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This article considers the controllability problem for multi-agent systems. In particular, the structural
controllability of multi-agent systems under switching topologies is investigated. The structural controllability
of multi-agent systems is a generalisation of the traditional controllability concept for dynamical systems, and
purely based on the communication topologies among agents. The main contributions of this article are
graph-theoretic characterisations of the structural controllability for multi-agent systems. It turns out that the
multi-agent system with switching topology is structurally controllable if and only if the union graph G of the
underlying communication topologies is connected (single leader) or leader–follower connected (multi-leader).
Finally, this article concludes with several illustrative examples and discussions of the results and future work.
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1. Introduction

Due to the latest advances in communication and

computation, the distributed control and coordination

of the networked dynamic agents has rapidly emerged

as a hot multi-disciplinary research area (Lawson and

Beard 2002; Dunbar and Murray 2006); Bliman and

Ferrari-Trecate 2008), which lies at the intersection of

systems control theory, communication and mathe-

matics. In addition, the advances of the research in

multi-agent systems are strongly supported by their

promising civilian and military applications, such as

cooperative control of unmanned air vehicles, auton-

omous underwater vehicles, space exploration, conges-

tion control in communication networks, air traffic

control and so on (Tomlin, Pappas, and Sastry 1998;

How, King, and Kuwata 2004). Much work has been

done on the formation stabilisation and consensus

seeking. Approaches like graph Laplacians for the

associated neighbourhood graphs, artificial potential

functions, and navigation functions for distributed

formation stabilisation with collision avoidance con-

straints have been developed. Furthermore, inspired by

the cooperative behaviour of natural swarms, such as

bee flocking, ant colonies and fish schooling, people try

to obtain experiences from how the group units make

their whole group motions under control just through

limited and local interactions among them.

The control of such large-scale complex systems

poses several new challenges that fall beyond the
traditional methods. Part of the difficulty comes from

the fact that the global behaviour of the whole group

combined by multiple agents is not a simple summa-

tion of the individual agent’s behaviour. Actually, the

group behaviour can be greatly impacted by the

communication protocols or interconnection topology

between the agents, which makes the global behaviour

display high complexities. Hence, the cooperative

control of multi-agent systems is still in its infancy

and attracts more and more researchers’ attention. One

basic question in multi-agent systems that attracts

control engineers’ interest is what is the necessary

information exchanging among agents to make the

whole group well-behaved, e.g. controllable. This can

be formulated as a controllability problem for multi-

agent systems under the leader–follower framework.

Roughly speaking, a multi-agent system is controllable

if and only if we can drive the whole group of agents to

any desirable configurations only based on local

interactions between agents and possibly some limited

commands to a few agents that serve as leaders. The

basic issue is the interplay between control and

communication. In particular, we would like to

investigate what is the necessary and/or sufficient

condition on the graph of communication topologies
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among agents for the controllability of multi-agent
systems.

This multi-agent controllability problem was first
proposed in Tanner (2004), who formulated it as the
controllability of a linear system and proposed a
necessary and sufficient algebraic condition based on
the eigenvectors of the graph Laplacian. Tanner (2004)
focused on fixed topology situation with a particular
member which acted as the single leader. The problem
was then developed in Ji, Muhammad, and Egerstedt
(2006), Ji and Egerstedt (2007), Rahmani and Mesbahi
(2006), Rahmani, Ji, Mesbahi, and Egerstedt (2009),
Ji, Lin, and Lee (2008), and got some interesting
results. For example, in Ji and Egerstedt (2007), it was
shown that a necessary and sufficient condition for
controllability is not sharing any common eigenvalues
between the Laplacian matrix of the follower set and
the Laplacian matrix of the whole topology. However,
it remains elusive on what exactly the graphical
meaning of these algebraic conditions related to the
Laplacian matrix. This motivates several research
activities on illuminating the controllability of multi-
agent systems from a graph theoretical point of view.
For example, a notion of anchored systems was
introduced in Rahmani and Mesbahi (2006) and it
was shown that symmetry with respect to the anchored
vertices makes the system uncontrollable. However, so
far the research progress using graph theory is quite
limited and a satisfactory graphical interpretation of
these algebraic controllability conditions turns out to
be very challenging. Besides, the weights of commu-
nication links among agents have been demonstrated
to have a great influence on the behaviour of whole
multi-agent group (see, e.g. Moreau 2005). However, in
the previous multi-agent controllability literature
(Tanner 2004; Ji, Lin, and Lee 2008b), the commu-
nication weighting factor is usually ignored. One
classical result under this no weighting assumption is
that a multi-agent system with complete graphical
communication topology is uncontrollable (Tanner
2004). This is counter-intuitive since it means each
agent can get direct information from each other but
this leads to a bad global behaviour as a team. This
shows that too much information exchange may
damage the controllability of multi-agent system. In
contrast, if we set weights of unnecessary links to be
zero and impose appropriate weights to other links so
as to use the communication information in a selective
way, then it is possible to make the system controllable
(Zamani and Lin 2009).

