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We present in this paper an integration scheme of a low-cost inertial attitude and position
reference system for a mini unmanned helicopter by utilizing the robust and H1 filtering
technique. The result has been successfully implemented and tested on our mini-scale
unmanned helicopter. Simulation and flight experiment results show that the proposed
technique is very effective in real-time and suitable for control, stabilization and navigation for
mini-scale unmanned air vehicles.
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1. Introduction

Unmanned air vehicles (UAVs) have become increasingly popular and are more
widely used in both military and civil applications nowadays. They are employed to
perform autonomously the wide spectrum of missions that are either dangerous or not
feasible by using other means. Owing to the nature of the applications of the UAV
systems, which have a trend of moving towards mini and micro scales in size, there is
often a tradeoff between the cost and the performance of the UAV that should be
constructed. A good design would thus have to yield the best possible performance
with a limited budget.
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The attitude and heading reference system (AHRS) is one of the most important
elements in UAVs. It consists of necessary sensors to provide measurement signals in
the body coordinate. Typical sensors used to form an AHRS in the UAVs are
accelerometers to measure the accelerations along the three axes of the UAV body
coordinate, gyroscopes to provide the three-axis angular rates, and magnetometers to
capture the magnet values of the three axes, and some sensors to provide reliable
position and velocity information of the UAV for navigation, trajectory tracking,
autonomous flight control, and mission completion. In this work, we investigate the
integration of low-cost inertial sensors to form an effective AHRS for a mini UAV
helicopter. To obtain accurate position and navigation signals, we employ a GPS
sensor unit together with an inertial navigation system (INS), which are capable of
providing position and orientation information of the UAV. Unfortunately, perfor-
mance obtained from low-cost inertial sensors available in the market is pretty poor
due to error sources such as random noise, biases and scale factor errors. Even though
an expensive and bulky INS is able to provide accurate navigation data, its
performance degrades gradually with time (see, for example, Britting (1971) and
Tsach et al. (2002)). Similarly, navigation data generated by GPS sensors carry bounded
errors. The GPS signals for positions available for public use only have an accuracy of
about 3 m with a sampling frequency of 4 Hz. The velocities, determined from the
Doppler effect, have an accuracy of about 0.3 m/s. These measurement errors are
rather poor for mini-scale UAVs flying at low speed. As such, it is necessary to
introduce some filtering schemes to smooth and improve the GPS measurements for
control purpose and for the attenuation of high-frequency noises.

A number of approaches have been introduced recently to improve the perfor-
mance of GPS and low-cost INS integration. For example, Nassar et al. (2004) have
investigated the improvement of the accuracy of an inertial measurement unit (IMU)
using an autoregressive modelling approach. Different integration filters have also
been investigated in the literature. For instance, Shin and El-Sheimy (2002) and van
der Merwe and Wan (2004) have studied the use of unscented Kalman filters and
Noureldin et al. (2004) have considered solutions using neural networks. More
traditional approaches of improving the measurement accuracy of GPS and low-cost
INS reported in the literature include increasing the number of measurements used in
the Kalman filter. The goal of this paper is to present an integration of a low-cost
inertial attitude and position reference system for a mini UAV helicopter by utilizing
the robust and H1 filtering technique. We note that the attitude determination
problem is non-linear in nature and its measurement noise is unknown. As such, it is
more sensible to linearize the non-linear system and formulate it as an H1 filtering
problem with the linearization error being treated as system disturbances. Our result
has been successfully implemented and tested on our mini-scale UAV helicopter.

The outline of this paper is as follows. Section 2 presents the background on all of
the necessary parameters involved in the attitude determination and position
enhancement of unmanned vehicles. Section 3 gives details of the setup and
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application of the H1 filtering technique for the problem we tackle in this work.

Section 4 presents the resulting experimental results from actual flight tests. Finally,

we draw some concluding remarks in Section 5.

2. Determination of aircraft position and attitude

In this section, we outline an aircraft position and attitude determination framework,

which is to be used for further H1 filtering design in the next section.

2.1 Position signals

Let us start with the problem that motivates us to carry out such an enhancement.

During the flight tests of our UAV helicopter, we have constantly experienced some

unexpected jumps in position signals received from the GPS receiver (see Figure 1).

