� �
uðv1Þ ¼ 1\ hj þ pþ 0:5 hj � hjþ1 þ p

2

�� ��� �
uðv2Þ ¼ 1\ hjþ1 � 0:5 hj � hjþ1 þ p

2

�� ��� �
uðv3Þ ¼ 1\ hjþ1 þ pþ 0:5 hj � hjþ1 þ p

2

�� ��� �

8>>>><
>>>>:

Now, the responsibility of the actuator is to relate the discrete
symbol ud 2 fC0;C

�
r ;C

þ
r ;C

þ
h ;C

�
h g to the continuous control signal

uc(x). Using the properties of multi-affine functions as described
in Proposition 1, the control signal can be constructed as



Fig. 3. (a) Vertices of the element Ri,j. (b) Edges of the element Ri,j. (c) Outer normals of the element Ri,j.

Fig. 4. Linking the discrete supervisor to the plant via an interface layer.

Fig. 5. The formation supervisor.
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ucðxÞ ¼ f ðx;udÞ ¼
P3

m¼0kmðxÞuðvmÞ, where u(vm), m = 0, . . . , 3, are
the above listed control values at the vertices corresponding to
the control label ud.
4.2. The supervisor layer

Using these control labels, a discrete supervisor is designed for a
follower UAV involved in a formation mission. In this supervisor,
shown in Fig. 5, when a detection event di,j appears, the supervisor
will be informed that the system has entered the new region Ri,j. If
the detection event is d1,j, it means that the system has entered the
first circle of the partitioned space and the formation is achieved.
Hence, to keep the formation, the system should remain in this re-
gion for the rest of the mission. In this case, keeping the formation
can be done by activating the controller C0. If the trajectory has not
reached one of the partitions in the first circle (i > 1), then the
event C�r should be activated to move towards the origin. Mean-
while if the leader is located on the way of the follower towards
the origin, the event Ob will be generated which alarms the super-
visor about the collision. To avoid the collision, it is sufficient to
drive the follower’s path to turn anticlockwise and then, resume
Fig. 6. The control values at the vertices when the system trajectory transits fro
the mission. Hence, after observing the event Ob, the supervisor
activates the event Cþh .
5. Implementation issues

5.1. Smooth control

When the system trajectory enters a new region, a new dis-
crete command will be generated. This may cause the discontinu-
ity in the generated control signal to be applied to the lower
levels of the control structure. For example, Fig. 6 shows a case
that the control command C�r has pushed the system’s trajectory
to transit from the region R1 to the region R2. After reaching the
region R2, the control command has changed from C�r to Cþh . Since
the generated continuous control signal is a multi-affine function,
based on Corollary 1, the control value at any point on the edges
is determined by the control values at its vertices. In this
example, u(v0(R1)) =u(v1(R2)) but u(v2(R1)) – u(v3(R2)). Since, the
control values at the vertices of the common edge between R1

and R2 changes, there is a jump on the generated continuous
m region R1 to region R2 and the discrete command changes from C�r to Cþh .



Fig. 7. The schematic of the scenario with a real follower and a virtual fixed leader
(Scenario 1).
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control signal. Next theorem shows how we can resolve this
problem.

Theorem 3. Let the command Cs
q steers the system’s trajectory from

the region Ri,j to the region Ri0 ,j0 and then, the supervisor issues the new
command Cs0

q0 . For this transition, the multi-affine controller
uðxÞ ¼

P
vm2Vc

km�hðuðvmÞnew; uðvmÞoldÞ þ
P

vm2Vn
kmðuðvmÞÞ provides

a smooth control signal, and drives all the system’s trajectories to exit
from the exit edge Es0

q0 . Here km, m = 0, 1, 2, 3, are given in Proposition 1,
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Fig. 9. Control signals of the fo
Vn is the set of vertices whose control values do not change due to the
transition, and Vc is the set of vertices whose control values change
after the system’s trajectory enters the region Ri0 ,j0. For these vertices,
u(vm)old and u(vm)new are the control values at the vertex vm before
and after transiting to Ri0 ,j0, respectively. The function ⁄provides a
smooth rotation from u(vm)old to u(vm)new and it can be presented as

�hðuðvmÞnew;uðvmÞoldÞ ¼
rm\

t
Mt hmnew þ 1� t

Mt

� �
hmold

� �
t < Dt

rm\hmnew t P Dt

(

where uðvmÞnew ¼ rm\hmnew ; uðvmÞold ¼ rm\hmold
. Also, Dt is the transi-

tion time.
Proof. Let Cs
q ¼ C�r and Cs0

q0 ¼ Cþh . As shown in Fig. 6, for this
sequence of control commands, after transiting from Ri,j to Ri0 ,j0,
the control value at the vertex v3 changes from u(v3)old to u(v3)new,
and for the other vertices vm, m = 0, 1, 2, there is no jump on the
control values.