In this article, motivated by the above observation,
the weighting factor is taken into account for multi-
agent controllability problem. In particular, a new
notion for the controllability of multi-agent systems,
called structural controllability, which was proposed

by us in Zamani and Lin (2009), is investigated directly
through the graph–theoretic approach for control
systems. The communication topology of whole
multi-agent system is described by a weighted graph
and the system is called structurally controllable if one
may find a set of weights such that the corresponding
multi-agent system is controllable in a classical sense.
The structural controllability reveals under certain
topology whether it is possible to make the whole
multi-agent system well-behaved, i.e. controllable here
through suitable choice of the communication weights.
From another angle, it helps to bring to light the effects
of the communication topology on the controllability
property of multi-agent systems without worrying
about the influence of weighting factors. It turns out
that this controllability notation only depends on the
topology of the communication scheme in the case of a
single leader under a fixed topology (Zamani and Lin
2009).

Another novelty in this article is the successful
investigation of impacts of switching topologies on the
multi-agent controllability property, for which there is
barely graphical interpretation to the best of our
knowledge. Note that the results in Tanner (2004), Ji
et al. (2006), Ji and Egerstedt (2007), Rahmani and
Mesbahi (2006), Rahmani et al. (2009), Ji et al. (2008)
and Zamani and Lin (2009) are all focused on multi-
agent systems under fixed communication topologies
which may restrict their impacts on real applications.
In many applications, it may become impossible to
keep the communication topology fixed for the whole
period. Therefore, it is of practical importance to
consider time-varying communication topologies.
A natural framework to study the time variance of
communication topology is through switched systems
(see e.g. Sun, Ge, and Lee 2002; Lin and Antsakis 2007,
2009). In this article, we will focus on multi-agent
systems under switching topologies in the framework
of switched systems. Some early efforts have been
observed in the literature. Necessary and sufficient
algebraic conditions for the controllability of multi-
agent systems under switching topology were derived
in Ji et al. (2008b) and Liu, Chu, Wang, and Xie (2008)
based on the developments of controllability study in
switched systems. However, these algebraic results
lacks graphically intuitive interpretations, which are
important since they can provide us significant guide-
lines for the communication protocol design for multi-
agent systems. Therefore, this article aims to fill this
gap and propose graphic interpretations of these
algebraic conditions for the controllability of multi-
agent systems under switching topology. In particular,
we follow the setup in Zamani and Lin (2009) and
investigate the structural controllability of multi-agent
systems with switching communication topologies.
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Preliminary results on single-leader case were reported

in Liu et al. (2009). Here a more general case: multi-

agent system with multi-leader is studied, which is

actually an extension of single-leader case. It is

assumed that the leaders act as the external or control

signal and will not be affected by any other group

members. Based on this structural controllability, we

propose necessary and sufficient graph theoretic

conditions for the structural controllability of multi-

agent system with switching topologies. It turns out

that the multi-agent system with switching topology is

structurally controllable if and only if the union graph

G of the underlying communication topologies is

connected (single leader) or leader–follower connected

(multi-leader). Some examples are given to underscore

our theoretical analysis.
The outline of this article is as follows: In Section 2,

we introduce some basic preliminaries and the problem

formulation, followed by structural controllability

study in Section 3, where a graphic necessary and

sufficient condition for the structural controllability

under single-leader case is given. In Section 4,

graphical interpretation of structural controllability

of multi-leader multi-agent system is proposed.

In Section 5, some examples are presented to give the

readers deeper understanding of our theoretical results.

Finally, some concluding remarks are drawn in this

article.

2. Preliminaries and problem formulation

2.1 Graph theory preliminaries

A weighted graph is an appropriate representation for

the communication or sensing links among agents

because it can represent both existence and strength of

these links among agents. The weighted graph G with N

vertices consists of a vertex set V ¼ {v1, v2, . . . , vN} and

an edge set I ¼ {e1, e2, . . . , eN0}, which is the inter-

connection links among the vertices. Each edge in the

weighted graph represents a bidirectional communica-

tion or sensing media. Two vertices are known to be

neighbours if (i, j)2I , and the number of neighbours

for each vertex is its valency. An alternating sequence

of distinct vertices and edges in the weighted graph is

called a path. The weighted graph is said to be

connected if there exists at least one path between

any distinct vertices, and complete if all vertices are

neighbours to each other.
The adjacency matrix, A is defined as

Aði,j Þ ¼
W ij ði, j Þ 2 I ,
0 otherwise,

�
ð1Þ

where W ij 6¼ 0 stands for the weight of edge ( j, i). Here,
the adjacency matrix A is j Vj� j V j and j � j is the
cardinality of a set.