However, we have never observed such jumps occurred in the actual system or even

from the velocity signals measured (also see Figure 1). Since the GPS velocity signals
received are relatively more accurate compared with those of GPS positions, in

principle, we wish to evaluate whether the GPS velocity could provide a reasonably

accurate position reference by simply integrating three-axis velocity. However, due to

some unknown slow-varying bias, such a simple integration generally results large

errors with a large time frame. Figure 2 shows the comparison of the GPS position

signals and the results calculated through integration.
Such a problem that we have encountered in experimental testing of our

UAV helicopter suggests that there is a need to process the raw data received from

the GPS in order to improve the quality of signals received and the overall

performance of our flight control systems. In what follows, we derive a set of
equations, which can be utilized for the reconstruction of the position signals through

the integration of filtered velocities with corrections-based position signals received

from the GPS receiver.
Normally, in practical situations, the measurement noise can be modelled as a white

noise. Furthermore, there is some low-frequency bias contained in the measured

position values. Based on this situation, we can describe the GPS-measured velocity

signal vx as follows

vx ¼ v�x þ bx þ wx ð1Þ

where v�x is the true velocity, bx is a slow varying bias and wx is the white noise. The

corresponding position can then be computed as

px ¼

Z
vx dt ¼

Z
ðv�x þ bx þ wxÞdt ¼ p�x þ

Z
ðbx þ wxÞdt ð2Þ
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where p�x is the true position. Noting that bx is a slow varying variable, we take it as an

unknown constant with appropriate noise, i.e.

_bx ¼ wb ð3Þ

where wb is assumed to be a white noise. Define ex to be the position error, i.e.

ex ¼ px � p�x. It follows from (2) that

ex ¼

Z
ðbx þ wxÞdt ð4Þ

and, thus,

_ex ¼ bx þ wx ð5Þ
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Figure 1 The GPS-measured body-frame y-axis (a) position and
(b) velocity during a hovering flight
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Figure 2 The position integrated by velocity (bold line) and that
measured by GPS receiver (thin line): (a) body-frame x-axis
position signal; (b) body-frame y-axis position signal;
(c) body-frame z-axis position signal
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Next, consider the received position signal, i.e.

px, gps ¼ p�x þ nx ð6Þ

where nx is the position measurement noise. We rewrite

px, gps ¼ ð px � exÞ þ nx ¼ px � ex þ nx ð7Þ

Defining a measurement output y¼ px� px,gps, we have

y ¼ ex � nx ð8Þ

Putting (3) and (5) into a matrix form, we have

_x ¼
0 1
0 0

� �
xþ w ð9Þ

where

x ¼
ex

bx

� �
and w ¼

wx

wb

� �
ð10Þ

The measurement output can then be written as

y ¼ 1 0
� �

x� nx ð11Þ

We combine (9) and (11) together for single-axis position determination. It should be
noted that the above formulation is applicable for all three axes of the aircraft.

2.2 Euler angles

A set of the so-called normal Euler angles are commonly used to describe the

orientation of an aircraft. There are three Euler angles, which include the heading or
yaw angle ( ), pitch angle (�) and roll angle (�). These angles are referenced to the
local horizontal plane which is perpendicular to the Earth’s gravitational vector as
depicted in Figure 3. Heading is defined as the angle in the local horizontal plane

measured clockwise from a true north (Earth’s polar axis) direction. Pitch is defined as
the angle between the aircraft’s longitudinal axis and the local horizontal plane
(positive for nose up). Roll is defined as the angle about the longitudinal axis between
the local horizontal plane and the actual flight orientation (positive for right wing

down); see, for example, Caruso (1997, 2000). We note that in Figure 3, (XNED, YNED,
ZNED) and (XABC, YABC, ZABC) represent respectively the north–east–downward
coordinate and the aircraft body coordinate.

The attitude dynamics of the aircraft can be described as (see, for example, Wertz
(1978)):

_q ¼ �ð!Þq ð12Þ
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where q is the attitude quaternion vector given by

q ¼

q0

q1

q2

q3

0
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1
CCCA ð13Þ
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and

�ð!Þ ¼
1

2

0 �!x �!y �!z

!x 0 !z �!y

!y �!z 0 !x

!z !y �!x 0

2
664

3
775 ð18Þ

with !x, !y and !z are, respectively, being the roll, pitch and yaw rates of the aircraft.

