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Optimal sensor placement for target localisation and tracking in 2D and 3D
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This paper analytically characterises optimal sensor placements for target localisation and tracking in 2D and 3D. Three
types of sensors are considered: bearing-only, range-only and received-signal-strength. The optimal placement problems
of the three sensor types are formulated as an identical parameter optimisation problem and consequently analysed in a
unified framework. Recently developed frame theory is applied to the optimality analysis. We prove necessary and sufficient
conditions for optimal placements in 2D and 3D. A number of important analytical properties of optimal placements are
further explored. In order to verify the analytical analysis, we present a gradient control law that can numerically construct
generic optimal placements.
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1. Introduction

Target localisation and tracking using sensor networks has
become an active research area in recent years. When local-
ising a target from noisy measurements of multiple sensors,
the sensor placement can significantly affect the estimation
accuracy. The term sensor placement as used here refers to
the relative sensor-target geometry. This paper will address
the optimal sensor placements that minimise the target es-
timation uncertainty. Optimal sensor placement problems
are not only of theoretical interest but also of significant
practical value.

In the literature, there are generally two kinds of
mathematical formulations for optimal sensor place-
ment problems. One is optimal control (Miller & Rubi-
novich, 2003; Oshman & Davidson, 1999; Ousingsawat &
Campbell, 2007; Sinclair, Prazenica, & Jeffcoat, 2008)
and the other is parameter optimisation (Bishop, Fidan,
Anderson, Doğançay, & Pathirana, 2010; Bishop, Fidan,
Anderson, Pathirana, & Doğançay, 2007; Bishop & Jens-
felt, 2009; Doğançay, 2007; Doğançay & Hmam, 2008;
Isaacs, Klein, & Hespanha, 2009; Martı́nez & Bullo, 2006;
Moreno-Salinas, Pascoal, & Aranda, 2011; Zhang, 1995).

The optimal control formulations are usually adopted
for cooperative path planning problems (Oshman &
Davidson, 1999; Ousingsawat & Campbell, 2007; Sinclair
et al., 2008), the aim of which is to estimate the target po-
sition on one hand and plan the path of sensor platforms
to minimise the estimation uncertainty on the other hand.
These problems are also referred as simultaneous localisa-
tion and planning (SLAP) (Sinclair et al., 2008). In a SLAP
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problem, the target motion model and the sensor measure-
ment model are respectively considered as the process and
measurement models. Then the Kalman filter is usually
applied to estimate the target position and to characterise
the estimation variance. In order to minimise the dynamic
estimation variance, an optimal control problem would be
formulated. The disadvantage of this kind of formulation
is that the optimal control with various constraints gener-
ally can only be solved by numerical methods. Analytical
properties usually cannot be obtained.

Optimal sensor placement problems are also widely for-
mulated as parameter optimisation problems (Bishop et al.,
2007, 2010; Bishop & Jensfelt, 2009; Doğançay, 2007;
Doğançay & Hmam, 2008; Isaacs et al., 2009; Martı́nez
& Bullo, 2006; Moreno-Salinas et al., 2011; Zhang, 1995).
The parameter optimisation formulations assume that an
initial estimate of the target position has already been ob-
tained in other ways. Based on this initial estimate, the
sensor positions are the parameters to be determined such
that the target estimation uncertainty can be minimised.
The target estimation uncertainty is usually characterised
by the Fisher information matrix (FIM). The FIM is the
inverse of the Cramer–Rao lower bound (CRLB), which
is the minimum achievable estimation variance. An unbi-
ased estimator that achieves the CRLB is called efficient.
Hence an optimal placement, which optimises a function
(such as the determinant) of the FIM, can be interpreted as
maximising the target information gathered by the sensors
or as minimising the estimation variance of any efficient
estimator.

C© 2013 Taylor & Francis
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1688 S. Zhao et al.

In contrast to optimal control formulations, parame-
ter optimisation formulations can generally be solved an-
alytically. The analytical solutions are important because
they can provide valuable insights into the impact of sen-
sor placements on target localisation/tracking uncertainty.
Motivated by this, we adopt the parameter optimisation for-
mulation to analyse optimal placements in this work. Our
aim is to analytically determine the optimal sensor-target
geometry based on an initial estimate of the target posi-
tion. In practice, the initial estimate can be obtained by
using, for example, Kalman filter. The optimal placement
deployed based on the initial estimate is supposed to be
able to improve the consequent target localisation/tracking
accuracy. It should be noted that we will not discuss tar-
get estimation or practical applications of optimal sensor
placements in this paper. Interested readers may refer to
Martı́nez and Bullo (2006, Section 4) for a comprehensive
example that illustrates how optimal sensor placements can
be applied to cooperative target tracking.

Until now, most of the existing results have been only
concerned with optimal sensor placements in 2D space
(Bishop et al., 2007, 2010; Bishop & Jensfelt, 2009;
Doğançay & Hmam, 2008; Isaacs et al., 2009; Martı́nez &
Bullo, 2006; Zhang, 1995). Very few studies have tackled
3D cases (Moreno-Salinas et al., 2011). Analytical char-
acterisation of generic optimal sensor placements in 3D is
still an open problem. In this paper, we will extend the re-
sults in Bishop et al. (2010), Doğançay and Hmam (2008),
Martı́nez and Bullo (2006) and Bishop and Jensfelt (2009)
from 2D to 3D. The extension is non-trivial. Maximising
the determinant of the FIM has been widely adopted as
the criterion for optimal placements in 2D. This criterion,
however, cannot be directly applied to 3D cases because
the determinant of the FIM is hardly analytically tractable
in 3D cases. Motivated by this, we propose a new criterion
for optimal placements, which enables us to analytically
characterise optimal placements in 2D and 3D. Our analy-
sis based on the new criterion includes the existing results
on 2D optimal placements as special cases.

The existing work on optimal sensor placement has ad-
dressed many sensor types such as bearing-only (Bishop
et al., 2010; Doğançay & Hmam, 2008; Zhao, Chen,
& Lee, 2012), range-only (Bishop et al., 2010; Jourdan
& Roy, 2006; Martı́nez & Bullo, 2006), received-signal-
strength (RSS) (Bishop & Jensfelt, 2009), time-of-arrival
(TOA) (Bishop et al., 2007, 2010), time-difference-of-
arrival (TDOA) (Bishop et al., 2010; Isaacs et al., 2009)
and Doppler (Bishop & Smith, 2010). In this paper, we con-
sider three sensor types: bearing-only, range-only and RSS.
The three sensor types have been analysed individually in
the literature. In our work, we present a unified framework
for analysing the optimal placements for the three sensor
types. More specifically, we propose a new optimality crite-
rion for optimal placements, based on which the objective
functions for the three sensor types will be the same. Hence

their optimal placements can be analysed in a unified way.
Moreover, it is notable that some researchers have stud-
ied optimal placements of heterogeneous sensor networks
which contain different sensor types (Meng, Xie, & Xiao,
in press; Yang, Kaplan, Blasch, & Bakich, 2011). Our work
only considers homogeneous sensor networks that contain
one single type of sensors. But we do not assume the sensor
measurement qualities (characterised by noise variances) to
be the same.

By employing recently developed frame theory, we will
prove necessary and sufficient conditions for optimal place-
ments in 2D and 3D. Frames provide a redundant and robust
way for representing signals and are widely used in sig-
nal processing. One may refer to Kovačević and Chebira
(2007a, 2007b) for an introduction to frames. It might
be interesting to ask why frames arise in optimal sensor
placement problems. This question can be loosely answered
from the point of view of redundancy. It is pointed out by
Kovačević and Chebira (2007a): ‘Why and where would
one use frames? The answer is obvious: anywhere where
redundancy is a must’. In our work, the redundancy can be
interpreted as the ratio between the number of sensors and
the space dimension. When the sensor number equals the
space dimension, there is no redundancy in the system, then
we can prove the necessary and sufficient condition of opti-
mal placement without using frames. But when the sensor
number is larger than the space dimension, our optimality
analysis will heavily rely on frame theory.

The paper is organised as follows. Section 2 introduces
preliminaries to frame theory. Section 3 presents a unified
mathematical formulation for optimal placement problems
of bearing-only, range-only and RSS sensors in 2D and 3D.
In Section 4, we present necessary and sufficient condi-
tions for optimal placements. Section 5 further explores a
number of important properties of optimal placements. In
Section 6, a gradient control law is proposed to numerically
verify our analytical analysis. Conclusions are drawn in
Section 7.