From the definition of the transition rule, ⁄, since for the whole
transition time, the control values at the vertices satisfy the
conditions of Theorem 1, the system’s trajectory cannot leave
the region through the non-exit edges E0,2, E0,1, E1,3. Also, at the
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Fig. 11. The schematic of the scenario with for a leader–follower case tracking a
line (Scenario 2).

Fig. 12. The position of the UAVs in the x–y plane in Scenario 2.

Fig. 10. The leader position in the relative frame in Scenario 1.
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beginning of the transition mode, the control values at the vertex
v3 does not satisfy the conditions of Theorem 2, and hence, it
cannot be concluded that the system’s trajectory leaves the region
through E2,3. But, at some time, u(v3) will eventually reach u(v3)new,
and the configuration of the vector field at the vertices will satisfy
the conditions of Theorem 2 so that it can be guaranteed that the
system’s trajectory for sure leaves the region Ri0 , j0 through the edge
E2,3, while there is no jump at the value of the control signal due to
the smooth transition of the control values at the vertices. The
same reasoning can be done for the other sequences of the control
commands. h
Remark 2. In [14], it was shown that the polar abstracted model is
bisimialr to the original system meaning that for any transition in
the abstracted model, there is a transition in the original system
and vice versa. From Theorem 3, it can be immediately concluded
that the result is also valid for the case of smooth transition mech-
anism. This is due to the fact that based on Theorem 3, all of the
trajectories finally will leave the region through the desired exit
edge and the smooth transition mechanism does not let the sys-
tem’s trajectories to exit from non-exit edges, leading to the fol-
lowing corollary:

Corollary 3.

The smooth transition mechanism introduced in Theorem 3
preserves the bisimilarity relation between the abstracted model and
the original hybrid system.
5.2. Time sequencing of the events

In the proposed framework, we assume that the discrete control
signals, C0; Cþr ; C�r ; Cþh , or C�h , can be applied after entering a new
region, unless a collision alarm be generated which requires an
immediate reaction. But, the question is that, transiting to a new
region, when should exactly the new control signals be applied
to the system?.
Indeed, from practical reasons, the detector cannot recognize
entering a region until the system trajectory crosses the region’s
boundary. This is why in the definition of the exit edge we have
considered a time delay sd > 0. Only after this time delay, the con-
troller can be ensured that the system trajectory has transited to a
new region and hence, a new actuation event C0; Cþr ; C�r ; Cþh , or
C�h , can be generated based on the desired behavior. The time de-
lay, sd > 0, could be very small but cannot be zero. This guarantees
that the resulting model is not Zeno [22], meaning that the number
of discrete transitions in a finite time is finite.

More precisely, as described in Section 4.2, when the last visited
region is Ri,j and the supervisor detects an event di0 ;j0 , it means that
the system trajectory has entered the new region Ri0 ;j0 . Then, a con-
trol command Cs

q will be generated which pushes the system tra-
jectory to enter another region Ri00 ;j00 . Again, when the system’s
trajectory crosses the boundaries of the region Ri00 ;j00 , this will cause
the event di00 ;j00 to appear. Hence, for the successive events
di0 ;j0 ; Cs

q; di00 ;j00 , we will have:

tðdi0 ;j0 Þ < tðCs
qÞ < tðdi00 ;j00 Þ: ð8Þ

To consider the time delay sd > 0, the sequence of the events
should respect the following condition:

tðCs
qÞP tðdi0 ;j0 Þ þ sd: ð9Þ
6. Implementation results

To verify the algorithm, we have conducted several flight tests.
In the first scenario, to monitor reaching the formation behavior
of the UAVs, the follower should reach the desired position with
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Fig. 14. Control signals of the follower UAV in Scenario 2.

Fig. 15. The state variable of the leader in Scenario 2.

Fig. 13. The state variables of the follower in Scenario 2.
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Fig. 17. The schematic of the scenario with for a leader–follower case tracking a
circle (Scenario 3).

