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Abstract—In this paper, we present the systematic design and
implementation of a robust real-time embedded vision system
for an unmanned rotorcraft for ground target following. The
hardware construction of the vision system is presented, and an
onboard software system is developed based on a multithread tech-
nique capable of coordinating multiple tasks. To realize the au-
tonomous ground target following, a sophisticated feature-based
vision algorithm is proposed by using an onboard color camera
and navigation sensors. The vision feedback is integrated with the
flight control system to guide the unmanned rotorcraft to follow a
ground target in flight. The overall vision system has been tested
in actual flight missions, and the results obtained show that the
overall system is very robust and efficient.

Index Terms—Image processing, real-time systems, target
detection and following, unmanned aerial vehicles (UAVs), vision
systems.

I. INTRODUCTION

UNMANNED AERIAL VEHICLES (UAVs) have recently
aroused much interest in the civil and industrial markets,

ranging from industrial surveillance, agriculture, and academic
research to wildlife conservation [6], [8], [14], [15], [26], [32],
[34]. In particular, owing to its vertical takeoff-and-landing,
hovering, and maneuvering capabilities, the unmanned rotor-
craft has received much attention in the defense and secu-
rity community [1]. More specifically, an unmanned rotorcraft
equipped with a vision payload can perform a wide range of
tasks, such as search and rescue, surveillance, target detec-
tion and tracking, etc., as vision provides a natural sensing
modality—in terms of human comprehension—for feature de-
tection and tracking [28], [29]. Instead of vision being merely
a payload, many research efforts have also been devoted to
vision-aided flight control [2], [17], [22], tracking [25], [28],
terrain mapping [27], and navigation [18], [23].

We note that most of the works reported in the literature,
however, focus on only a certain part of vision systems for
UAVs, such as hardware construction or vision algorithms.
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Many of them are adopted from those designed for ground
robots, which are not very suitable for applications on UAVs.
To the best of our knowledge, there is hardly any systematic
documentation in the open literatures dealing with the complete
design and implementation of the vision system for unmanned
rotorcrafts, which includes architectural and algorithmic de-
signs of real-time vision systems. In addition, although the
target tracking in video sequences has already been studied in
a number of applications, there has been very little research
related to the implementation of vision-based target following
for UAVs.

In this paper, we present the design and implementation of
a comprehensive real-time embedded vision system for an un-
manned rotorcraft, which includes an onboard embedded hard-
ware system, a real-time software system, and mission-based
vision algorithms. More specifically, the onboard hardware
system is designed to fulfill the image processing requirements
by using the commercial off-the-shelf products, such as PC104
embedded modules. Real-time vision software is developed,
which is running on the real-time operating system QNX. An
advanced and efficient vision algorithm is then proposed and
implemented to realize the ground target tracking, which is
suited for the UAVs. The proposed vision scheme is integrated
with the onboard navigation sensors to estimate the relative
distance between the target and the UAV. Finally, using the
vision feedback, a two-layer target tracking control framework
is utilized to control a pan/tilt servomechanism to keep the
target in the center of the image and guide the UAV to follow
the motion of the target.

The remainder of this paper is organized as follows:
Sections II and III present the development of hardware and
software of the embedded vision system for a UAV, respec-
tively, whereas coordinate systems adopted in the UAV vision
systems are described in Section IV. Section V details the
vision-based ground target detection and tracking algorithms,
as well as the target-following scheme based on vision signal
feedback. The experimental results of the vision system ob-
tained through actual flight tests are presented in Section VI.
Finally, we draw some concluding remarks in Section VII.

II. HARDWARE CONFIGURATION OF THE VISION SYSTEM

The hardware configuration of the proposed onboard vision
system for the UAV, as shown in Fig. 1, consists of the following
five main parts: a visual sensor, an image acquisition module, a
vision processing module, a pan/tilt servomechanism, and video
and data links.
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Fig. 1. Configuration of the overall vision system.

A. Visual Sensor: Video Camera

A visual sensor is employed on board to obtain in-flight
visual information of the surrounding environment of the UAV.
Interesting visual information is composed of silent and dy-
namic features, such as the color and shape of landmarks, and
motions of vehicles. A color video camera is selected as the
onboard visual sensor in our system, which has a compact size
and a weight less than 30 g, as well as 380 TV line resolution
and 40◦ field of view.

B. Image Acquisition Module: Frame Grabber

The primary function of a frame grabber is to perform the
A/D conversion of the analog video signals and then output
the digitalized data to a host computer for further process-
ing. Our selection is a PC/104(-plus)-standard frame grab-
ber, a Colory 104, which has the following features: 1) high
resolution—Colory 104 is capable of providing a resolution
of up to 720 × 576 (pixels), which is sufficient for online
processing; 2) multiple video inputs—it is able to collect data
from multiple cameras; 3) sufficient processing rate—the high-
est A/D conversion rate is 30 frames per second (FPS), which
is higher than the onboard vision processing rate (10 FPS); and
4) featured processing method—two tasks are used alterna-
tively to convert the digital video signal into specified formats.