2. Preliminaries to frame theory

Frames can be defined in any Hilbert space. Here we are
only interested in d-dimensional Euclidean space R

d with
d ≥ 2. Let ‖·‖ be the Euclidean norm of a vector or the
Frobenius norm of a matrix. As shown by Benedetto and
Fickus (2003), Casazza, Fickus, Kovac̆ević, Leon, and
Tremain (2006) and Kovačević and Chebira (2007a, 2007b),
a set of vectors {ϕi}ni=1 in R

d (n ≥ d) is called a frame if
there exist constants 0 < a ≤ b < + ∞ so that for all
x ∈ R

d

a‖x‖2 ≤
n∑

i=1

〈x, ϕi〉2 ≤ b‖x‖2, (1)
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where 〈 ·, ·〉 denotes the inner product of two vectors. The
constants a and b are called the frame bounds. A frame
{ϕi}ni=1 is called unit-norm if ‖ϕi‖ = 1 for all i ∈ {1, . . . ,
n}. Denote � = [ϕ1, . . . , ϕn] ∈ R

d×n. Because 〈x, ϕi〉2 =
(xT ϕi)2 = xT ϕiϕ

T
i x, inequality (1) can be rewritten as

a‖x‖2 ≤ xT ��T x ≤ b‖x‖2,

where the matrix ��T = ∑n
i=1 ϕiϕ

T
i is called the frame op-

erator. The frame bounds a and b obviously are the smallest
and largest eigenvalues of ��T, respectively. Since a > 0,
��T is positive definite and hence � is of full row rank.
Therefore, the frame {ϕi}ni=1 spans R

d . It is well known that
d vectors in R

d form a basis if they span R
d . Frame es-

sentially is a generalisation of the concept of basis. Unlike
a basis, a frame have n − d redundant vectors. The con-
stant n/d is referred as the redundancy of the system. When
n/d = 1, a frame would degenerate to a basis.

Tight frame is a particularly important concept in frame
theory. A frame is tight when a = b. From inequality (1), it
is easy to see the frame {ϕi}ni=1 is tight when

n∑
i=1

ϕiϕ
T
i = aId . (2)

Taking trace on both sides of Equation (2) yields a =∑n
i=1 ‖ϕi‖2/d. It is an important and fundamental prob-

lem in frame theory to construct a tight frame {ϕi}ni=1 that
solves Equation (2) with specified norms. This problem is
also recognised as notoriously difficult (Casazza, Fickus, &
Mixon, 2012). One approach to this problem is to charac-
terise tight frames as the minimisers of the frame potential

FP
({ϕi}ni=1

) =
n∑

i=1

n∑
j=1

(
ϕT

i ϕj

)2
. (3)

Frame potential was first proposed by Benedetto and Fickus
(2003) for unit-norm frames, and then generalised by
Casazza et al. (2006) for frames with arbitrary norms.

We can find tight frames by minimising the frame po-
tential. The following concept of irregularity is crucial
for characterising the minimisers of the frame potential
(Casazza et al., 2006; Kovačević and Chebira, 2007a).

Definition 2.1 (Irregularity): For any positive non-
increasing sequence {ci}ni=1 with c1 ≥ . . . ≥ cn > 0, and
any integer d satisfying 1 ≤ d ≤ n, denote k0 as the smallest
non-negative integer k for which

c2
k+1 ≤ 1

d − k

n∑
i=k+1

c2
i . (4)

The integer k0 is called the irregularity of {ci}ni=1 with re-
spect to d.

Remark 1: The irregularity of a sequence is evaluated with
respect to a particular positive integer d. The irregularity
of a given sequence may be different when evaluated with
respect to different positive integers. In this paper, we will
omit mentioning this integer when the context is clear.

Because the index k = d − 1 always makes
inequality (4) hold, the irregularity k0 always exists and
satisfies

0 ≤ k0 ≤ d − 1.

When k0 = 0, inequality (4) degenerates to the fundamental
inequality (Casazza et al., 2006)

max
j=1,...,n

c2
j ≤ 1

d

n∑
i=1

c2
i . (5)

In this paper we call the sequence {ci}ni=1 regular when k0 =
0, and irregular when k0 �= 0. The fundamental inequality
(5) intuitively implies: a sequence is regular when no ele-
ment is much larger than the others. Next we show several
examples to illustrate the concept of irregularity.

Example 2.2: Consider a sequence {ci}ni=1 with c1 = . . .

= cn = c and any d ≤ n. The fundamental inequality (5)
holds because 1/d

∑n
i=1 c2

i = nc2/d ≥ c2. Thus {ci}ni=1 is
regular with respect to any integer d ≤ n. This result will
be frequently used in the sequel.

Example 2.3: Consider a sequence {ci}4
i=1 = {10, 1, 1, 1}

and d = 3. Note the feature of this sequence is that one
element is much larger than the others. Because 102 >

1/3(102 + 1 + 1 + 1), the sequence is irregular with
respect to d = 3. In order to determine the irregularity k0,
we need to further check if {ci}4

i=2 = {1, 1, 1} is regular
with respect to d − 1 = 2. Since the elements of {ci}4

i=2
equal to each other, {ci}4

i=2 is regular with respect to 2 as
shown in Example 2.2. Hence the irregularity of {ci}4

i=1
with respect to d = 3 is k0 = 1. This example illustrates one
important result: a sequence is irregular if certain element
is much larger than the others.

Example 2.4: Consider a sequence {ci}4
i=1 = {10, 10, 1,

1} and d = 2 or 3. When d = 2, we have 102 < 1/2(102 +
102 + 1 + 1). Hence {ci}4

i=1 is regular with respect to d =
2. When d = 3, we have 102 > 1/3(102 + 102 + 1 + 1),
102 > 1/2(102 + 1 + 1) and 1 < 1/1(1 + 1). Hence {ci}4

i=1
is irregular with respect to d = 3 and the irregularity is k0 =
2. This example shows that a sequence may be regular with
respect to one integer but irregular with respect to another.

The minimisers of the frame potential in Equation (3)
are characterised by the following lemma (Casazza et al.,
2006), which will be used to prove the necessary and suffi-
cient conditions of optimal placements.
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1690 S. Zhao et al.

Lemma 2.5: In R
d , given a positive non-increasing se-

quence {ci}ni=1 with irregularity as k0, if the norms of the
frame {ϕi}ni=1 are specified as ‖ϕi‖ = ci for all i ∈ {1, . . . ,
n}, any minimiser of the frame potential in Equation (3) is
of the form

{ϕi}ni=1 = {ϕi}k0
i=1 ∪ {ϕi}ni=k0+1,

where {ϕi}k0
i=1 is an orthogonal set, and {ϕi}ni=k0+1 is a tight

frame in the orthogonal complement of the span of {ϕi}k0
i=1.

Any local minimiser is also a global minimiser.

From Lemma 2.5, a minimiser of the frame potential
consists of an orthogonal set {ϕi}k0

i=1 and a tight frame
{ϕi}ni=k0+1. The partition of the two sets is determined by
the irregularity of the specified frame norms {ci}ni=1. When
the irregularity k0 = 0, it is clear that a minimiser of the
frame potential is a tight frame. As a corollary of Lemma
2.5, the following result (Casazza et al., 2006) gives the
existence condition of the solutions to Equation (2).

Lemma 2.6: In R
d , given a positive sequence {ci}ni=1, there

exists a tight frame {ϕi}ni=1 with ‖ϕi‖ = ci for all i ∈ {1, . . . ,
n} solving Equation (2) if and only if {ci}ni=1 is regular.

3. Problem formulation

Consider one target and n sensors in R
d (d = 2 or 3 and n ≥

d). The n sensors are of one of the following sensor types:
bearing-only, range-only and RSS. Sensor networks with
mixed sensor types are not considered in this paper. Fol-
lowing Bishop et al. (2010), Doğançay and Hmam (2008),
Martı́nez and Bullo (2006) and Bishop and Jensfelt (2009),
we assume that an initial target position estimate p ∈ R

d is
available. The optimal placement will be determined based
on this initial estimate. Denote the position of sensor i as
si ∈ R

d , i ∈ {1, . . . , n}. Then ri = si − p denotes the
position of sensor i relative to the target. The sensor-target
placement can be fully described by {ri}ni=1. Our aim is to
determine the optimal {ri}ni=1 such that certain objective
function can be optimised. The distance between sensor i

and the target is given by ‖ri‖. The unit-length vector

gi = ri

‖ri‖

represents the bearing of sensor i relative to the target.

3.1. Sensor measurement model and FIM

For any sensor type in Table 1, the measurement model of
sensor i can be expressed as

zi = hi(ri) + vi,

where zi ∈ R
m denotes the measurement of sensor i, the

function hi(ri) : R
d → R

m is determined by the sensor type
as shown in Table 1 and vi ∈ R

m is the additive measure-
ment noise. We assume vi to be a zero-mean Gaussian noise
with covariance as �i = σ 2

i Im ∈ R
m×m, where Im denotes

the m × m identity matrix. By further assuming the mea-
surement noises of different sensors are uncorrelated, the
FIM given by n sensors is expressed as

F =
n∑

i=1

(
∂hi

∂p

)T

�−1
i

∂hi

∂p
, (6)

where ∂hi/∂p denotes the Jacobian of hi(ri) = hi(si − p) with
respect to p. For a detailed derivation of the FIM formula
in Equation (6), we refer to Bishop et al. (2010, Section 3).