The Laplacian matrix of a graph G, denoted as
L(G)2RjVj�jVj or L for simplicity, is defined as

Lði,j Þ ¼
�j2N i

W ij i ¼ j,

�W ij i 6¼ j and ði, j Þ 2 I ,
0 otherwise:

8><
>: ð2Þ

2.2 Multi-agent structural controllability with
switching topology

Specifically, controllability problem usually cares
about how to control N agents based on the leader–
follower framework. Take the case of single leader as
example. Without loss of generality, assume that the
Nth agent serves as the leader and takes commands
and controls from outside operators directly, while the
rest N� 1 agents are followers and take controls as the
nearest neighbour law.

Mathematically, each agent’s dynamics can be seen
as a point mass and follows

_xi ¼ ui: ð3Þ
The control strategy for driving all follower agents is

ui ¼ �
X
j2N i

wijðxi � xj Þ þ wiixi, ð4Þ

where N i is the neighbour set of the agent i (could
contain i itself), and wij is weight of the edge from agent
j to agent i. On the other hand, the leader’s control
signal is not influenced by the followers and needs to
be designed, which can be represented by

_xN ¼ uN: ð5Þ
In other words, the leader affects its nearby agents,

but it does not get directly affected by the followers
since it only accepts the control input from an outside
operator. For simplicity, we will use z to stand for xN
in the sequel. It is known that the whole multi-agent
system under fixed communication topology can be
written as a linear system:

_x

_z

� �
¼ A B

0 0

� �
x

z

� �
þ 0

uN

� �
, ð6Þ

where A2R(N�1)�(N�1) and B2R(N�1)�1 are both
sub-matrices of the corresponding graph Laplacian
matrix �L

The communication network of dynamic agents
with directed information flow under link failure and
creation can usually described by switching topology.

224 X. Liu et al.
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Under m switching topologies, it is clear that the whole
system equipped with m subsystems can be written in a
compact form

_x

_z

� �
¼ Ai Bi

0 0

� �
x

z

� �
þ 0

uN

� �
, ð7Þ

or, equivalently,

_x ¼ Aixþ Biz,

_z ¼ uN,

�
ð8Þ

where i2 {1, . . . ,m}. Ai2R(N�1)�(N�1) and Bi2
R(N�1)�1 are both sub-matrices of the corresponding
graph Laplacian matrix �L. The matrix Ai reflects the
interconnection among followers, and the column
vector Bi represents the relation between followers
and the leader under corresponding subsystems. Since
the communication topologies among agents are time-
varying, so the matrices Ai and Bi are also varying as a
function of time. Therefore, the dynamical system
described in (7) can be naturally modelled as a
switched system (definition can be found latter).

Considering the structural controllability of multi-
agent system, system matrices Ai and Bi, i2 {1, . . . ,m}
are structured matrices, which means that their
elements are either fixed zeros or free parameters.
Fixed zeros imply that there is no communication link
between the corresponding agents and the free para-
meters stand for the weights of the communication
links. Our main task here is to find out under what
kinds of communication topologies, it is possible to
make the group motions under control and steer the
agents to the specific geometric positions or formation
as a whole group. Now this controllability problem
reduces to whether we can find a set of weights wij such
that the multi-agent system (7) is controllable. Then
the controllability problem of multi-agent system can
now be formulated as the structural controllability
problem of switched linear system (7):

Definition 2.1: The multi-agent system (7) with
switching topology, whose matrix elements are zeros
or free parameters, is said to be structurally control-
lable if and only if there exist a set of communication
weights wij that can make the system (7) controllable in
the classical sense.

2.3 Switched linear system and controllability matrix

In general, a switched linear system is composed of a
family of subsystems and a rule that governs the
switching among them, and is mathematically
described by

_xðtÞ ¼ A�ðtÞxðtÞ þ B�ðtÞuðtÞ, ð9Þ

where x(t)2Rn are the states, u(t)2Rr are piecewise
continuous input and �: [t0, 1)!M ¼4 {1, . . . ,m} is
the switching signal. System (9) contains m subsystems
(Ai,Bi), i2 {1, . . . ,m} and �(t)¼ i implies that the ith
subsystem (Ai, Bi) is activated at time instance t.