C. Vision Processing Module: Vision Computer

As shown in Fig. 1, the digitalized visual signals provided
by the frame grabber are transferred to the onboard vision
computer that is the key unit of the vision system. The vision
computer coordinates the overall vision system, such as image
processing, target tracking, and communicating with the flight
control computer, which is to be described in detail later in
Section V. In this paper, the configuration of using two sepa-
rated embedded computers in the onboard system for UAVs is
proposed: one for flight control and another one for machine
vision algorithms. We choose such a configuration for onboard
system because of the following reasons: 1) the computation

consumption of flight control task and vision program are very
heavy, which can hardly be carried out together in a single
embedded computer; 2) the sampling rate of the flight control
computer is faster than the vision computer, since the faster
sampling rate is required to stabilize the unmanned rotorcraft;
3) the decoupled structure reduces the negative effect of data
blocking caused by the vision program and flight control system
and thus makes the overall system more reliable.

In the proposed vision system, a separated onboard PC104
embedded computer, Cool RoadRunner III, is employed to
process the digitalized video signal and execute the vision
algorithms. The core of the board is an Intel LV Pentium-III
processor running at 933 MHz. A compact flash memory card
is used to save the captured images.

D. Pan/Tilt Servomechanism

In the application of the ground target following, it is re-
quired to keep the target objects in the field of view of the cam-
era to increase the flexibility of vision-based tracking. As such,
we decide to mount the camera on a pan/tilt servomechanism
that can rotate in the horizontal and vertical directions.

E. Wireless Data Link and Video Link

In order to provide ground operators with clear visualization
to monitor the work that the onboard vision is processing
during flight tests, the video captured by the onboard camera
is transmitted and displayed in a ground control station. An
airborne 2.4-GHz wireless video link is used to transmit the
live video captured to the ground control station.

III. CONFIGURATION OF THE VISION SOFTWARE SYSTEM

Based on the proposed hardware system, the configuration of
the onboard vision software system is presented. The purpose of
the vision software system is to coordinate the work of onboard
devices and implement vision algorithms. Since the vision
software system targets for real-time applications and runs in
an embedded PC104 computer, QNX Neutrino, a real-time
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embedded operating system is employed as the developing
platform. QNX Neutrino has a microkernal that requires fewer
system resources and performs more reliably and efficiently for
embedded systems during runtime compared to the traditional
monolithic kernel.

The vision software program coordinates tasks such as cap-
turing video, controlling pan/tilt servomechanism, and perform-
ing the vision detecting and tracking algorithms. To make the
vision software system easy to design and robust to perform,
the entire vision software system is divided into several main
blocks. Each block is assigned a special task as follows.

1) CAM: Reading RGB24 images from the buffers assigned
to the frame grabber. The reading rate is set up to be
10 FPS. In order to reduce the risk of damaging the image
data, two buffers are used to store the captured images by
the frame grabber alternatively.

2) IMG: Processing the captured images and carrying out
the vision algorithms, such as the automatic tracking and
camera control, which will be explained in Section V.

3) SVO: Controlling the rotation of the pan/tilt servomech-
anism to keep the ground target in a certain location of
the image.

4) SAV: Saving the captured and processed images to a high-
speed compact flash.

5) COM: Communicating with the flight control computer.
The flight control computer sends the states of the UAV
and commands from the ground station to the vision
computer, and the vision computer sends the estimated
relative distance between the UAV and the ground target
to the flight control computer to guide the flight of the
UAV.

6) USER: Providing a mean for users to control the vision
program such as running and stopping the tracking, as
well as changing the parameters of the vision algorithms.

7) MAIN: Managing and scheduling the work of the entire
vision software system.

IV. COORDINATE FRAMES USED IN VISION SYSTEMS

Shown in Fig. 2 are the coordinate systems adopted in the
UAV vision systems. More specifically, we have the following.

1) Local north–east–down (NED) coordinate system
(labeled with a subscript “n”) is an orthogonal frame on
the surface of the Earth, whose origin is the launching
point of the aircraft on the surface of the Earth.

2) Body coordinate system (labeled with subscript “b”) is
aligned with the shape of the fuselage of the aircraft.

3) Servo base coordinate system (labeled with subscript “s”)
is attached to the base of the pan/tilt servomechanism,
which is aligned with the body coordinate system of
the UAV.