The measurement models of bearing-only, range-only
and RSS sensors are given in Table 1. The measurement
of a bearing-only sensor is conventionally modelled as one
angle (azimuth) in 2D or two angles (azimuth and alti-
tude) in 3D. The drawback of this kind of model is that the
model complexity increases dramatically as the dimension
increases. As a result, this conventional model is not suit-
able for analysing 3D optimal placements. Note that a unit-
length vector essentially characterises a bearing and is very
suitable to represent a bearing-only measurement. Thus we
model the measurement of a bearing-only sensor as a unit-
length vector pointing from the target to the sensor. As will

Table 1. Measurement models and FIMs of the three sensor types.

Sensor type Measurement model FIM Coefficient Optimality criterion

Bearing-only hi(ri) = ri

‖ri‖ F =
n∑

i=1

c2
i (Id − gig

T
i ) ci = 1

σi‖ri‖ min

∥∥∥∥∥
n∑

i=1

c2
i gig

T
i

∥∥∥∥∥
2

Range-only hi(ri) = ‖ri‖ F =
n∑

i=1

c2
i gig

T
i ci = 1

σi

min

∥∥∥∥∥
n∑

i=1

c2
i gig

T
i

∥∥∥∥∥
2

RSS hi(ri) = ln ‖ri‖ F =
n∑

i=1

c2
i gig

T
i ci = 1

σi‖ri‖ min

∥∥∥∥∥
n∑

i=1

c2
i gig

T
i

∥∥∥∥∥
2
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be shown later, this new bearing-only measurement model
will greatly simplify the formulation of optimal bearing-
only placement problems in 2D and 3D. The measurement
model of range-only sensors in Table 1 is the same as the
one given by Bishop et al. (2010). The measurement model
of RSS sensors in Table 1 is a modified version of the one
in Bishop and Jensfelt (2009). Without loss of generality,
we simplify the model in Bishop and Jensfelt (2009) by
omitting certain additive and multiplicative constants.

By substituting hi(ri) into Equation (6), we can calcu-
late the FIMs of the three sensor types. The calculation
is straightforward and omitted here. The FIMs have been
calculated and given in Table 1. As will be shown later,
the coefficients {ci}ni=1 in the FIM are crucial for determin-
ing optimal placements. Following Bishop et al. (2010),
Doğançay and Hmam (2008), Bishop and Jensfelt (2009)
and Martı́nez and Bullo (2006), we assume the coefficient
ci to be arbitrary but fixed. (i) For bearing-only or RSS
sensors, as ci = 1/(σ i‖ri‖), both σ i and ‖ri‖ are assumed
to be fixed. Otherwise, if ‖ri‖ is unconstrained, the place-
ment will be optimal when ‖ri‖ approaches zero. To avoid
this trivial solution, it is reasonable to assume ‖ri‖ to be
fixed. (ii) For range-only sensors, as ci = 1/σ i, only σ i is
assumed to be fixed. Hence ‖ri‖ will have no influence on
the optimality of the placements for range-only sensors.

To end this section, we would like to point out that
the FIMs given in Table 1 are consistent with the ones
given in Bishop et al. (2010), Doğançay and Hmam
(2008), Bishop and Jensfelt (2009) and Martı́nez and Bullo
(2006) in 2D cases. To verify that, we can substitute
gi = [cos θi, sin θi]T ∈ R

2 into the FIMs in Table 1.

3.2. A new criterion for optimal placement

The existing work on optimal senor placement has adopted
various objective functions such as det F , tr F and tr F−1.
These objective functions are respectively referred as D-, T-
and A-optimality criteria in the field of optimal experimen-
tal design (Pukelsheim, 1993). The most popular criterion
used for optimal sensor placement is to maximise det F ,
which can be interpreted as minimising the volume of the
uncertainty ellipsoid characterised by F−1. However, this
criterion is not suitable for analysing optimal placements
in 3D space because det F is hardly analytically tractable
in R

3. In order to analytically characterise optimal place-
ments in R

2 and R
3, we next introduce a new criterion that

is closely related to the conventional one.
Denote {λi}di=1 as the eigenvalues of F. Let λ̄ =

1/d
∑d

i=1 λi . Since
∑d

i=1 λi = tr F , it is easy to examine
that λ̄ is an invariant quantity for any F given in Table 1.
In this paper, we will minimise the new objective func-
tion ‖F − λ̄Id‖2, which is of strong analytical tractabil-
ity. Note ‖F − λ̄Id‖2 = ∑d

i=1(λi − λ̄)2. Hence minimis-
ing ‖F − λ̄Id‖2 actually is to minimise the diversity of the

eigenvalues of F. The following result shows that the new
criterion has a close connection with the conventional one.

Lemma 3.1: For any one of the three sensor types given in
Table 1, we have

det F ≤ λ̄d ,

where the equality holds if and only if

‖F − λ̄Id‖2 = 0.

Proof: For any one of the three sensor types, the FIM F
is symmetric positive (semi) definite. Hence λj is real and
non-negative. From the FIMs shown in Table 1, we have∑d

j=1 λj = tr F = (d − 1)
∑n

i=1 c2
i for bearing-only sen-

sors, and
∑d

j=1 λj = tr F = ∑n
i=1 c2

i for range-only or RSS

sensors. Note {ci}ni=1 is assumed to be fixed. Hence
∑d

j=1 λj

is an invariant quantity. By the inequality of arithmetic and
geometric means, the conventional objective function det F
satisfies

det F =
d∏

j=1

λj ≤
⎛
⎝ 1

d

d∑
j=1

λj

⎞
⎠

d

= λ̄d ,

where the equality holds if and only if λj = λ̄ for all j ∈
{1, . . ., d}, which means

F = λ̄Id ⇐⇒ ‖F − λ̄Id‖2 = 0.

In short, det F is maximised to its upper bound λ̄d if and
only if ‖F − λ̄Id‖2 = 0. �

Loosely speaking, Lemma 3.1 suggests that minimis-
ing ‖F − λ̄Id‖2 is equivalent to maximising det F . We next
further examine the relationship between the new and con-
ventional criteria case by case.

(i) In R
2, we have det F = 1/2((trF)2 − tr (F 2)) =

1/2
(
4λ̄2 − ‖F‖2

)
and ‖F − λ̄I2‖2 =

tr (F − λ̄I2)2 = ‖F‖2 − 2λ̄2, which suggest

‖F − λ̄I2‖2 = −2 det F + 2λ̄2.

Because 2λ̄2 is constant, minimising ‖F − λ̄I2‖2 is
rigorously equivalent to maximising det F in R

2. As
a result, our analysis based on the new criterion will
be consistent with the 2D results in Bishop et al.
(2010), Doğançay and Hmam (2008), Martı́nez and
Bullo (2006) and Bishop and Jensfelt (2009).

(ii) In R
3, if ‖F − λ̄I3‖2 is able to achieve zero, then

det F can be maximised to its upper bound as shown
in Lemma 3.1. In this case the new criterion is still
rigorously equivalent to the conventional one.

(iii) In R
3, ‖F − λ̄I3‖2 is not able to reach zero in cer-

tain irregular cases (see Section 4 for the formal
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definition of irregular). In these cases, det F and
‖F − λ̄I3‖2 may not be optimised simultaneously.
But as will be shown later, the analysis of irregular
cases in R

3 based on the new criterion is a reason-
able extension of the analysis of irregular cases in
R

2.

3.3. Problem statement

We now formally state the optimal sensor placement prob-
lem that we are going to solve.

Problem 3.2: Consider one target and n sensors in R
d (d =

2 or 3 and n ≥ d). The sensors involve only one of the three
sensor types in Table 1. Given arbitrary but fixed positive
coefficients {ci}ni=1, find the optimal placement {g∗

i }ni=1 such
that

{g∗
i }ni=1 = arg min

{gi }ni=1⊂Sd−1

‖F − λ̄Id‖2, (7)

where S
d−1 denotes the unit sphere in R

d .

Remark 2: The sensor-target placement can be fully de-
scribed by {ri}ni=1. Recall ‖ri‖ is assumed to be fixed for
bearing-only or RSS sensors, and ‖ri‖ has no effect on the
placement optimality for range-only sensors. Thus for any
sensor type, the optimal sensor placement can also be fully
described by {gi}ni=1. That means we only need to deter-
mine the optimal sensor-target bearings {g∗

i }ni=1 to obtain
the optimal placement.

Although the FIMs of different sensor types may have
different formulas as shown in Table 1, the following result
shows that substituting the FIMs of the three sensor types
into Equation (7) will lead to an identical objective function.
The following result is important because it enables us to
unify the formulations of optimal sensor placement for the
three sensor types.

Lemma 3.3: Consider one target and n sensors in R
d (d =

2 or 3 and n ≥ d). The sensors involve only one of the three
sensor types in Table 1. The problem defined in Equation
(7) is equivalent to

{g∗
i }ni=1 = arg min

{gi }ni=1⊂Sd−1

‖G‖2 , (8)

where G = ∑n
i=1 c2

i gig
T
i .