Practically, it is common to use rate gyro measurements to update quaternion

estimates. As small-scale UAVs have very limited payload capacity, small micro-
electro-mechanical system (MEMS) devices used to measure angular rates

usually drift over time. Compensation for the drift is necessary in order to obtain
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Figure 3 Definition of normal Euler angles
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a reliable estimate. For this reason the state vector is chosen (see, for example,

Kingston and Beard (2004)) as

x ¼
q
b

� �
ð19Þ

where b is the estimate of the rate gyro bias, which can be assumed to be slow varying

constant and given by

b ¼
bp

bq

br

0
@

1
A ð20Þ

and

_b ¼ 0 ð21Þ

We thus have

_x ¼ f ðx,!Þ ¼ �ð!� bÞ 0
� �

xþ wx ð22Þ

where wx is the process noise, and it can be shown (see, for example, MathWorks
(2009)) that the Euler angles are given by

�

�

 

0
B@

1
CA ¼

tan�1 2ðq2q3 þ q0q1Þ

1� 2ðq2
1 þ q2

2Þ

sin�1 �2ðq1q3 � q0q2Þ
� �

tan�1 2ðq1q2 þ q0q3Þ

1� 2ðq2
2 þ q2

3Þ

0
BBBBB@

1
CCCCCA ð23Þ

In principle, the gyroscope alone is capable of providing attitude information through
integration. However, because of the drift, the estimation error resulted from integra-

tion increases as time progresses. As such, an attitude determination reference
independent of the gyroscope have to be used to correct the resulting error. This can
be done by using the measurement signals from accelerometers and magnetometers

available in INS with a GPS receiver as follows:

(1) It can be shown that the measurement of the accelerations in the three axes of the
aircraft body frame can be expressed as

ax

ay

az

0
@

1
A ¼ �g

� sin �
cos � sin�
cos � cos�

0
@

1
Aþ amotion ¼

�2gðq1q3 � q0q2Þ

�2gðq0q1 þ q2q3Þ

�g½1� 2ðq2
1 þ q2

2Þ�

0
B@

1
CAþ amotion ð24Þ

where the first term is due to the gravity force (g is the gravity constant) and the
second term, i.e. amotion, is related to flight motion, which is negligible compared with
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the gravity acceleration for small UAVs and can generally be treated as a
measurement noise or disturbance.
(2) The magnetometer provides a reliable measurement for the heading angle  by using

 ¼ tan�1 mxh

myh

ð25Þ

where mxh
and myh

are projected magnetic field components on the horizontal plane
that can be calculated by transforming the magnetometer measurement vector m as
follows

mxh
¼ mx cosð�Þ þmy sinð�Þ sinð�Þ �mz cosð�Þ sinð�Þ

myh
¼ my cosð�Þ þmz sinð�Þ

ð26Þ

where mx, my, mz are measured components of magnetic field vector m along the x-, y-
and z-axes of body frame, respectively.
This measured  , which corresponds to the third equation in (23), can be included as
the fourth measurement output for heading angle update.

Finally, we combine (22), the third equation of (23) and (24) to formulate the
determination framework for the Euler angles. After the estimation of q

�
0, q

�
1, q

�
2,

q
�

3, we determine the Euler angles using (23).

3. H1 filtering design

Based on the position and attitude dynamics derived in the previous section, we carry
out the H1 filtering design to make an accurate estimation on the aircraft position and
attitudes. To be specific, we first briefly introduce the discrete-time H1 filtering
technique in Section 3.1. Next, we then give the detailed implementations on the
estimations of the position and the Euler angles in Sections 3.2 and 3.3, respectively.

3.1 Discrete-time H1 filtering

In Kalman filtering, also known as H2 filtering, the system and measurement noises
are assumed to be white with known statistics, and the technique aims at minimizing
the variance of the estimation error (see, for example, Kalman (1960)). However, such
an assumption is commonly not satisfied in many practical situations such as attitude
and position determination. As mentioned earlier, the attitude determination problem
is non-linear in nature and its the measurement noise is unknown. It is natural to
formulate such a problem as an H1 filtering problem.