4) Spherical coordinate system (labeled with subscript “sp”)
is also attached to the base of the pan/tilt servomech-
anism. It is used to define the orientation of the camera
and the target with respect to the UAV. Given a generic
point ps = (xs, ys, zs)T in the servo base coordinate sys-
tem, its position can be defined in the spherical coordinate

Fig. 2. Coordinate frames used in unmanned vision systems.

system by three numbers: radius rsp, azimuth angle θsp,
and elevation angle φsp, which is given by
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5) Camera coordinate system (labeled with subscript “c”),
whose origin is the optical center of the camera. The
Zc-axis is aligned with the optical axis of the camera and
points from the optical center C toward the image plane.

6) Image frame (or the principle image coordinate system)
(appended with subscript “i”) has the origin at the princi-
pal point. The coordinate axes Xi and Yi are aligned with
the camera coordinate axes Xc and Yc, respectively.

V. VISION-BASED GROUND TARGET FOLLOWING

To realize the vision-based ground target detection, many
vision approaches have been proposed worldwide, such as
template matching [7], [28], background subtraction [19], [35],
optical flow [3], [18], stereo-vision-based technologies [11],
and feature-based approaches [20], [31], [36], [39].

In this paper, a sophisticated vision-based target detection
and tracking scheme is proposed, as shown in Fig. 3, which
employs robust feature descriptors and efficient image-tracking
techniques. Based on the vision sensing data and navigation
sensors, the relative distance to the target is estimated. Such
estimation is integrated with the flight control system to guide
the UAV to follow the ground target in flight.

A. Target Detection

The purpose of the target detection is to identify the target
of interest from the image automatically based on a database of
preselected targets. A toy car is chosen as the ground target.
A classical pattern recognition procedure is used to identify
the target automatically, which includes three main steps, i.e.,
segmentation, feature extraction, and pattern recognition.

1) Segmentation: The segmentation step aims to separate
the objects of interest from background. To simplify the
further processing, some assumptions are made. First, the target
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Fig. 3. Flow chart of the ground target detection, tracking, and following.

and environments exhibit Lambertian reflectance, and in other
words, their brightness is unchanged regardless of viewing
directions. Second, the target has a distinct color distribution
compared to the surrounding environments.

Step 1) Threshold in color space. To make the surface color
of the target constant and stable under the varying
lighting condition, the color image is represented in
HSV space, which stands for hue (hue), saturation
(sat), and value (val) introduced originally by Smith
[33]. Precalculated threshold ranges are applied to
the hue, sat, and val channels

huer = [h1, h2] satr = [s1, s2] valr = [v1, v2].
(2)

Only the pixel values falling in these color ranges are
described as the foreground points, and pixels of the
image that fall out of the specified color range are
removed. The procedure of the image preprocess is
shown in Fig. 4.

Step 2) Morphological operation. As shown in Fig. 4, nor-
mally, the segmented image is not smooth and has
many noise points. Morphological operations are
then employed to filter out noise, fuse narrow breaks
and gulfs, eliminate small holes, and fill gaps in the
contours. Next, a contour detection approach is used
to obtain the complete boundary of the objects in the
image, which will be used in the feature extraction.

2) Feature Extraction: Generally, multiple objects will be
found in the segmented images, including the true target and
false objects. The geometric and color features are used as the
descriptors to identify the true target.

Geometry Feature Extraction: To describe the geometric
features of the objects, the four lowest moment invariants
proposed in [25] are employed since they are independent of
position, size, and orientation in the visual field. The four lowest
moment invariants, defined in the segmented image I(x, y), are
given by

φ1 = ηm
20 + ηm

02 (3)

φ2 = (ηm
20 − ηm

02)
2 + 4 (ηm

11)
2 (4)

φ3 = (ηm
30 − 3ηm

12)
2 + (ηm

03 − 3ηm
21)

2 (5)

φ4 = (ηm
30 + ηm

12)
2 + (ηm

03 + ηm
21)

2 (6)

where ηm
pq, for p+ q = 2, 3, . . ., is the improved normalized

central moment defined as

ηm
pq =

μc
pq

A(p+q+1)/2
(7)

where A is the interior area of the shape and μc
pq is the central

moment defined as

μc
pq =

∫
C

(x− x̄)p(y − ȳ)q ds, p, q = 0, 1, . . . . (8)

Note that, in (8), C is the boundary curve of the shape,
∫

C is a
line integral along C, ds =

√
(dx)2 + (dy)2, and [x̄, ȳ] is the

coordinate of the centroid of the shape in the image plane.
In addition, compactness is another useful feature descriptor

for recognition. Compactness of a shape is measured by the
ratio of the square root of the area and the perimeter, which
is given by

Compactness : βc =
√
A

C
. (9)

It can be easily proven that compactness is invariant with
respect to translation, scaling, and rotation.