Proof: If all sensors are bearing-only, the FIM is
F = ∑n

i=1 c2
i (Id − gig

T
i ) and then λ̄ = 1/d

∑d
j=1 λj =

tr F/d = (d − 1)/d
∑n

i=1 c2
i . Hence

‖F − λ̄Id‖ =
∥∥∥∥∥

n∑
i=1

c2
i (Id − gig

T
i ) − d − 1

d

n∑
i=1

c2
i Id

∥∥∥∥∥
=

∥∥∥∥∥−
n∑

i=1

c2
i gig

T
i + 1

d

n∑
i=1

c2
i Id

∥∥∥∥∥ .

If all sensors are range-only or RSS, the FIM is
F = ∑n

i=1 c2
i gig

T
i and then λ̄ = 1/d

∑d
j=1 λj = tr F/d =

1/d
∑n

i=1 c2
i . Hence

‖F − λ̄Id‖ =
∥∥∥∥∥

n∑
i=1

c2
i gig

T
i − 1

d

n∑
i=1

c2
i Id

∥∥∥∥∥ .

Therefore, for any sensor type in Table 1, the new objective
function can be rewritten as

‖F − λ̄Id‖2 =
∥∥∥∥∥

n∑
i=1

c2
i gig

T
i − 1

d

n∑
i=1

c2
i Id

∥∥∥∥∥
2

= ‖G‖2 − 1

d

(
n∑

i=1

c2
i

)2

. (9)

Because 1/d(
∑n

i=1 c2
i )2 is constant, minimising ‖G‖2 is

equivalent to minimising ‖F − λ̄Id‖2. �
One primary aim of this work is to solve the parameter

optimisation problem (8). It should be noted that we
must clearly know the type of the sensors such that the
coefficients {ci}ni=1 in G can be calculated correctly. Once
{ci}ni=1 are calculated, the sensor types will be transparent
to us. As a consequence, the analysis of optimal sensor
placement in the sequel of the paper will apply to all the
three sensor types.

Remark 3: In this work, we only consider homogeneous
sensor networks. But it is worthwhile noting that Lemma
3.3 actually is also valid for a heterogeneous sensor
network which contains both range-only and RSS sensors.
That is because the FIMs of the two sensor types have the
same formula, and the total FIM would simply be the sum
of the two respective FIMs of range-only and RSS sensors.
As a result, the analysis in the rest of this paper also
applies to heterogeneous sensor networks that contain both
range-only and RSS sensors. In the heterogeneous case,
the coefficient ci should be calculated correctly according
to the type of sensor i.

3.4. Equivalent sensor placements

Before solving Equation (8), we identify a group of place-
ments that result in the same value of ‖G‖2.

Proposition 3.4: The objective function ‖G‖2 is invariant
to the sign of gi for all i ∈ {1, . . ., n} and any orthogonal
transformations over {gi}ni=1.
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Figure 1. Examples of equivalent placements (d = 2, n = 3):
(a) original placement; (b) rotate all sensors about the target 60◦

clockwise; (c) reflect all sensors about the vertical axis and (d)
flipping the sensor s3 about the target.

Proof: First, gig
T
i = (−gi)(−gi)T for all i ∈ {1, . . . ,

n}, hence ‖G‖2 is invariant to the sign of gi. Second,
let U ∈ R

d×d be an orthogonal matrix satisfying UTU
= Id. Applying U to {gi}ni=1 yields {g′

i = Ugi}ni=1. Then
we have G′ = ∑n

i=1 c2
i g

′
i(g

′
i)

T = ∑n
i=1 c2

i (Ugi)(Ugi)T =
UGUT . Since G and G′ are both symmetric, we have
‖G′‖2 = tr (UGUTUGUT) = tr (G2) = ‖G‖2. �

Geometrically speaking, changing the sign of gi means
flipping sensor i about the target, and an orthogonal trans-
formation represents a rotation, reflection or both combined
operation over all sensors. Therefore, Proposition 3.4 im-
plies that these geometric operations cannot affect the value
of ‖G‖2. Furthermore, it is straightforward to examine that
det F is also invariant to these geometric operations. It is
noticed that the invariance to the sign change of gi was
originally recognised in Doğançay and Hmam (2008) for
2D bearing-only sensor placements. By Proposition 3.4, we
define the following equivalence relationship.

Definition 3.5 (Equivalent placements): Given arbitrary
but fixed coefficients {ci}ni=1, two placements {gi}ni=1 and
{g′

i}ni=1 are called equivalent if they are differed by indices
permutation, flipping any sensors about the target, or any
global rotation, reflection or both combined over all sensors.

Due to the equivalence, there always exist an infinite
number of equivalent optimal placements minimising ‖G‖2.
If two optimal placements are equivalent, they lead to the
same objective function value. But the converse statement is
not true in general. In Section 5.3, we will give the condition
under which the converse is true. Examples of 2D equivalent
placements are given in Figure 1.

4. Necessary and sufficient conditions
for optimal placement

In this section, we prove the necessary and sufficient condi-
tions for optimal placements solving Equation (8). Recall
G = ∑n

i=1 c2
i gig

T
i . Then we have

‖G‖2 =
n∑

i=1

n∑
j=1

(cicjg
T
i gj )2

=
n∑

i=1

n∑
j=1

(ϕiϕj )2,

where ϕi = cigi and ‖ϕi‖ = ci for any i ∈ {1, . . . , n}.
The vectors {ϕi}ni=1 actually form a frame in R

d . Then the
objective function ‖G‖2 is the frame potential of {ϕi}ni=1
as shown in Equation (3), and the matrix G is the frame
operator. Furthermore, since ‖ϕi‖ = ci, the coefficient se-
quence {ci}ni=1 will fully determine the minimisers of ‖G‖2.
According to the irregularity of {ci}ni=1, optimal placements
can be categorised as regular and irregular as shown below.

When {ci}ni=1 is regular, the necessary and sufficient
condition of optimal placement is given below. The 2D
version of the following result has been proposed in Bishop
et al. (2010), Doğançay and Hmam (2008) and Bishop and
Jensfelt (2009).

Theorem 4.1 (Regular optimal placement): In R
d with

d = 2 or 3, if the positive coefficient sequence {ci}ni=1 is
regular, then the objective function ‖G‖2 satisfies

‖G‖2 ≥ 1

d

(
n∑

i=1

c2
i

)2

. (10)

The lower bound of ‖G‖2 is achieved if and only if

n∑
i=1

c2
i gig

T
i = 1

d

n∑
i=1

c2
i Id . (11)

Proof: Let {μj }dj=1 be the eigenvalues of G.

Then
∑d

j=1 μj = tr G = ∑n
i=1 c2

i is constant. Let

μ̄ = 1/d
∑d

j=1 μj = 1/d
∑n

i=1 c2
i . It is obvious that

‖G‖2 =
d∑

j=1

μ2
j ≥ dμ̄2 = 1

d

(
n∑

i=1

c2
i

)2

. (12)

The lower bound of ‖G‖2 is achieved if and only if μj =
μ̄ for all j ∈ {1, . . . , d}, which implies G = μ̄Id and
hence Equation (11). By denoting ϕi = cigi, Equation (11)
becomes

∑n
i=1 ϕiϕ

T
i = 1/d

∑n
i=1 c2

i Id which is the same
as Equation (2). Thus a regular optimal placement solving
Equation (11) corresponds to a tight frame. Because {ci}ni=1
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is regular, by Lemma 2.6 there exist optimal placements
solving Equation (11). �

We call a placement regular when its coefficient se-
quence is regular, and regular optimal when it solves
Equation (11). To obtain a regular optimal placement, we
need further to solve Equation (11). Details of the solu-
tions to Equation (11) will be given in Section 5.1. When
‖G‖2 reaches its lower bound given in Equation (12), it
is straightforward to see ‖F − λ̄Id‖2 = 0 by Equation (9).
Thus by Lemma 3.1, the conventional objective function
det F would also be maximised to its upper bound. Then
we have the following result.

Corollary 4.2: In R
d with d = 2 or 3, a regular optimal

placement not only minimises the new objective functions
‖G‖2 and ‖F − λ̄Id‖2, but also maximises the conventional
one det F .

When {ci}ni=1 is irregular, Equation (11) will have no so-
lution by Lemma 2.6. Then the the necessary and sufficient
condition of optimal placement is given below. The 2D ver-
sion of the following result has been proposed in Bishop
et al. (2010), Doğançay and Hmam (2008) and Bishop and
Jensfelt (2009).

Theorem 4.3 (Irregular optimal placement): In R
d with

d = 2 or 3, if the positive coefficient sequence {ci}ni=1 is ir-
regular with irregularity as k0 ≥ 1, without loss of generality
{ci}ni=1 can be assumed to be a non-increasing sequence,
and then the objective function ‖G‖2 satisfies

‖G‖2 ≥
k0∑

i=1

c4
i + 1

d − k0

⎛
⎝ n∑

i=k0+1

c2
i

⎞
⎠

2

. (13)

The lower bound of ‖G‖2 is achieved if and only if

{gi}ni=1 = {gi}k0
i=1 ∪ {gi}ni=k0+1, (14)

where {gi}k0
i=1 is an orthogonal set, and {gi}ni=k0+1 forms

a regular optimal placement in the (d − k0)-dimensional
orthogonal complement of {gi}k0

i=1.