Fig. 16. The distance of the follower from the desired position in Scenario 2.
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respect to a fixed leader. In this test the control horizon Rm = 50 m,
nr = 10, and nh = 20. The follower is initially located at a point which
has a relative distance of (dx,dy) = (�40,�5) with respect to the de-
sired position as shown in Fig. 7. The follower
state variables and control signals are shown in Fig. 8 and
Fig. 9, respectively. The follower UAV position in the relative frame
is shown in Fig. 10. As it can be seen the follower UAV has started
from the region R9,11 and finally has reached the region R1,11 which
is located in the first circle and hence, the formation has been
achieved.

In the second scenario, to monitor how the follower is able to
maintain the achieved formation, the leader tracks a line path,
and the follower should reach and keep the formation. In this test,
the control horizon Rm is 50 m, nr = 10, and nh = 20. The follower is
initially located at a point which has a relative distance of
(dx,dy) = (�17.8,11.4) with respect to the desired position and
the distance between the desired position and the leader is
(dx,dy) = (�5,�15) as shown in Fig. 11.

The position of the UAVs in x–y plane is shown in Fig. 12. The
follower state variables and control signals are shown in Figs. 13
and 14, respectively. The state variables of the leader are shown
in Fig. 15. The relative distance of the follower UAV from the de-
sired position is shown in Fig. 16. As it can be seen the follower
UAV has finally reached the first circle after 17 s and then, it has
been able to maintain the formation.

In the third flight test, the leader path is a circle which is a more
complex path. Here, the control horizon Rm is 50 m, nr = 10, and
nh = 20. The follower is initially located at a point which has a relative
distance of (dx,dy) = (�30.5,13.2) with respect to the desired posi-
Fig. 18. The position of the UAVs i
tion and the distance between the desired position and the leader
is (dx,dy) = (�5,�15) as shown in Fig. 17. In this test the leader tracks
a circle path with a diameter of 40 m. After a while, the follower
reaches the formation and can keep it for the rest of the mission.
The position of the UAVs in x–y plane is shown in Fig. 18. The follower
state variables and control signals are shown in Figs. 19 and 20,
respectively. The state variables of the leader during the mission is
shown in Fig. 21. The relative distance of follower UAV from the de-
sired position is shown in Fig. 22. As it can be seen the follower UAV
has finally reached the first circle and the formation has been
achieved. The video for the second and third experiments is available
at uav.ece.nus.edu.sg/video/2dHybridFormation.mpg.
n the x–y plane in Scenario 3.

http://


Fig. 21. The state variables of the leader in Scenario 3.

Fig. 20. Control signals of the follower UAV in Scenario 3.

Fig. 19. The state variables of the follower in Scenario 3.
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6.1. Extension to the 3-D space

In [23], the result is extended to the 3-D space. For the 3-D case,
the DES model is different and accordingly, the designed supervisor
need to be redesign; however, the procedure for the design and
implementation of the supervisor is similar to what was discussed
Fig. 24. The relative distance between the UAV

Fig. 23. The position of the UAVs in th

Fig. 22. The distance of the follower from
here. For this case, a flight test is conducted in which the initial rel-
ative distance between the follower and the desired position is
(dx,dy,dz) = (�16.1,22.5,�14.7), and the distance between the de-
sired position and the desired position is (dx,dy,dz) = (15,10,10).
The UAVs’ position are shown in Fig. 23. The projection of the relative
distance onto the x–y plane is shown in Fig. 24. In this experiment,
s projected onto x–y plane in Scenario 3.

e actual flight test in Scenario 3.

the desired position in Scenario 3.
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after a while, the formation has been reached and it has been
successfully maintained. A video of this experiment is available at:
uav.ece.nus.edu.sg/video/hybridformation.mpg.
7. Conclusion

In this paper a bumpless hybrid supervisory control algorithm
was applied to the formation control of the UAVs. The method
was based on polar abstraction of the motion space and the use
of properties of multi-affine functions over the partitioned space.
The implementation issues for this control method were investi-
gated. To implement the algorithm, an interface layer was intro-
duced which connects the discrete supervisor to the regulation
layer of the UAV. This interface layer is composed of two main
blocks: the detection block to generate the detection events based
on the plant continuous signals; and the actuator block to convert
discrete commands of the supervisor to a continuous form, appli-
cable to the plant. Also, a method was introduced to smoothly gen-
erate control signals during the transition through the partitioned
regions. The implementation issues were discussed in details. Sev-
eral actual flight tests were conducted to verify the algorithm. The
proposed formation algorithm can be extended to a multi-follower
case, however, it is required to develop a more sophisticated colli-
sion avoidance mechanism as we will consider this issue as the fu-
ture direction of this research.
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