Color Feature Extraction: To make the target detection and
tracking more robust, we also employ color histogram to rep-
resent the color distribution of image area of the target, which
is not only independent of the target orientation, position and
size but also robust to partial occlusion of the target and easy to
implement. Due to the stability in outdoor environments, only
hue and val are employed to construct the color histogram for
object recognition, which is defined as

H = {hist(i, j)} , i = 1, . . . , Nhue; j = 1, . . . , Nval

(10)

where

hist(i, j) =
∑

(x,y)∈Ω

δ

(
i,

[
hue(x, y)
Nhue

])
δ

(
j,

[
val(x, y)
Nval

])

and where Nhue and Nval are the partition numbers of hue and
val channels, respectively, Ω is the region of the target, [·] is
the nearest integer operator, and δ(a, b) is the Kronecker delta
function.
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Fig. 4. Illustration of segmentation. (a) Input image. (b) Image in HSV color space. (c) Image after thresholding. (d) Image after morphological operations.
(e) Image after contour detection. (f) Regions of interest.

Dynamic Features: Aside from the static features extracted
from the foreground objects, we further calculate their dynamic
motion using the Kalman filtering technique. The distance
between the location of each object zi and the predicted location
of the target ẑ is employed as a dynamic feature. The detailed
procedure for predicting the location of the target in the image
is to be discussed in Section V-B1. Both the static and dynamic
features of them are then employed in the pattern recognition.

The extracted features of an object need to be arranged in
a compact and identifiable form [30]. A straightforward way
is to convert these features in a high-dimensional vector. For
example, the feature vector of the ith object is given by

αi = [βc,i, φ1,i, φ2,i, φ3,i, φ4,i, Hi, zi]

= {αk,i}, k = 1, . . . , d (11)

where d is the dimension of the feature vector.
3) Pattern Recognition: The purpose of the pattern recog-

nition is to identify the target from the extracted foreground
objects in terms of the extracted features in (11). The straight-
forward classifier is to use the nearest neighbor rule. It calcu-
lates a metric or “distance” between an object and a template
in a feature space and assigns the object to the class with
the highest scope. However, to take advantage of a priori
knowledge of the feature distribution, the classification problem
is formulated under the model-based framework and solved by
using a probabilistic classifier. A discriminant function, derived
from Bayes’ theorem, is employed to identify the target. This
function is computed based on the measured feature values of
each object and the known distribution of features obtained
from training data.

Step 1) Prefilter: Before classifying the objects, a prefilter
is carried out to remove the objects whose feature
values are outside certain regions determined by a
priori knowledge. This step aims to improve the

robustness of the pattern recognition and speed up
the calculation.

Step 2) Discriminant function: We use the discriminant
function, derived from Bayes’ theorem, to determine
the target based on the measured feature values of
each object and the known distribution of features
of the target obtained from the training data. We
assume that these features are independent and fulfill
normal distributions. Thus, we can define the simpli-
fied discriminant function with weightings as

f ′j(αi)=
5∑

k=1

wk

(
αk,i − μk,j

σk,j

)2

+w6

(
dc(Hi, Gj) − μ6,j

σ6,j

)2

where

dc(Hi, Gj) =

Nh∑
p=1

Nv∑
q=1

min (Hi(p, q), Gi(p, q))

min (|Hi|, |Gj |) (12)

and αk,i is the kth element of the feature vector of
the object i. μk,j and σk,j are the mean and standard
deviation of the distribution of the corresponding
feature. Gj is the color histogram template of a
predefined target. In fact, the location information
is not used in the detection mode. The target i with
the minimum value is considered as the candidate
target. w1 to w6 are the weighting scalars of the
corresponding features. In terms of the likelihood
values of the objects, a decision rule is defined as

D=

⎧⎪⎪⎨
⎪⎪⎩

target=arg minif
′
j(αi), which belongs to class j,

if min f ′j(αi) ≤ Γ′
j

no target in the image,
if min f ′j(αi) > Γ′

j
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where Γ′ is a threshold value chosen based on the
training data. This decision rule chooses the object,
for example, i, with the smallest value of the sim-
plified discriminant function as the candidate target.
If f ′j(αi) < Γ′

j , then the scheme decides that object
i is the target. Otherwise, the scheme indicates that
there is no target in the current image.

B. Image Tracking

As shown in Fig. 3, after initialization, the image-tracking
techniques are employed. The purpose of image tracking is
to find the corresponding region or point to the given target.
Unlike the detection, the entire image search is not required.
Thus, the processing speed of image tracking is faster than
the detection. The image-tracking problem can be solved by
using two main approaches: 1) filtering and data association and
2) target representation and localization [13].