Proof: Recall ‖G‖2 is the frame potential of the frame
{ϕi}ni=1 where ϕi = cigi. From Lemma 2.5, the minimiser
of ‖G‖2 is of the following form: {cigi}k0

i=1 is an orthogonal
set, and {cigi}ni=k0+1 is a tight frame (i.e. a regular optimal

placement) in the orthogonal complement of {cigi}k0
i=1.

Let �1 = [ϕ1, . . . , ϕk0 ] ∈ R
d×k0 , �2 = [ϕk0+1, . . . , ϕn]

∈ R
d×(n−k0) and � = [�1,�2] ∈ R

d×n. When {gi}ni=1 is of
the form in Equation (14), the columns of �1 are orthogonal
to those of �2. Then

‖G‖2 = tr (�T �)2 = tr (�T
1 �1)2 + tr (�T

2 �2)2.

Figure 2. An illustration of the three kinds of irregular optimal
placements in R

2 and R
3: (a) d = 2, k0 = 1; (b) d = 3, k0 = 1 and

(c) d = 3, k0 = 2.

Because {gi}k0
i=1 is an orthogonal set, we have tr (�T

1 �1)2 =∑k0
i=1 ‖ϕi‖4 = ∑k0

i=1 c4
i . Because {gi}ni=k0+1 is a regu-

lar optimal placement in a (d − k0)-dimensional sub-
space, we have tr (�T

2 �2)2 = 1/(d − k0)(
∑n

i=k0+1 c2
i )2 by

Theorem 4.1. Therefore, when {gi}ni=1 is of the form in
Equation (14), the objective function ‖G‖2 reaches its lower
bound as shown in inequality (13). �

We call a placement irregular when its coefficient se-
quence is irregular, and irregular optimal when it is of the
form in Equation (14). In Theorem 4.3, {gi}ni=k0+1 is a reg-
ular optimal placement in a (d − k0)-dimensional space.
Thus Theorem 4.3 implies that an irregular optimal place-
ment problem would be eventually converted to a regular
one in a lower dimensional subspace.

As shown by Theorems 4.3, the irregularity of {ci}ni=1
plays a key role in determining optimal placements. Recall
the irregularity k0 of an irregular sequence with respect to
d satisfies 1 ≤ k0 ≤ d − 1. As d = 2 or 3 in our work, it
is possible to enumerate all the kinds of irregular optimal
placements. Specifically, in R

2, we have d = 2 and hence
k0 = 1; in R

3, we have d = 3 and hence k0 = 1 or 2. Thus
there exist only three kinds of irregular optimal placements
in R

2 and R
3. By Theorem 4.3, these three kinds of ir-

regular optimal placements can be intuitively described as
below.

(1) Irregular optimal placement in R
2 with irregular-

ity k0 = 1: the vector g1 is orthogonal to {gi}ni=2,
and {gi}ni=2 are collinear. See an illustration in
Figure 2(a).
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(2) Irregular optimal placement in R
3 with irregularity

k0 = 1: the vector g1 is orthogonal to {gi}ni=2, and
{gi}ni=2 form a regular optimal placement in the
2D plane perpendicular to g1. See an illustration in
Figure 2(b).

(3) Irregular optimal placement in R
3 with irregularity

k0 = 2: the vectors g1, g2 and {gi}ni=3 are mutu-
ally orthogonal, and {gi}ni=3 are collinear. See an
illustration in Figure 2(c).

Up to this point, Theorems 4.1 and 4.3 clearly indicate
that the cruciality of the coefficients {ci}ni=1 in determining
optimal sensor placements. The coefficient ci actually is the
weight for sensor i. The larger the weight ci is, the more
sensor i contributes to the FIM. Recall ci = 1/σ i for range-
only sensors, and ci = 1/(σ i‖ri‖) for bearing-only or RSS
sensors. Hence for range-only sensors, the measurement
noise level of a sensor can affect its weight; for bearing-only
or RSS sensors, both measurement noise level and sensor-
target range can affect the weight of a sensor and hence
the optimal placement. In addition, a sequence {ci}ni=1 is
irregular only if certain ci’s are much larger than the others.
Since large ci implies small σ i (and small ‖ri‖), a placement
is irregular only if certain sensors can give much more
accurate measurements (and are much closer to the target)
than the others.

To make our analysis more general, we do not assume
σ i’s to be identical in this work. But it is also meaningful
to check the special case that σ i = σ j for all i �= j. First,
for bearing-only or RSS-based sensors, the coefficient is
ci = 1/(σ i‖ri‖). Then when σ i = σ j for all i �= j, from
the fundamental inequality (5), a regular sequence {ci}ni=1
implies

max
j=1,...,n

1

‖rj‖2
≤ 1

d

n∑
i=1

1

‖ri‖2
, (15)

which geometrically means no sensor is much closer to
the target than the others. The 2D version of inequal-
ity (15) has been proposed in Bishop et al. (2010),
Doğançay and Hmam (2008) and Bishop and Jensfelt
(2009). Second, for range-only sensors, the coefficient is
ci = 1/σ i. If σ i = σ j for all i �= j, then ci = cj. Hence
{ci}ni=1 is regular with respect to any d ≤ n as shown in
Example 2.2.

We next consider an important special case n = d,
i.e. the sensor number equals to the dimension of the
space. This case is important because the optimal place-
ment will be independent to the coefficients {ci}ni=1 in this
case. The optimal placement in the case of n = d = 2 has
been solved by Bishop et al. (2010), Doğançay and Hmam
(2008), Bishop and Jensfelt (2009) and Martı́nez and Bullo
(2006).

Theorem 4.4: In R
d with d = 2 or 3, if n = d, the objective

function ‖G‖2 satisfies

‖G‖2 ≥
d∑

i=1

c4
i .

The lower bound of ‖G‖2 is achieved if and only if {gi}di=1
is an orthogonal basis of R

d .

Proof: Since G = ∑d
i=1 c2

i gig
T
i and gT

i gi = 1 for all i ∈
{1, . . ., n}, we have

‖G‖2 = tr (G2)

=
d∑

i=1

d∑
j=1

c2
i c

2
j

(
gT

i gj

)2

=
d∑

i=1

d∑
j=1,j �=i

c2
i c

2
j (gT

i gj )2 +
d∑

i=1

c4
i

≥
d∑

i=1

c4
i ,

where the equality holds if and only if gT
i gj = 0 for all i, j

∈ {1, . . ., d} and i �= j. �
Theorem 4.4 actually can be proved as a corollary of

Theorems 4.1 and 4.3. But as shown above, we can also
directly prove it in a straightforward way without employ-
ing frame theory. This can be explained from the point of
view of redundancy. Recall the constant n/d reflects the re-
dundancy of the system. When n/d = 1, the system has no
redundancy and hence frames are no longer necessary for
the optimality analysis.

5. Analytical properties of optimal placements

In this section, we further explore a number of ana-
lytical properties of optimal placements in 2D and 3D.
Theorem 4.3 implies that an irregular optimal placement
problem can be eventually converted to a regular one in
a lower dimensional space. Hence we will only focus on
regular optimal placements.

5.1. Explicit construction

Bishop et al. (2010), Doğançay and Hmam (2008), Bishop
and Jensfelt (2009) and Martı́nez and Bullo (2006) have
proposed a number of methods to explicitly construct some
special 2D optimal placements. However, the construction
of generic optimal placements in 2D or 3D is still an open
problem. In our work, as stated in Theorem 4.1, construct-
ing a regular optimal placement that solves Equation (11)
is equivalent to constructing a tight frame. Thus we suc-
cessfully convert the optimal sensor placement problem to
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a tight frame problem. Note tight frame construction has
already been well studied in the literature on frame theory.
Therefore, one can construct generic optimal placements
(i.e. tight frames) of an arbitrary number of sensors in 2D
or 3D by referring to the literature on tight frame construc-
tion. We will not discuss the construction of tight frames
in detail here. Interested readers may refer to Feng, Wang,
and Wang (2006), Casazza and Leon (2006), Cahill, Fickus,
Mixon, Poteet, and Strawn (in press), Casazza et al. (2012),
to name a few.

The necessary and sufficient condition for 2D opti-
mal placements has already been proposed in Bishop et al.
(2010), Doğançay and Hmam (2008) and Bishop and Jens-
felt (2009), where the sufficiency proof, however, is not
given. Next we present a complete proof without employ-
ing frame theory. In the meantime, more importantly we
propose an algorithm for explicitly constructing arbitrary
2D regular optimal placements. The following lemma can
be found in Bishop et al. (2010), Doğançay and Hmam
(2008), Bishop and Jensfelt (2009), Martı́nez and Bullo
(2006), Benedetto and Fickus (2003), Goyal, Kovac̆ević,
and Kelner (2001) and Fickus (2001).