For the controllability problem of switched linear
systems, a well-known matrix rank condition was given
in Sun and Ge (2004):

Lemma 2.2: (Sun and Ge 2004) If matrix:

½B1, . . . ,Bm,A1B1, . . . ,AmB1, . . . ,AmBm,A
2
1B1, . . . ,

AmA1B1, . . . ,A
2
1Bm, . . . ,AmA1Bm, . . . ,A

n�1
1 B1, . . . ,

AmA
n�2
1 B1, . . . ,A1A

n�2
m Bm, . . . ,A

n�1
m Bm� ð10Þ

has full row rank n, then switched linear system (9) is
controllable, and vice versa.

This matrix is called the controllability matrix of
the corresponding switched linear system (9).

3. Structural controllability of multi-agent system

with single leader

The multi-agent system with a single leader under
switching topology has been modelled as switched
linear system (7). Before proceeding to the structural
controllability study, we first discuss the controllability
of multi-agent system (7) when all the communication
weights are fixed.

After simple calculation, the controllability matrix
of switched linear system (7) can be shown to have the
following form:

0, . . . ,0,B1, . . . ,Bm,A1B1 . . . ,A1A
N�3
m Bm, . . . ,A

N�2
m Bm

1, . . . , 1, 0, 0, 0, 0, 0, 0, 0, 0

� �
:

This implies that the controllability of the system (7)
coincides with the controllability of the following
system:

_x ¼ Aixþ Biz i 2 f1, . . . ,mg , ð11Þ
which is the extracted dynamics of the followers that
correspond to the x component of the equation.
Therefore we have following definition:

Definition 3.1: The multi-agent system (7) is said to
be structurally controllable under leader z if system
(11) is structurally controllable under control input z.

For simplicity, we use (Ai,Bi) i2 {1, . . . ,m} to
represent switched linear system (11) in the sequel. In
(11), each subsystem (Ai, Bi) can be described by a
directed graph (Lin 1974):

Definition 3.2: The representation graph of struc-
tured system (Ai,Bi) is a directed graph Gi, with vertex
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set V i¼X i [ U i, where X i¼ {x1,x2, . . . , xn}, which is

called state vertex set and U i¼ {u1, u2, . . . , ur}, which

is called input vertex set, and edge set I i ¼ IUiXi
[

IXiXi
, where IUiXi

¼ fðup,xqÞjBqp 6¼ 0, 1 � p � r, 1 �
q � ng and IXiXi

¼ fðxp, xqÞjAqp 6¼ 0, 1 � p � n, 1 �
q � ng are the oriented edges between inputs and

states and between states defined by the interconnec-

tion matrices Ai and Bi above. This directed graph

(for notational simplicity, we will use digraph to refer

to directed graph) Gi is also called the graph of matrix

pair (Ai,Bi) and denoted by Gi(Ai,Bi).

For each subsystem, we have got a graph Gi with

vertex set V i and edge set I i to represent the underlying

communication topologies. As to the whole switched

system, the representing graph, which is called union

graph, is defined as follows:

Definition 3.3: The switched linear system (11) can be

represented by a union digraph, defined as a flow

structure G. Mathematically, G is defined as

G1 [ G2 [ . . . [ Gm ¼ fV1 [ V2 [ . . . [ Vm;

I1 [ I2 [ . . . [ Img: ð12Þ
Remark 1: It turns out that union graph G is the

representation of linear structured system: (A1þA2þ
� � � þAm, B1þB2þ � � �þBm).

Remark 2 : In many literature works about controll-

ability of multi-agent systems (Tanner 2004; Liu et al.

2008), the underlying communication topology among

the agents is represented by undirected graph, which

means that the communication among the agents is

bidirectional. Here we still adopt this kind of commu-

nication topology. Then wij and wji are free parameters

or zero simultaneously (in numerical realisation, the

values of wij and wji can be chosen to be different).

Besides, one edge in undirected graph can be treated as

two oriented edges. Consequently, even though all the

analysis and proofs for structural controllability of

multi-agent systems are based on the directed graph

(the natural graphic representation of matrix pair

(Ai,Bi) is digraph), the final result will be expressed in

undirected graph form.

Before proceeding further, we need to introduce

two definitions which were proposed in Lin (1974) for

linear structured system _x ¼ Axþ Bu first:

Definition 3.4 (Lin 1974): The matrix pair (A,B) is

said to be reducible or of form I if there exist

permutation matrix P such that they can be written

in the following form:

PAP�1 ¼ A11 0
A21 A22

� �
, PB ¼ 0

B22

� �
, ð13Þ

where A112Rp�p, A212R(n�p)�p, A222R(n�p)�(n�p)

and B222R(n�p)�r.