Filtering and Data Association: The filtering and data as-
sociation approach can be considered as a top–down process.
The purpose of the filtering is to estimate the states of the
target, such as static appearance and location. Typically, the
state estimation is achieved by using filtering technologies [38],
[40]. It is known (see, for example, [24]) that most of the
tracking algorithms are model based because a good model-
based tracking algorithm will greatly outperform any model-
free tracking algorithm if the underlying model is found to be a
good one. If the measurement noise satisfied the Gaussian dis-
tribution, the optimal solution can be achieved by the Kalman
filtering technique [4]. In some more general cases, particle
filters are more suitable and robust [21]. However, the com-
putational cost increases, and the sample degeneracy is also
a problem. When multiple targets are tracked in the image
sequence, the validation and association of the measurements
become a critical issue. The association techniques, such as
probabilistic data association filter (PDAF) and joint PDAF are
widely used [37].

Target Representation and Localization: Aside from using
the motion prediction to find the corresponding region or
point, the target representation and localization approach is
considered as another efficient way, which is referred to as a
bottom–up approach. Among the searching methods, the mean-
shift approach using the density gradient is commonly used [5],
which is trying to search the peak value of the object probability
density. However, the efficiency will be limited when the spatial
movement of the target becomes significant.

To take advantages of the aforementioned approaches, using
multiple trackers is widely adopted in applications of image
tracking. In [37], the tracking scheme by integrating motion,
color, and geometric features was proposed to realize robust
image tracking. In conclusion, combining the motion filtering
and advanced searching algorithms will definitely make the
tracking processing more robust, but the computational load is
heavier.

In our approach, instead of using multiple trackers simultane-
ously, a hierarchical tracking scheme is proposed to balance the
computational cost and performance, which is shown in Fig. 5.
In the model-based image tracking, the Kalman filtering tech-

Fig. 5. Flow chart of image tracking.

nique is employed to provide accurate estimation and prediction
of the position and velocity of a single target, referred to as
dynamic information. If the model-based tracker fails to find
the target, a mean-shift-based image-tracking method will be
activated to retrieve the target back in the image.

1) Model-Based Image Tracking: Model-based image
tracking will predict the possible location of the target in the
subsequent frames and then do the data association based on an
updated likelihood function. The advantage of the model-based
image tracking is to combine dynamic features with geometric
features of the target in the image tracking under noise and
occlusion condition. In addition, several methods are employed
to make the tracking more robust and efficient, which are given
by the following:

1) narrow the search window in terms of the prediction of
the Kalman filter;

2) integrate the spatial information with appearance and set
the different weightings for the discriminant function.

The motion of the centroid of the target x = [x̄, ˙̄x, ȳ, ˙̄y]T

in the 2-D image coordinate is tracked using a fourth-order
Kalman filter, which predicts the possible location of the target
in the successive frames. The discrete-time model of the target
motion can be expressed as

x(k|k − 1) =Φx(k − 1) + Λw(k − 1)

z(k) =Hx(k) + v(k) (13)

where w and v denote the input and measurement zero-mean
Gaussian noises

Φ =

⎡
⎢⎣

1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

⎤
⎥⎦ Λ =

⎡
⎢⎢⎣

T 2
s

2 0
Ts 0
0 T 2

s

2
0 Ts

⎤
⎥⎥⎦

H =
[

1 0 0 0
0 0 1 0

]

where Ts is the sampling period of the vision-based tracking
system. A Kalman filter can then be designed based on the
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aforementioned motion model to estimate the states of the target
in the image plane. The filter consists of the following stages.

1) Predicted state

x̂(k|k − 1) = Φx̂(k − 1).

2) Updated state estimate

x̂(k) = x̂(k|k − 1) + K(k) (z(k) −Hx̂(k|k − 1))

where K(k) is the optimal Kalman gain.

The distance between the location of each object zi and the
predicted location of the target ẑ is employed as the dynamic
feature defined by

z̃i = zi(k) − ẑ(k) = zi(k) −Hx̂(k|k − 1).

Thus, the updated discriminant function, which includes the
appearance and spatial information, is shown as follows:

f ′j(αi) =
5∑

k=1

wk

(
αi(k) − μj(k)

σj(k)

)2

+ w6

(
dc(Hi, Gj)−μj(6)

σj(6)

)2

+w7

(‖z̃i‖−μj(7)
σj(7)

)2

. (14)

Most of the time, the model-based tracker can lock the target
in the image sequence, but sometimes, it may fail due to the
noise or disturbance, such as partial occlusion. Thus, a scheme
is required to check whether the target is still in the image and
then activate other trackers.

2) Switching Mechanism: The purpose of the switching
mechanism is to check whether the target is still in the image
when the target is lost by the model-based tracker. If yes,
the mean-shift tracker will be activated. The lost of the target
can be attributed to the poor match of features due to noise,
distortion, or occlusion in the image. An alternative reason
may be the maneuvering motion of the target, and the target is
out of the image. Therefore, in order to know the reason and
take the special way to find the target again, it is necessary
to formulate the decision making as the following hypothesis
testing problem:

H0 : The target is still in the image;

H1 : The target is not in the image due to maneuvers.