Lemma 5.1: In R
2, the unit-length vector gi can be written

as gi = [cos θ i, sin θ i]T. Then Equation (11) is equivalent
to

n∑
i=1

c2
i ḡi = 0, (16)

where ḡi = [cos 2θi, sin 2θi]
T .

Proof: Substituting gi = [cos θ i, sin θ i]T into Equation (11)
gives

n∑
i=1

c2
i

[
1
2 cos 2θi

1
2 sin 2θi

1
2 sin 2θi − 1

2 cos 2θi

]
= 0,

which is equivalent to Equation (16). �

By Lemma 5.1, the matrix Equation (11) is simplified
to a vector Equation (16). In order to construct {gi}ni=1
solving Equation (11), we can first construct {ḡi}ni=1 solving
Equation (16). Once ḡi = [cos 2θi, sin 2θi]T is obtained, gi

can be retrieved as gi = ± [cos θ i, sin θ i]T. Note the sign
changes of gi will give equivalent optimal placements as
stated in Proposition 3.4.

Theorem 5.2: In R
2, given a positive sequence {ci}ni=1,

there exists {ḡi}ni=1 with ‖ḡi‖ = 1 solving Equation (16) if
and only if

max
j=1,...,n

c2
j ≤ 1

2

n∑
i=1

c2
i . (17)

Figure 3. A geometric illustration of Algorithm 1.

Proof: Necessity: If
∑n

i=1 c2
i ḡi = 0, then c2

j ḡj =∑
i �=j c2

i ḡi for all j ∈ {1, . . ., n}. Hence c2
j =

‖c2
j ḡj‖ = ‖∑

i �=j c2
i ḡi‖ ≤ ∑

i �=j ‖c2
i ḡi‖ = ∑

i �=j c2
i

Then adding c2
j on both sides of the inequality gives

2c2
j ≤ ∑n

i=1 c2
i .

Sufficiency: If c2
j ≤ 1/2

∑n
i=1 c2

i for all j ∈ {1, . . . , n},
it is obvious that there always exists an index n0 (2 ≤ n0 ≤
n) such that

c2
1 + · · · + c2

n0−1 ≤ 1

2

n∑
i=1

c2
i , (18)

c2
1 + · · · + c2

n0−1 + c2
n0

≥ 1

2

n∑
i=1

c2
i . (19)

When n0 < n, denote

	1 = c2
1 + · · · + c2

n0−1,

	2 = c2
n0

,

	3 = c2
n0+1 + · · · + c2

n. (20)

Obviously 	1 + 	2 + 	3 = ∑n
i=1 c2

i . From inequality (17),
cn0 ≤ 1/2

∑n
i=1 c2

i and hence 	1 + 	3 ≥ 	2. From inequal-
ity (18), 	1 ≤ 1/2

∑n
i=1 c2

i and hence 	2 + 	3 ≥ 	1. From
inequality (19), 	1 + 	2 ≥ 1/2

∑n
i=1 c2

i and hence 	1 +
	2 ≥ 	3. Therefore, 	1, 	2 and 	3 satisfy the triangle in-
equality and can form a triangle. Choose ḡ1 = · · · = ḡn0−1.
Then

∑n0−1
i=1 c2

i ḡi = 	1ḡ1. Choose ḡn0+1 = · · · = ḡn. Then∑n
i=n0+1 c2

i ḡi = 	3ḡn. Then Equation (16) becomes

	1ḡ1 + 	2ḡn0 + 	3ḡn = 0. (21)

We can choose ḡ1, ḡn0 and ḡn that align with the three sides
of the triangle with side length as 	1, 	2 and 	3, respectively
(see Figure 3). Then Equation (21) and consequently Equa-
tion (16) can be solved. When n0 = n, the above proof is
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Figure 4. Examples of 2D equally weighted optimal placements: regular polygons. Square: target. Circles: sensors.

still valid. In this case, we have 	3 = 0 and 	1 = 	2, and
Equation (21) becomes ḡ1 + ḡn0 = 0. �

Algorithm 1 Construction of 2D regular optimal place-
ments {gi}ni=1 with coefficients {ci}ni=1.
1: Choose n0 satisfying Equations (18) and (19). Then com-
pute 	1, 	2 and 	3 in Equation (20).
2: Compute interior angles α12 and α13 of the triangle with
side lengths as 	1, 	2 and 	3 (see Figure 3).
3: Choose gi = [1, 0]T for i ∈ {1, . . ., n0 − 1}, gn0 =
[cos((π + α12)/2), sin((π + α12)/2)]T , and gi = [cos ((π
− α13)/2), sin ((π − α13)/2)]T for i ∈ {n0 + 1, . . ., n}.

From the proof of Theorem 5.2, a method for explicitly
constructing 2D regular optimal placements can be sum-
marised in Algorithm 1. The following example illustrates
Algorithm 1.

Example 5.3: In R
2, consider six bearing-only sensors

with sensor-target ranges respectively as ‖r1‖ = 5, ‖r2‖
= 6, ‖r3‖ = 7, ‖r4‖ = 8, ‖r5‖ = 9 and ‖r6‖ = 10.
The measurement noise variance is σ i = 1 for all i ∈
{1, . . ., 6}. Recall ci = 1/(σ i‖ri‖) for bearing-only sen-
sors. Then c2

1 = 0.0400, c2
2 = 0.0278, c2

3 = 0.0204, c2
4 =

0.0156, c2
5 = 0.0123, c2

6 = 0.0100 and 1/2
∑6

i=1 c2
i =

0.0631. It is easy to check the sequence {ci}6
i=1 is regu-

lar. Because c2
1 < 1/2

∑6
i=1 c2

i and c2
1 + c2

2 > 1/2
∑6

i=1 c2
i ,

choose n0 = 2. Hence 	1 = 0.0400, 	2 = 0.0278 and 	3

= 0.0584. Then α12 = 2.0560 rad and α13 = 0.4344 rad.
As instructed in Algorithm 1, choose g1 = [1, 0]T, g2 =
[0.8563, −0.5165]T, g3 = . . . = g6 = [0.2155, 0.9765]T.
Then it can be verified that

∑6
i=1 c2

i gig
T
i = 1/2

∑6
i=1 c2

i I2.

5.2. Equally weighted optimal placements

The coefficient ci actually is the weight for sensor i. Hence
we call a placement equally weighted if c1 = . . . = cn. In
the equally weighted case, all sensors play equal roles for
target localisation. For bearing-only or RSS sensors, the
placement is equally weighted when σ i = σ j and ‖ri‖ =
‖rj‖ for all i �= j as ci = 1/(σ i‖ri‖). The corresponding
geometry is that all sensors are restricted on a 2D circle or
a 3D sphere centred at the target. For range-only sensors,

the placement is equally weighted when σ i = σ j for all i �=
j as ci = 1/σ i. As shown in Example 2.2, {ci}ni=1 is regular
with respect to any d ≤ n if c1 = . . . = cn. Hence equally
weighted placements must be regular.

Equally weighted placements are important because
they often arise in practice and have some important
special properties. In the equally weighted case, Equation
(11) is simplified to

∑n
i=1 gig

T
i = n/dId , which implies

that an equally weighted optimal placement is essentially
a unit-norm tight frame (Benedetto and Fickus, 2003;
Fickus, 2001). In R

2, an equally weighted placement is
optimal if n (n ≥ 3) sensors are located at the vertices of
an n-side regular polygon (Benedetto and Fickus, 2003;
Bishop et al., 2010; Bishop and Jensfelt, 2009; Doğançay
and Hmam, 2008; Fickus, 2001; Martı́nez and Bullo,
2006) as shown in Figure 4. In R

3, an equally weighted
placement is optimal if n sensors are located at the vertices
of a Platonic solid (Benedetto and Fickus, 2003; Fickus,
2001). There are only five Platonic solids as shown in
Figure 5. It should be noted that equally weighted optimal
placements are not limited to regular polygons or Platonic
solids. In Section 5.4, we will show more examples of
equally weighted optimal placements.

5.3. Uniqueness

Due to placement equivalence, there exist at least an infi-
nite number of equivalent optimal placements minimising
‖G‖2. It is interesting to ask whether all optimal place-
ments that minimise ‖G‖2 are mutually equivalent, or in
other words, whether the optimal placement is unique up to
the equivalence. We next give the conditions under which
the answer is positive.

According to Theorem 4.4, it is clear that the optimal
placement is unique in the case of n = d. We next show the
regular optimal placement is also unique in the case of n
= d + 1 (i.e. three sensors in R

2 or four sensors in R
3).

The uniqueness will be proved by construction, which is
inspired by the work in Goyal et al. (2001) on unit-norm
tight frames.

Theorem 5.4: In R
d with d = 2 or 3, if n = d + 1,

given a regular coefficient sequence {ci}d+1
i=1 , the regular
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1698 S. Zhao et al.

Figure 5. Examples of 3D equally weighted optimal placements: Platonic solids. Square: target. Circles: sensors. (a) Tetrahedron, n =
4; (b) octahedron, n = 6; (c) hexahedron, n = 8; (d) icosahedron, n = 12 and (e) dodecahedron, n = 20.

optimal placement {gi}d+1
i=1 is unique up to the equivalence

in Definition 3.5.