Remark 3: Whenever the matrix pair (A,B) is of

form I, the system is structurally uncontrollable (Lin

1974) and meanwhile, the controllability matrix

Q¼ [B,AB, . . . ,An�1B] will have at least one row

which is identically zero for all parameter values

(Glover and Silverman 1976). If there is no such

permutation matrix P, we say that the matrix pair

(A,B) is irreducible.

Definition 3.5 (Lin 1974): The matrix pair (A,B) is

said to be of form II if there exist permutation matrix P

such that they can be written in the following form:

PAP�1,PB
� � ¼ P1

P2

� �
, ð14Þ

where P22R(n�k)�(nþr), P12Rk�(nþr) with no more

than k� 1 non-zero columns (all the other columns of

P1 have only fixed zero entries).

Here we need to recall a known result in literature

for structural controllability of multi-agent system with

fixed topology (Zamani and Lin 2009):

Lemma 3.6 (Zamani and Lin 2009): The multi-agent

system with fixed topology under the communication

topology G is structurally controllable if and only if

graph G is connected.

This lemma proposed an interesting graphic con-

dition for structural controllability in fixed topology

situation and revealed that the controllability is totally

determined by the communication topology. However,

how about in the switching topology situation?

According to Lemma 2.2, once we impose proper

scalars for the parameters of the system matrix (Ai, Bi)

to satisfy the full rank condition, the multi-agent

system (11) is structurally controllable. However, this

only proposed an algebraic condition. Do we still have

very good graphic interpretation for the relationship

between the structural controllability and switching

interconnection topologies? The following theorem

answers this question and gives a graphic necessary

and sufficient condition for structural controllability

under switching topologies.

Theorem 3.7: The multi-agent system (11) with the

communication topologies Gi, i2 {1, . . . ,m} is structu-

rally controllable if and only if the union graph G is

connected.

Proof:

Necessity: Assume that the multi-agent switched

system is structurally controllable, we want to prove

that the union graph G is connected, which is

226 X. Liu et al.
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equivalent to that the system has no isolated agents in

the union graph G (Zamani and Lin 2009).
Suppose that the union graph G is disconnected and

for simplicity, we will prove by contradiction for the
case that there exits only one disconnected agent. The

proof can be straightforwardly extended to more
general cases with more than one disconnected
agents. If there is one isolated agent in the union
graph, there are two possible situations: the isolated

agent is the leader or one of the followers. On the one
hand, if the isolated agent is the leader, it follows that
B1þB2þ � � � þBm is identically a null vector. So every

Bi is a null vector. Easily, we can conclude that the
controllability matrix for the switched system is never
of full row rank N� 1, which means that the multi-
agent system is not structurally controllable. On the

other hand, if the isolated agent is one follower, we get
that the matrix pair (A1þA2þ � � � þAm,B1þB2þ
� � � þBm) is reducible. By Definition 3.4, the controll-

ability matrix

½B1 þ B2 þ � � � þ Bm,

ðA1 þ A2 þ � � � þ AmÞðB1 þ B2 þ � � � þ BmÞ,
, . . . ,

ðA1 þ A2 þ � � � þ AmÞN�2ðB1 þ B2 þ � � � þ BmÞ�
always has at least one row that is identically zero.
Expanding the matrix yields

½B1 þ B2 þ � � � þ Bm,

A1B1 þ A2B1 þ � � � þ AmB1 þ A1B2 þ A2B2

þ � � � þ AmB2 þ � � � þ A1Bm þ A2Bm � � � þ AmBm

, . . . ,

AN�2
1 B1 þ A2A

N�3
1 B1 þ � � � þ AN�2

m Bm�:
The zero row is identically zero for every parameter.
This implies that every component in this matrix, such

as Bi,AiBj and A
p
i A

q
j Br, has the same row always to be

zero. As a result, the controllability matrix

½B1, . . . ,Bm,A1B1, . . . ,AmB1, . . . ,AmBm,A
2
1B1, . . . ,AmA1B1,

. . . ,A2
1Bm, . . . ,AmA1Bm, . . . ,A

n�1
1 B1, . . . ,AmA

n�2
1 B1, . . . ,

A1A
n�2
m Bm, . . . ,A

n�1
m Bm�

always has one zero row. Therefore, the multi-agent

system (11) is not structurally controllable. Until now,
we have got the necessity proved.