The estimation error is considered as a random variable, which
is defined by

ε = (Hx̂k−1 − zk−1)T Σ−1(Hx̂k−1 − zk−1)

where Hx̂k−1 − zk−1 is assumed to be N(0,Σ) distributed. ε
is Chi-square distributed with two degrees of freedom (x and y
directions) under H0{

ε < λ = χ2
2(α), if H0 is true

ε ≥ λ = χ2
2(α), if H1 is true

where 1 − α is the level of confidence, which should be
sufficiently high (for our system, 1 − α = 99%). If H0 is
true, the Chi-square testing-based switching declares that the
target is still in the image and enables the mean-shift-based
tracker.

3) Mean-Shift-Based Image Tracking: If the target is still
in the image, continuously adaptive mean-shift (CAMSHIFT)
algorithm [5] is employed, which is shown in Fig. 5. This
algorithm uses the mean-shift searching method to efficiently
obtain the optimal location of the target in the search window.
The principle idea is to search the dominated peak in the feature
space based on the previous information and certain assump-
tions. The detected target is verified by comparing with an
adaptive target template. The CAMSHIFT algorithm consists
of three main steps: back projection, mean-shift searching, and
search window adaptation.

Step 1) Back projection: In order to search the target in the
image, the probability distribution image needs to
be constructed based on the color distribution of the
target. The color distribution of the target defined in
hue channel is given by

histtg(i)=
∑

(x,y)∈Ω

δ

(
i,

[
huetg(x, y)

Nhue

])
, i=1, . . . , Nhue.

Based on the color model of the target, the back pro-
jection algorithm is employed to convert the color
image to the color probability distribution image.
The probability of each pixel Ip(x, y) in the region
of interest Ωr is calculated based on the model of the
target, which is used to map the histogram results
and given by

Ip(x, y) = histtg

([
Ihue(x, y)
Nhue

])
(15)

where Ihue is the pixel values of the image in the
hue channel.

Step 2) Mean-shift algorithm: Based on the obtained color
density image, a robust nonparametric method, the
mean-shift algorithm, is used to search the dom-
inated peak in the feature space. The mean-shift
algorithm is an elegant way of identifying these
locations without estimating the underlying proba-
bility density function [12].

Recalling the discrete 2-D image probability dis-
tributions in (15), the mean location (the centroid) of
the search window is computed by

xc(k) =
M10

M00
yc(k) =

M01

M00

where k is the number of iterations

M00 =
∑

(x,y)∈Ωw

Ip(x, y)

M10 =
∑

(x,y)∈Ωw

Ip(x, y)x M01 =
∑

(x,y)∈Ωw

Ip(x, y)y
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where Ωw is the region of the search window,
M00 is the zeroth moment, and M10 and M01 are
the first moments for x and y, respectively. The
search window is centered at the mean location
c(k) = (xc(k), yc(k)). Step 2) is to be repeated until
‖c(k) − c(k − 1)‖ < ε.

Step 3) Search window adaptation: The region of interest
is calculated dynamically using the motion filtering
given in Section V-B1. To improve the performance
of the CAMSHIFT algorithm, multiple search win-
dows in the region of interest are employed. The
initial locations and sizes of the searching windows
are adopted from the centers and boundaries of the
foreground objects, respectively. These foreground
objects are obtained using the color segmentation in
the region of interest. In the CAMSHIFT algorithm,
the size of the search window will be dynamically
updated according to the moments of the region
inside the search window [5]. Generally, more than
one target candidate will be detected due to mul-
tiple search windows adopted. To identify the true
target, the similarity between the target model and
the detected target candidate is measured using the
intersection comparison (12). This verification can
effectively reduce the risk of detecting the false
target.

C. Target-Following Control

We proceed to design a comprehensive target-following sys-
tem in this section. It consists of two main layers: the pan/tilt
servomechanism control and the UAV following control. The
overall structure of the target-following control is shown in
Fig. 6. As mentioned in Section II, a pan/tilt servomechanism
is employed in the first layer to control the orientation of
the camera to keep the target in an optimal location in the
image plane, namely, eye-in-hand visual servoing [9], [10],
which makes target tracking in the video sequence more robust
and efficient. The parameters associated with the pan/tilt servo
control in Fig. 6 are to be introduced in detail later. In the second
layer, the UAV is controlled to maintain a constant relative
distance between the moving target and the UAV in flight.

1) Control of the Pan/Tilt Servomechanism: As shown in
Fig. 6, given a generic point P, pi and p∗

i are the measured and
desired locations of the projected point P in the image plane,
respectively. e = [eφ, eθ]T is the tracking error, u = [uφ, uθ]T

is the output of the tracking controller, and v = [vφ, vθ]T is
the output of the pan/tilt servomechanism. M is the camera
model, which maps the points in the 3-D space to the projected
points in the 2-D image frame. N is a function to calculate the
orientation of an image point pi with respect to the UAV under
the current v. As mentioned in the definitions of the coordinate
systems, the orientation of P with respect to the UAV can be
defined using azimuth and elevation angles in the spherical
coordinate system, which is described by two rotation angles
pe = [pφ, pθ]T.