Proof: Suppose {gi}d+1
i=1 is a regular optimal placement

solving Equation (11). Denote ϕi = cigi and � =
[ϕ1, . . . , ϕd+1] ∈ R

d×(d+1). Then Equation (11) can be writ-
ten in matrix form as ��T = 1/d

∑d+1
i=1 c2

i Id . Hence � has

mutually orthogonal rows with row norm as
√

1/d
∑d+1

i=1 c2
i .

Let x = [x1, . . . , xd+1] ∈ R
d+1 be a vector in the orthog-

onal complement of the row space of �. Assume ‖x‖ =√
1/d

∑d+1
i=1 c2

i . Adding xT after the last row of � yields

an augmented matrix �aug = [
�T , x

]T ∈ R
(d+1)×(d+1). It

is clear that �aug�
T
aug = 1

d

∑d+1
i=1 c2

i Id+1. Thus �aug is a
scaled orthogonal matrix and its columns are mutually or-
thogonal. The jth column of �aug is [ϕT

j , xj ]T ∈ R
d+1 for

all j ∈ {1, . . ., d + 1}. Note the column norm of �aug is√
1/d

∑d+1
i=1 c2

i . Then we have ‖ϕj‖2 + x2
j = 1/d

∑d+1
i=1 c2

i

and hence

xj = ±
√√√√ 1

d

d+1∑
i=1

c2
i − c2

j . (22)

The regularity of {ci}d+1
i=1 ensures 1/d

∑d+1
i=1 c2

i − c2
j ≥ 0.

By reversing the above proof, we can obtain an explicit
construction algorithm for optimal placement with n = d +
1 as shown in Algorithm 2. The rest is to prove the con-
structed optimal placements are mutually equivalent. First,
given a vector x ∈ R

d+1 satisfying Equation (22), let � and
�′ be two different bases of the orthogonal complement of
x. Due to orthogonality, there exists an orthogonal matrix
U ∈ R

(d+1)×(d+1) such that

U

[
�

xT

]
=

[
�′

xT

]
. (23)

Write U as

U =
[

U11 U12

U21 U22

]
, (24)

where U11 ∈ R
d×d , U12 ∈ R

d×1, U21 ∈ R
1×d and U22 ∈ R.

Substituting Equation (24) into Equation (23) gives U21�

+ (U22 − 1)xT = 0. Since the rows of � and xT are linearly
independent, we have U21 = 0 and U22 = 1. Thus U12 = 0
and U11� = �′. Therefore, the placements described by �

and �′ are differed only by an orthogonal transformation
U11. From Definition 3.5, the two placements are equiva-
lent. Second, let E ∈ R

(d+1)×(d+1) be a diagonal matrix with
diagonal entries as 1 or −1. Given arbitrary x and x′ both
satisfying Equation (22), there exists an E such that x′ = Ex.
Note E is also an orthogonal matrix. It can be analogously
proved that the optimal placements would be differed by an
orthogonal transformation and a number of flipping of sen-
sors about the target. From Definition 3.5, these placements
are also equivalent. �

From the proof of Theorem 5.4, a method for explicitly
constructing the unique regular optimal placement in the
case of n = d + 1 can be summarised as Algorithm 2. The
following example illustrates Algorithm 2.

Algorithm 2 Construction of the unique regular optimal
placement {gi}d+1

i=1 with coefficients {ci}d+1
i=1 .

1: Choose x = [x1, . . . , xd+1] ∈ R
d+1 with xj =

±
√

1/d
∑d+1

i=1 c2
i − c2

j for i ∈ {1, . . . , d + 1}.
2: Use the singular value decomposition (SVD) to nu-
merically compute an orthogonal basis of the orthogonal
complement of x. Let x = U�VT be an SVD of x, where
U ∈ R

(d+1)×(d+1) is an orthogonal matrix.
3: Let ui denote the ith column of U. Then x =
±

√
1/d

∑d+1
i=1 c2

i u1, and � can be constructed as

� =
√√√√ 1

d

d+1∑
i=1

c2
i [u2, . . . , ud+1]T ∈ R

d×(d+1). (25)

4: Compute gi = ϕi/ci for i ∈ {1, . . . , d + 1}.
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Figure 6. The unique equally weighted optimal placements with
n = 3 in R

2. Square: target. Circles: sensors. (a) Regular triangle
and (b) flip s1 about the target.

Example 5.5: In R
3, consider four bearing-only sensors

with sensor-target ranges respectively as ‖r1‖ = 20, ‖r2‖ =
21, ‖r3‖ = 22 and ‖r4‖ = 23. The measurement noise
variance of the ith sensor is σ i = 0.01 with i ∈ {1,
. . . , 4}. Recall ci = 1/(σ i‖ri‖) for bearing-only sen-
sors. Then c2

1 = 25.00, c2
2 = 22.68, c2

3 = 20.66, c2
4 = 18.90

and 1/3
∑4

i=1 c2
i = 29.08. The sequence {ci}4

i=1 is regular.
From Equation (22), choose x = [2.02, 2.53, 2.90, 3.19]T.
Compute the SVD of x and use Equation (25) to compute
� as

� =
⎡
⎣−2.5307 4.5286 −0.9906 −1.0891

−2.9016 −0.9906 4.2568 −1.2487
−3.1901 −1.0891 −1.2487 4.0197

⎤
⎦ .

It can be verified
∑4

i=1 c2
i gig

T
i = ��T = 1/3

∑4
i=1 c2

i I3.

Figures 6 and 7 show examples of unique optimal place-
ments. Suppose all sensors have the same measurement
noise standard deviation. Then the regular triangle in Fig-
ure 6(a) is equally weighted optimal as shown in Section
5.2. By Theorem 5.4, the regular triangle placement is also
unique. Thus the two equivalent placements in Figure 6 rep-
resent all possible forms of the equally weighted optimal
placements with n = 3 in R

2. Analogously, the three equiv-
alent placements in Figure 7 present all possible forms
of the equally weighted optimal placements with n = 4
in R

3.
When n > d + 1, the regular optimal placement may

not be unique. In the next section, we will give examples to
show the optimal placement may not be unique when n ≥
4 in R

2 or n ≥ 6 in R
3. Now a question remains: whether

the regular optimal placement with n = 5 in R
3 is unique.

The answer is negative. The following gives an explanation
as well as an algorithm for explicitly constructing regular
optimal placements with n = 5 in R

3.
Suppose the sequence {ci}5

i=1 is regular with respect
to d = 3. Denote ϕi = cigi and � = [ϕ1, . . . , ϕ5] ∈ R

3×5.
Then Equation (11) becomes ��T = 1/3

∑5
i=1 c2

i I3. There
always exists �′ = [ϕ′

1, . . . , ϕ
′
5] ∈ R

2×5 in the orthogonal

complement of the row space of � such that

[
�

�′

] [
�T �′T ] = 1

3

5∑
i=1

c2
i I5,

which implies ‖ϕj‖2 + ‖ϕ′
j‖2 = 1/3

∑5
i=1 c2

i and �′�′T =
1/3

∑5
i=1 c2

i I2. Thus {ϕ′
j }5

j=1 represents a 2D regular opti-

mal placement with ‖ϕ′
j‖ =

√
1/3

∑5
i=1 c2

i − c2
j for all j ∈

{1, . . . , 5} (it can be verified {‖ϕ′
j‖}5

j=1 is regular with
respect to d = 2). Therefore, to obtain �, we can first con-
struct {ϕ′

j }5
j=1 using Algorithm 1 for example, and then find

� in the orthogonal complement of the row space of �′.
Since {ϕ′

i}5
i=1 may have non-equivalent solutions, {ϕi}5

i=1
would not be unique up to the equivalence.

5.4. Distributed construction

When there are a large number of sensors, it might be
inconvenient to design the optimal placement involving all
sensors. The following property can be applied to construct
large-scale optimal placements in a distributed manner. The
2D versions of the following result have been proposed
in Bishop et al. (2010), Doğançay and Hmam (2008) and
Bishop and Jensfelt (2009).

Theorem 5.6: The union of multiple disjoint regular opti-
mal placements in R

d (d = 2 or 3) is still a regular optimal
placement in R

d .

Proof: In R
d , consider multiple disjoint regular optimal

placements: {ci, gi}i∈Ik
with Ik as the index set of the kth

placement (k = 1, . . . , q). The term disjoint as used here
means that different placements share no common sensors.
Define I = ⋃q

k=1 Ik . If |·| denotes the cardinality of a set,
then |I| = ∑q

k=1 |Ik|.
For the kth placement, since {ci, gi}i∈Ik

is regular opti-
mal in R

d , from Theorem 4.1 we have

∑
i∈Ik

c2
i gig

T
i = 1

d

∑
i∈Ik

c2
i Id .