Sufficiency: If the union graph G is connected, we want
to prove that the multi-agent system (11) is structurally

controllable.
According to Lemma 3.6, the connectedness of the

union graph G implies that the corresponding system
(A1þA2þA3þ � � � þAm, B1þB2þB3þ � � �þBm) is
structurally controllable. Then there exist some scalars

for the parameters in system matrices that make the

controllability matrix

½B1 þ B2 þ � � � þ Bm,

ðA1 þ A2 þ � � � þ AmÞðB1 þ B2 þ � � � þ BmÞ,
, . . . ,

ðA1 þ A2 þ � � � þ AmÞN�2ðB1 þ B2 þ � � � þ BmÞ�
has full row rank N� 1. Expanding the matrix, it

follows that the matrix

½B1 þ B2 þ � � � þ Bm,

A1B1 þ A2B1 þ � � � þ AmB1 þ A1B2 þ A2B2

þ � � � þ AmB2 þ . . .þ A1Bm þ A2Bm . . .þ AmBm

, . . . ,

AN�2
1 B1 þ A2A

N�3
1 B1 þ � � � þ AN�2

m Bm�,
has full rank N� 1. Next, we add some column vectors

to the above matrix and get

½B1þB2þ�� �þBm,B2, . . . ,Bm,

A1B1þA2B1þ�� �þAmB1þA1B2þA2B2þ�� �þAmB2

þ�� �þA1BmþA2Bmþ�� �þAmBm,A2B1,A3B1, . . . ,AmBm

, . . . ,

AN�2
1 B1þA2A

N�3
1 B1þ�� �þAN�2

m Bm,A2A
N�3
1 B1, . . . ,A

N�2
m Bm�:

This matrix still has N� 1 linear independent column

vectors, so it has full row rank. Next, subtract

B2, . . . ,Bm from B1þB2þ � � � þBm; subtract A2B1,

. . . ,AmBm from A1B1þA2B1þ � � � þAmBm and sub-

tract A2A
N�3
1 B1, . . . ,A

N�2
m Bm from AN�2

1 B1þ
A2A

N�3
1 B1 þ � � � þ AN�2

m Bm. Since this column funda-

mental transformation will not change matrix rank, the

matrix still has full row rank. Now the matrix becomes

½B1, . . . ,Bm,A1B1, . . . ,AmB1, . . . ,AmBm,A
2
1B1, . . . ,AmA1B1,

. . . ,A2
1Bm, . . . ,AmA1Bm, . . . ,A

n�1
1 B1, . . . ,AmA

n�2
1 B1, . . . ,

A1A
n�2
m Bm, . . . ,A

n�1
m Bm�,

which is the controllability matrix of system (11) and

has full row rank N� 1. Therefore, the multi-agent

system is structurally controllable. œ

4. Structural controllability of multi-agent system

with multi-leader

In the above discussion, we assume the multi-agent

system has totally N agents and the Nth agent serves as

the leader and takes commands and controls from

outside operators directly, while the rest N� 1 agents

are followers and take controls as the nearest

neighbour law. In the following part, we will discuss

the situation that several agents are chosen as the
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leaders of the whole multi-agent systems, which is
actually an extension of single-leader case.

Similar to the single-leader case, the multi-agent
system with multiple leaders is given by

_xi ¼ ui, i ¼ 1, . . . ,N,

_xNþj ¼ uNþj, j ¼ 1, . . . , nl,

�
ð15Þ

where N and nl represent the number of followers and
leaders, respectively. xi indicates the state of the ith
agent, i¼ 1, . . . ,Nþ nl.

The control strategy ui, i¼ 1, . . . ,N for driving all
follower agents is the same as the single-leader case.
The leaders’ control signal is still not influenced by the
followers and we are allowed to pick uNþj, j¼ 1, . . . , nl
arbitrarily. For simplicity, we use vector x to stand for
the followers’ states and z to stand for the leaders’
states.

Then the whole multi-agent system equipped with
m communication topologies can be written in a
compact form

_x

_z

� �
¼ Ai Bi

0 0

� �
x

z

� �
þ 0

u

� �
, ð16Þ

or, equivalently,

_x ¼ Aixþ Biz,

_z ¼ u,

�
ð17Þ

where i2 {1, . . . ,m}. Ai2RN�N and Bi 2 RN�nl are
both sub-matrices of the corresponding graph
Laplacian matrix �L.

The dynamics of the followers can be extracted as

_x ¼ Aixþ Biz, i 2 f1, . . . ,mg: ð18Þ
Remark 4: Similar to the single-leader case, the
structural controllability of system (16) coincides with
the structural controllability of system (18). And we
say that the multi-agent system (15) with switching
topology and multi-leader is structurally controllable if
and only if the switched linear system (18) is
structurally controllable with z as the control inputs.