In image processing, the distortion of the lens is compen-
sated, and the origin of the image plane is set as the principal

Fig. 6. Block diagram of the tracking control scheme.

point. Thus, we can obtain a simplified pinhole projection
model as

(
pi

1

)
=

1
λ

⎡
⎣ fx 0 0

0 fy 0
0 0 1

⎤
⎦pc (16)

with

pc = Rc/npn + tc/n (17)

where λ = zc is the depth of the point P in the camera
coordinate system; fx and fy are the vertical and horizontal
focal lengths in pixels, respectively; and Rc/n and tc/n are the
rotation matrix and the translation vector, respectively, which
define the rigid-body transformation from the NED frame to
the camera frame. Thus, we can define M as

pi = M(pn,v) =
1
λ

[
fx 0 0
0 fy 0

]
Rc/n(pn − tc/n).

Next, to derive the function N , we write the transformation
between the camera coordinate system and the servo base
coordinate system as

ps = Rs/c(v)pc (18)

where ps is the coordinate of the point P relative to the servo
base coordinate system and Rs/c describes the rotation from
the servo base frame to the camera frame. We can then combine
(18) with (16) and define the coordinate of the target in the
spherical coordinate system

pe =
(
pφ

pθ

)
= N(pi,v) =

⎛
⎝ sin−1

(
ȳs

r̄sp

)
tan−1

(
x̄s

z̄s

)
⎞
⎠ (19)

where ⎛
⎝ x̄s

ȳs

z̄s

⎞
⎠ =Rs/c(v)

⎡
⎣ f

−1
x 0 0
0 f−1

y 0
0 0 1

⎤
⎦

⎛
⎝xi

yi

1

⎞
⎠

r̄sp =
√
x̄2

s + ȳ2
s + z̄2

s . (20)
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The pan/tilt servomechanism can be approximately consid-
ered as two decoupled servomotors, which regulate the visual
sensor for horizontal and vertical rotations, respectively. The
dynamic model of the servomotor can be described by using
a standard second-order system. Before proceeding to design
the control law for the pan/tilt servomechanism, we define the
tracking error function as

e(k) = pe − p∗
e = N (pi(k),v(k)) −N (p∗

i ,v(k)) (21)

where p∗
e denotes the desired orientation of the camera. The

control inputs will be sent to the pan/tilt servos after the vision-
based target detection algorithm, which generally cost about
one sampling period. To track the moving target efficiently, we
calculate the pan/tilt servo control inputs using the predicted
location of the target in the subsequent frame, which is derived
from (13) and given by

p̂i(k + 1) = ẑ(k + 1|k) = Hx̂(k + 1|k). (22)

In implementation, it is not easy to measure the output of the
pan/tilt servo v in (21). We assume that the bandwidth of the
pan/tilt servomechanism is much faster than that of the control
system. We then can ignore the transient of the pan/tilt servos
and consider them as scaling factors with one step delay. The
estimate of v is defined as

v̂(k) = Kdu(k − 1). (23)

Replacing v and pi with v̂ and p̂i in (21), we then can obtain
the modified error function as

e(k) = N (p̂i(k + 1), v̂(k)) −N (p∗
i , v̂(k)) . (24)

The purpose of the design of the tracking control law is to
minimize the tracking error function given in (24) by choosing
a suitable control input u(k). Since the dynamics model of the
pan/tilt servos is relatively simple, we employ a discrete-time
proportional–integral (PI) controller (see, for example, [16]),
which is structurally simple but fairly robust. It is very suitable
for our real-time application. The incremental implementation
of the PI controller is given by

Δu(k) = Kp [e(k) − e(k − 1)] +
KpTs

Ti
e(k)

where the proportional gain and the integral time are chosen
as Kp = 0.65 and Ti = 0.8, respectively. We note that two
identical controllers are respectively used for the pan and tilt
servos, since the dynamics of these two servos are very close.