For the union placement {ci, gi}i∈I , we have

∑
j∈I

c2
j gjg

T
j =

q∑
k=1

∑
i∈Ik

c2
i gig

T
i

= 1

d

q∑
k=1

∑
i∈Ik

c2
i Id

= 1

d

∑
j∈I

c2
j Id .

By Theorem 4.1, the union placement is regular optimal in
R

d . �
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1700 S. Zhao et al.

Figure 7. The unique equally weighted optimal placements with n = 4 in R
3. Square: target. Circles: sensors. (a) Regular tetrahedron;

(b) flip s4 about the target and (c) flip s4 and s3 about the target.

Theorem 5.6 implies that a large-scale regular opti-
mal placement can be constructed in a distributed man-
ner: first, divide the large-scale placement into a number
of disjoint regular sub-placements; second, construct each
regular optimal sub-placement and finally, combine these
optimal sub-placements together to obtain a large regular
optimal placement. We call this kind of method as dis-
tributed construction. Because the combination of the opti-
mal sub-placements can be arbitrary, distributed construc-
tion will lead to an infinite number of optimal placements
for the large system. These optimal placements have the
same FIM and ‖G‖2, but they are generally non-equivalent.
Theorem 5.6 also implies that only regular placements can
be possibly divided into some regular subsets.

Figure 8 gives examples of optimal placements gener-
ated by distributed construction. Suppose all sensors have
the same measurement noise standard deviation. The place-
ment with n = 6 in Figure 8(a), 8(b) or 8(c) is a combination
of two regular triangles with n = 3 (the sensors with the
same line type form a triangle optimal placement). The
placement with n = 8 in Figure 8(d) or 8(e) is a combina-
tion of two regular optimal placements with n = 4 as shown
in Figure 7(c), which is equivalent to the regular tetrahe-
dron. Thus by Theorem 5.6 all placements in Figure 8 are
regular optimal.

The distributed construction method is suitable for (but
not limited to) constructing equally weighted optimal place-
ments. That is because an equally weighted placement can
be easily divided into some regular subsets. Suppose we
have an equally weighted placements in R

d . Its coefficient
sequence {ci}ni=1 satisfies ci = cj for all i �= j. Then {ci}ni=1
can be divided into a number of subsets. As long as the
cardinality of each subset is no smaller than d, the subsets
are all regular (refer to Example 2.2). We next present two
examples to show how to divide equally weighted place-
ments into subsets. (i) For any integer n ≥ 4, it is obvious
that there exist non-negative integers m1 and m2 such that n
can be decomposed as n = 2m1 + 3m2. Thus in R

2 we can
always distributedly construct an equally weighted optimal
placement with n ≥ 4 by using the ones with n = 2 or 3. (ii)
For any integer n ≥ 6, there exist non-negative integers m1,

m2 and m3 such that n = 3m1 + 4m2 + 5m3. Thus in R
3

we can always distributedly construct an equally weighted
optimal placement with n ≥ 6 by using the ones with n =
3, 4 or 5. Note that distributed construction yields an infi-
nite number of non-equivalent optimal placements. Hence
the above two examples also imply that equally weighted
placements with n ≥ 4 in R

2 or n ≥ 6 in R
3 are not unique.

6. Numerical verification

In order to verify our previous analysis, in this section
we solve the parameter optimisation problem (8) from a
numerical perspective. More specifically, we employ Lya-
punov approaches to design a centralised gradient control
law which can numerically minimise the objective function
‖G‖2 given an appropriate initial condition. The control law
can be applied to numerically construct generic regular and
irregular optimal placements in 2D and 3D.

Assume the motion model of sensor i to be ṡi = ui ,
where ui ∈ R

d is the control input. Then we have ṙi = ui

because ri = si − p and the target position estimation p is
given. Let r = [rT

1 , . . . , rT
n ]T ∈ R

dn. Denote β as the con-
stant lower bound of ‖G‖2 in Theorems 4.1 and 4.3. Then
the optimal placement set is E0 = {r ∈ R

dn : ‖G‖2 − β =
0}. Choose the Lyapunov function as V(r) = 1/4(‖G‖2 −
β). Clearly V is positive definite with respect to E0. Denote
∂V/∂ri as the Jacobian of V with respect to ri. Then we have

V̇ =
n∑

i=1

∂V

∂ri

ṙi =
n∑

i=1

c2
i

‖ri‖gT
i GPi ṙi ,

where Pi = Id − gig
T
i is an orthogonal projection matrix

satisfying P T
i = Pi , P 2

i = Pi and Null(Pi) = span{gi}.
Null(·) denotes the null space of a matrix. Design the gra-
dient control law as

ṙi = −PiGgi. (26)
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Figure 8. Examples of distributedly constructed optimal placements. Square: target. Circles: sensors.

Then

V̇ = −
n∑

i=1

c2
i

‖ri‖‖PiGgi‖2 ≤ 0

and V̇ = 0 when PiGgi = 0 for all i ∈ {1, . . . , n}.

Proposition 6.1: For any initial condition r(0) ∈ R
dn with

‖ri(0)‖ �= 0 for all i ∈ {1, . . . , n}, the solution to the
nonlinear r-dynamics (26) asymptotically converges to the
set

E = {r ∈ S : PiGgi = 0, i = 1, . . . , n} ,

where S = {r ∈ R
dn : ‖ri‖ = ‖ri(0)‖, i = 1, . . . , n}.

Proof: The time derivative of ‖ri‖ is

d‖ri‖
dt

= rT
i

‖ri‖ ṙi = −gT
i PiGgi = 0. (27)

The last equality uses the fact gT
i Pi = 0. By Equation (27)

we have ‖ri(t)‖ ≡ ‖ri(0)‖ �= 0. Hence S is a positive invari-
ant set with respect to the r-dynamics. The set S consists
of a group of spheres in R

d centred at the origin. Thus S is
compact. Note V̇ = 0 and ṙ = 0 for all points in E . By the
invariance principle (Khalil, 2002), every solution starting
in S asymptotically converges to E . �

By Proposition 6.1, the r-dynamics converge either to
the optimal placement set E0 or the set E \ E0. By introduc-
ing Lagrange multipliers γ i, i = 1, . . . , n, the constrained
optimisation problem (8) is equivalent to minimising the
Lagrangian function L = ‖G‖2 + ∑n

i=1 γi(gT
i gi − 1). By

calculating ∂L/∂gi = 0, we can show that E is the critical
point set, which consists of not only minimisers of ‖G‖2

(i.e. optimal placements) but also saddle points and max-
imisers of ‖G‖2 (i.e. non-optimal placements). The sets E0

and E are equilibrium manifolds. It is noticed that nonlin-
ear stabilisation problems involving equilibrium manifolds
also emerge in formation control area recently (Dörfler &
Francis, 2010; Krick, Broucke, & Francis, 2009; Summers,
Yu, Dasgupta, & Anderson, 2011). It is possible to con-
duct strict stability analysis including identifying the at-
tractive region of E0 by using centre manifold theory (Krick
et al., 2009; Summers et al., 2011) or differential geome-
try (Dörfler & Francis, 2010). But that will be non-trivial
because the geometric structure of E0 is extremely compli-
cated as shown in Dykema and Strawn (2006).

Figures 9 and 10 show several optimal placements ob-
tained by the proposed gradient control law. Due to space
limitations, we only show 3D examples. The three final
converged placements in Figure 9 are actually the three
regular optimal ones shown in Figure 7. The three final
placements in Figure 10 are the two as illustrated in Figure
2(b) and 2(c). Clearly the numerical results are consistent
with our previous analysis. The optimality error refers to the
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1702 S. Zhao et al.

Figure 9. Gradient control of equally weighted (regular) placements with n = 4 in R
3.

Figure 10. Gradient control of irregular placements in R
3.

difference between ‖G‖2 and its lower bound given in Equa-
tion (10) or Equation (13). The optimality error can be used
as a numerical indicator to evaluate the optimality of a
placement. As shown in Figures 9 and 10, the optimality
errors all converge to zero.

7. Conclusions

In this paper, the optimal sensor placement problem was
formulated as a parameter optimisation problem. We pre-
sented a unified framework to analyse optimal placements
of bearing-only, range-only and RSS sensors. We proved
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the necessary and sufficient conditions for optimal place-
ments in 2D and 3D. A number of important analyti-
cal properties of optimal placements have also been ex-
plored. The results presented in this work can be applied
to analytically evaluate and construct any generic optimal
placements in 2D or 3D. The proposed gradient control
law not only verifies our previous analysis, but also pro-
vides us a convenient way to construct optimal placements
numerically.

There are several directions for future research. First,
the gradient control law proposed in this paper is a cen-
tralised control based on all-to-all communications. It is
meaningful to study distributed optimisation algorithms
that can distributedly minimise the objective function in
Equation (8). Second, the existing work mainly considers
the case of one single target. Hence another interesting re-
search direction is to analyse the optimal sensor placements
for tracking multiple targets. Third, this work focuses on
homogeneous sensor networks. It is also important to ana-
lytically characterise 2D or 3D optimal placements of het-
erogeneous sensors in the future.
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