Before proceeding further, we first discuss the
structural controllability of multi-agent systems with
multi-leader under fixed topology with the following
dynamics:

_x ¼ Axþ Bz, ð19Þ
where A2RN�N and B 2 RN�nl are both sub-matrices
of the graph Laplacian matrix �L.

In Ji et al. (2008a) and Ji, Wang, Lin, and Wang
(2009), a new graph topology, leader–follower con-
nected topology was proposed:

Definition 4.1 (Ji et al. 2008a): A follower subgraph
Gf of the interconnection graph G is the subgraph
induced by the follower set Vf (here is x). Similarly, a

leader subgraph Gl is the subgraph induced by the
leader set V l (here is z).

Denote by Gc1 , . . . ,Gc� , the connected components
in the follower Gf. The definition of leader-follower
connected topology is as follows:

Definition 4.2 (Ji et al. 2009): The interconnection
graph G of multi-agent system (19) is said to be leader–
follower connected if for each connected component
Gci of Gf, there exists a leader in the leader subgraph Gl,
so that there is an edge between this leader and a node
in Gci , i ¼ 1, . . . , �.

Based on this new graph topology, we can derive
the criterion for structural controllability for multi-
agent system (19) under fixed topology:

Theorem 4.3: The multi-agent system (19) with multi-
leader and fixed topology under the communication
topology G is structurally controllable if and only if
graph G is leader–follower connected.

Proof:

Necessity: The idea of necessity proof is similar to the
proof of lemma 3 in Ji et al. (2008a). We assume that
there exists one connected component Gcp not con-
nected to the leader subgraph Gl. Define Ai and Bi

matrices as sub-matrices of A and B, the same as the Fi

and Ri matrices in lemma 3 of Ji et al. (2008a).
Following the analysis in lemma 3 of Ji et al. (2008b),
can be easity obtained as the controllability matrix of
multi-agent system (19)

C ¼

B1 A1B1 A2
1B1 � � � AN�1

1 B1

..

. ..
. ..

. � � � ..
.

0 0 0 � � � 0

..

. ..
. ..

. � � � ..
.

B� A�B� A2
�B� � � � AN�1

� B�

2
6666664

3
7777775
: ð20Þ

Consequently, rank C¼ row rank C5N. The max-
imum rank of C is less than N, which implies that the
corresponding multi-agent system (19) is not structu-
rally controllable.

Sufficiency:We adopt the Proof of theorem 1 in Ji et al.
(2009) to help us prove the sufficiency. The commu-
nication graph G consists of several connected compo-
nents G(i), i¼ 1, . . . , �, which can be partitioned into
two subgraphs: induced leader subgraph GðiÞ

l and
induced follower subgraph GðiÞ

f . For each connected
components G(i), i¼ 1, . . . , �, it can be modelled as a
linear system with its system matrices being sub-
matrices of A and B matrices. Following the analysis
in Theorem 1 in Ji et al. 2009), the following equation
can be deduced:

rank C ¼ rank C1 þ rank C2 þ � � � þ rank Ck, ð21Þ
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where C is the controllability matrix of multi-agent
system (19) and Ci is the controllability matrix of
connected component G(i). The independence of these
connected components guarantees the independence of
free parameters in the corresponding matrices, which
correspond to the communication weights of the links.
Consequently, we have that

g-rank C¼ g-rank C1þg-rank C2þ�� �þg-rank Ck
where g-rank of a structured matrix M is defined to be
the maximal rank that M achieves as a function of its
free parameters. Besides, if in some connected compo-
nent G(i), there is more than one leaders, we can split it
into several connected components with single leader
or choose one as leader and set all weights of the
communication links between the followers and other
leaders to be zero. After doing this, connected
component G(i) is a connected topology with single
leader. According to Lemma 3.6, Ci has full g-rank,
which equals to the number of follower agents in G(i).
Moreover, there is no common follower agent among
the connected components. Consequently, g-rank C¼N
and multi-agent system (19) is structurally
controllable. œ

With the above definitions and theorems, we are in
the position to present the graphical interpretation of
structural controllability of multi-agent systems under
switching topology with multi-leader:

Theorem 4.4: The multi-agent system (16) or (18) with
the communication topologies Gi, i2 {1, . . . ,m} and
multi-leader is structurally controllable if and only if
the union graph G is leader–follower connected.

Proof: As stated in Remark 1, the union graph G is
the representation of the linear system: (A1þA2þ
A3þ � � � þAm, B1þB2þB3þ � � � þBm). Therefore, the
condition that the union graph G is leader–follower
connected is equivalent to the condition that linear
system (A1þA2þA3þ � � � þAm, B1þB2þB3þ
� � � þBm) is structurally controllable. Following the
proof procedure in Theorem 3.7, this result can be
proved. œ

5. Numerical examples

Next we will give two examples to illustrate the results
in this paper and for simplicity, we take single leader
case as examples.