2) Following Control of the UAV: As shown in Fig. 6, to
estimate the relative distance between the target and the UAV,
we combine the camera model (16) with the transformation in
(17) and generate the overall geometric model from an ideal
image to the NED frame

pn = λRn/c

⎡
⎣ f

−1
x 0 0
0 f−1

y 0
0 0 1

⎤
⎦

⎛
⎝xi

yi

1

⎞
⎠ + tn/c. (25)

We assume that the ground is flat and the height of the UAV to
the ground h is known. We have

Rn/c =

⎡
⎣ r1 r2 r3
r4 r5 r6
r7 r8 r9

⎤
⎦ tn/c =

⎛
⎝xn/c

yn/c

zn/c

⎞
⎠ (26)

which can be calculated by using the measurements of the
onboard navigation sensors. Based on the assumption that the
target is on the ground, zn is equal to zero. We then can derive
λ as

λ =
−zn/c

r7
xi

fx
+ r8

yi

fy
+ r9

which, together with (25), yields

⎛
⎝xn

yn

zn

⎞
⎠ =

⎛
⎜⎝
λ

(
r1

xi

fx
+ r2

yi

fy
+ r3 + xn/c

)
λ

(
r4

xi

fx
+ r5

yi

fy
+ r6 + yn/c

)
0

⎞
⎟⎠ . (27)

As shown in Fig. 6, the relative distance between the target
and the UAV is estimated, which is employed as the reference
signal to guide the UAV to follow the motion of the target. The
tracking reference for the UAV is defined as

⎛
⎜⎝
xuav

yuav

zuav

ψuav

⎞
⎟⎠

ref

=

⎛
⎜⎜⎜⎝

(
xn

yn

)
−

[
1 0 0
0 1 0

]
Rn/b

⎛
⎝ cx
cy
0

⎞
⎠

h0

ψ0

⎞
⎟⎟⎟⎠

where cx and cy are the desired relative distances between the
target and the UAV in the Xb- and Yb-axes, respectively, h0 is
the predefined height of the UAV above the ground, ψ0 is the
predefined heading angle of the UAV, and Rn/b is the rotation
matrix from the body frame to the local NED frame, which can
be calculated in terms of the output of the onboard navigation
sensors.

VI. EXPERIMENTAL RESULTS

To verify the proposed vision system, multiple tests of the
complete system were conducted. During these tests, the pro-
posed vision-based unmanned helicopter SheLion was hovering
autonomously at a certain position. If the moving target entered
into the view of the onboard camera, the target would be
identified and tracked in the video sequence by the vision
system automatically. Based on the vision information, the
pan/tilt servomechanism was controlled to keep the target in
a certain position in the image, as described in Section V-C1.
Then, the operator can command the UAV to enter into the
following mode, in which the UAV followed the motion of the
target autonomously based on the estimated relative distance,
using the algorithm proposed in Section V-C2.

The experimental results of the vision-based target detection
and tracking in flight are shown in Table I, which indicate
that the proposed vision algorithm could effectively identify
and track the target in the video sequence in the presence of
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TABLE I
EXPERIMENTAL RESULTS OF TARGET DETECTION AND

TRACKING IN FLIGHT

Fig. 7. Test result of the vision-based servo following.

the disturbance of unknown motion between the UAV and the
target. One example of the pan/tilt servo tracking control in
flight is also shown in Fig. 7. The solid line in Fig. 7 indicates
the expected position of the target in the image, and the dashed
line indicates the actual location of the target in the image
during the flight test. From Fig. 7, we can observe that, in
spite of the unknown motion between the UAV and the target,
the pan/tilt servomechanism can effectively control target in
a boxlike neighborhood of the center point of the image by
employing the vision-based pan/tilt servo control.

In the flight tests, the relative distance between the target and
the UAV was estimated using the approach presented earlier,
which is shown in Fig. 8. The relative distance is also measured
using the GPS receiver. The experimental results in Fig. 8
indicate that the vision sensor can provide acceptable relative
distance estimates between the UAV and the target based on the
altitude information of the UAV and the location of the target in
the image.

One example of the ground target following is shown in
Fig. 9. In the experiment, the target was manually controlled
to move randomly on the flat ground, and the UAV followed
the motion of the target automatically based on the scheme
proposed in the previous sections. From Fig. 9, we observe that
the UAV can follow the trajectory of the target and keep the
constant relative distance between the UAV and the target. The
results for the moving ground target following of the UAV indi-
cate the efficiency and robustness of the proposed vision-based
following scheme. The videos of the vision-based target follow-
ing tests are available on http://uav.ece.nus.edu.sg/video.html.

Fig. 8. Test result of the relative distance estimation.

Fig. 9. Test result of the vision-based target following.

VII. CONCLUSION

In this paper, we have presented the comprehensive design
and implementation of the vision system for the UAV, including
hardware construction, software development, and an advanced
ground target seeking and following scheme. Multiple real
flight tests were conducted to verify the presented vision sys-
tem. The experimental results show that this vision system is
not only able to automatically detect and track the predefined
ground target in the video sequence but also able to guide the
UAV to follow the motion of the target in flight. The robustness
and efficiency of the developed vision system for UAVs could
be achieved by the current system. Our future research focus is
to utilize the system for implementing vision-based automatic
landing of the UAV on a moving platform in an environment
without GPS signals.
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