We consider here a four-agent network with agent 0
as the leader and with switching topology described by
the graphs in Figure 1(a) and (b) (the self-loops are not
depicted, because it will not influence the connectivity).
Overlaying the subgraphs together can get the union
graph G of this example as shown in Figure 1(c).

It turns out that the union graph of the switched

system is connected. By theorem 3.7, it is clear that the

multi-agent system is structurally controllable.
Next, the rank condition of this multi-agent system

will be checked.
From Figure 1, calculating the Laplacian matrix

for each subgraph topology, it can be obtained that the

system matrices of each subsystem are (one thing we

should mention here with the control strategy that each

agent can use its own state information, the diagonal

elements always have free parameters, so we can get

the following form of sub-matrix of Laplacian matrix):

A1 ¼
�1 0 �4

0 �2 0

�5 0 �3

2
64

3
75, B1 ¼

0

�6

0

2
64

3
75;

A2 ¼
�7 �10 0

�11 �8 0

0 0 �9

2
64

3
75, B2 ¼

0

0

�12

2
64

3
75:

According to Lemma 2.2, the controllability matrix

for this switched linear system is: ½B1,B2,A1B1,

A2B1, A1B2,A2B2,A
2
1B1,A2A1B1,A1A2B1,A

2
2B1,A

2
1B2,

A2A1B2,A1A2B2,A
2
2B2�: After simple calculation, we

can find three column vectors in the controllability

matrix:

0

�6

0

2
64

3
75,

0

0

�12

2
64

3
75,

�4�12

0

�3�12

2
64

3
75:

Imposing all the parameters scalar 1, it follows that

these three column vectors are linearly independent

and this controllability matrix has full row rank.

Therefore, the multi-agent system is structurally

controllable.
In the second example, we still consider a four-

agent network with agent 0 as the leader and with

switching topology described by the graphs in

Figure 2(a) and (b). Overlaying the subgraphs together

can get the union graph G of this example shown in

Figure 2(c). It turns out that the union graph of the

switched system is disconnected, because agent 2 is

isolated. According to theorem 3.7, it is clear that the

multi-agent system is not structurally controllable.

(a) (b) (c)

Figure 1. Switched network with two subsystems.
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Similarly, the rank condition of this switched linear
system needs to be checked to see whether it is
structurally controllable or not.

From Figure 2, calculating the Laplacian matrix
for each graphic topology, it is clear that the system
matrices of each subsystem are :

A1 ¼
�1 0 �4

0 �2 0

�5 0 �3

2
64

3
75, B1 ¼

�6

0

0

2
64

3
75;

A2 ¼
�7 0 �10

0 �8 0

�11 0 �9

2
64

3
75, B2 ¼

0

0

�12

2
64

3
75:

Computing the controllability matrix of this
example yields the controllability matrix:

�6 0 �1�6 . . . �7�10�12 þ �9�10�12

0 0 0 . . . 0

0 �12 �5�6 . . . �10�11�12 þ �29�12

2
64

3
75:

This matrix has the second row always to be zero
for all the parameter values, which makes the
maximum rank of this matrix less than 3. Therefore,
this multi-agent system is not structurally controllable.

6. Conclusions and future work

In this article, the structural controllability problem of
the multi-agent systems interconnected via a switching
weighted topology has been considered. Based on
known results in the literature of switched systems and
graph theory, graphic necessary and sufficient condi-
tions for the structural controllability of multi-agent
systems under switching communication topologies
were derived. It was shown that the multi-agent system
is structurally controllable if and only if the union
graph G is connected (single leader) or leader–follower
connected (multi-leader). The graphic characterisa-
tions show a clear relationship between the controll-
ability and interconnection topologies and give us a
foundation to design the optimal control effect for the
switched multi-agent system.

Some interesting remarks can be made on this
result. First, it gives us a clear understanding on what
are the necessary information exchanges among agents

to make the group of agents behaviour in a desirable
way. Second, it provides us a guideline to design
communication protocols among dynamical agents. It
is required that the resulted communication topology
among agents should somehow remain connected as
time goes on, which is quite intuitive and reasonable.
Third, it is possible to reduce communication load by
disable certain links or make them on and off as long
as the union graph is connected. Several interesting
research questions arise from this scenario. For
example, what is the optimal switching sequence of
topologies in the sense of minimum communication
cost? How to co-design the switching topology path
and control signals to achieve desirable configuration
in an optimal way? We will investigate these questions
in our future research.
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