H1 filtering minimizes the ‘worst-case’ estimation error. Its design objective is to
ensure that the energy gain from the noise inputs to the estimation error is less than a
certain level (see, for example, Kailath et al. (1999), Green and Limebeer (1995) and
Zhou et al. (1995)). Such a design technique is particularly suitable for the attitude and
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position determination problems since it only requires the noise inputs to be

deterministic and to be energy bounded (Lewis et al., 2007). To be precise, we consider

a system characterized by

xk ¼ Axk�1 þ Gwk

zk ¼ Hxk þ vk

sk ¼ Lxk

ð27Þ

where xk2R
n are the state vectors, wk2R

l and vk2R
p are the process and

measurement noises which are assumed to be deterministic and with bounded

energy, zk2R
p is the measurement, and sk2R

r is the signal to be estimated. The H1
filtering design consists of the following two stages:

(1) State prediction

�xk ¼ Ax̂k�1 ð28Þ

where x̂k�1 is the estimated state vector in previous step, and �xk is the estimated state

vector in the prediction stage.

(2) Time update

Kk ¼ APkHTðI þHPkHTÞ
�1

x̂k ¼ �xk þ Kkðzk �H �xkÞ

P�1
kþ1 ¼ ½AðP

�1
k þHTHÞ�1AT þ GGT�

�1
� ��2LTL

ð29Þ

where Pk is the corresponding covariance matrix of xk at the current step, I is an

identity matrix, Kk is the H1 filter gain matrix at the current step and �40 is the level

of noise attenuation. The H1 filter is capable of yielding an estimate ŝk of sk based on

the measurements z0, z1,. . ., zk�1 for any (x0, w, v) with x0 bounded, w2 ‘2 [0, N� 1] and
v2 ‘2 [0, N� 1].

Consider the system in (27) and a given �40, it was shown by Lewis et al. (2007)

that there exists an H1 filter over [0, N] if and only if there exists a solution Pk ¼ PT
k40

(k¼ 0, 1,. . ., N) to the following discrete-time Riccati equation:

ðP�1
kþ1 þ �

�2LTLÞ�1
¼ AðP�1

k þHTHÞ�1AT þ GGT ð30Þ

where P0¼Px0
is a positive-definite matrix reflecting the uncertainty of the initial state

estimate relative to the combined energy of the process and measurement noises. If the

condition is satisfied, the H1 filter given by (28) and (29) with the filter gain of

Kk¼APkH
T(IþHPkH

T)�1 achieves

J ¼ s� ŝ
�� ��2

2, ½0, N�1�
��2 ðx0 � �x0Þ

TP�1
x0
ðx0 � �x0Þ þ wk k22, ½0, N�1�þ vk k22, ½0, N�1�

	 

50 ð31Þ
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3.2 H1 filtering for GPS position signal enhancement

For the GPS position signal enhancement, we discretize the continuous-time system of

(27) with a sampling period of 0.02 s. Such a sampling period is used in the hardware
system of our UAV helicopter. We obtain

xk ¼
1 0:02

0 1

" #
xk�1 þ

0:02 0

0 0:002

" #
wk

zk ¼ ½ 1 0 �xk þ vk

sk ¼ xk

ð32Þ

The H1 filtering technique described in (28) and (29) is then implemented. Using

the result of Chen (2000), we can compute that the best possible choice of � is given

by ��¼ 1.04897 for this system. However, it requires an infinite gain to achieve such a

noise attenuation. For a practical filtering design, we choose �¼ 1.234��, which yields

a satisfactory performance. Note that the initial values for P0 and x0 are chosen by

P0 ¼
1 0
0 1

� �
, x0 ¼

0
0

� �
ð33Þ

3.3 H1 filtering for euler-angles determination

For the non-linear Euler-angles determination dynamics, we first rewrite its contin-

uous-time dynamics obtained in Section 2.2 as follows:

_x ¼ fcðxÞ þ w

z ¼ hcðxÞ þ v

s ¼ x

ð34Þ

where x2R
n is the state variable, z2R

p is the measurement output, fc(x) and hc(x) are

sufficiently smooth functions of appropriate dimension, w and v are process and

measurement noises or disturbances, assumed to be deterministic and with bounded

energy. Its corresponding discrete-time counterpart can be expressed as

xk ¼ f ðxk�1Þ þ Gwk

zk ¼ hðxkÞ þ Vvk

sk ¼ xk

ð35Þ

Expanding the nonlinear functions f(�) and h(�) using Taylor series expansion at the

filtered x̂k�1 and predicted estimates �xk�1, we obtain

xk ¼ f ðx̂k�1Þ þ Fkðxk�1 � x̂k�1Þ þ Gwk

zk ¼ hð�xkÞ þHkðxk�1 � �xk�1Þ þ Vvk

ð36Þ
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where Fk and G are the Jacobian matrices of partial derivatives of f with respect to x
and w, and Hk and V are the Jacobian matrices of partial derivatives of h with respect to

x and v. More specifically,

Fk½i, j � ¼
@f½i�
@x½ j �

�����
x̂k�1

, G½i, j � ¼
@f½i�
@w½ j �

�����
x̂k�1

, Hk½i, j � ¼
@h½i�
@x½ j �

�����
�xk�1

, V½i, j � ¼
@h½i�
@v½ j �

�����
�xk�1

ð37Þ

Without knowing the individual values of the noise wk and vk at each time step, the
state and measurement vector can be approximated as

�xk ¼ f ðx̂k�1Þ

�zk ¼ hð�xkÞ
ð38Þ

We then substitute (38) into (36), and define the new state vector ~xk as

~xk�1 ¼ xk�1 � x̂k�1 ( previous step)

~xk ¼ xk � �xk (current step)
ð39Þ

Note that for constructing ~xk�1, we use x̂k�1 instead of �xk�1 since the former is the more

accurate time-update result. Define a new measurement output ~zk as

~zk ¼ V�1ðzk � �zkÞ

~Hk ¼ V�1Hk

ð40Þ

With (39) and (40), we can give the H1-compatible formulation as

~xk ¼ Fk ~xk�1 þ Gwk

~zk ¼ ~Hk ~xk þ vk

~sk ¼ ~xk

ð41Þ

Finally, we note that the corresponding Jacobian matrices for the attitude dynamics are

given by

Fk ¼

1 �ð!x � bpÞT �ð!y � bqÞT �ð!z � brÞT q1T q2T q3T

ð!x � bpÞT 1 ð!z � brÞT �ð!y � bqÞT �q0T q3T q2T

ð!y � bqÞT �ð!z � brÞT 1 ð!x � bpÞT �q3T �q0T q1T

ð!z � brÞT ð!y � bqÞT ð!x � bpÞT 1 q2T �q1T �q0T

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2
666666666664

3
777777777775
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where T is the sampling period, which is taken as 0.02 s in obtaining the

implementation results given in the next section,

Hk ¼

2gq2 �2gq3 2gq0 �2gq1 0 0 0
�2gq1 �2gq0 �2gq3 �2gq2 0 0 0
�2gq0 2gq1 2gq2 �2gq3 0 0 0
q3�2�3 q2�2�3 q1�2�3 þ 2q2�1�3 q0�2�3 þ q3�1�3 0 0 0

2
664

3
775

where

�1 ¼ 2ðq1q2 þ q0q3Þ, �2 ¼ 1� 2ðq2
2 þ q2

3Þ, �3 ¼
2

½1� 2ðq2
2 þ q2

3Þ�
2
þ ½2ðq1q2 þ q0q3Þ�

2
,

G ¼

10�4 0 0 0 0 0 0
0 10�4 0 0 0 0 0
0 0 10�4 0 0 0 0
0 0 0 10�4 0 0 0
0 0 0 0 10�6 0 0
0 0 0 0 0 10�6 0
0 0 0 0 0 0 10�6

2
666666664

3
777777775

and

V ¼

0:981 0 0 0
0 0:981 0 0
0 0 0:981 0
0 0 0 0:1221

2
664

3
775:

Based on the dynamics given in (41), an H1 filter can be constructed as follows:

(1) State prediction

�xk ¼ f ðx̂k�1Þ ð42Þ

(2) Time update

Kk ¼ Pk
~HT

k ðI þ
~HkPk

~HT
k Þ
�1

x̂k ¼ �xk þ Kkðzk � hð�xkÞÞ

P�1
kþ1 ¼ ½

~FkðP
�1
k þ

~HT
k

~HkÞ
�1 ~FT

k þ GGT�
�1
� ��2I

ð43Þ

where Pk is the corresponding covariance matrix of xk and Kk is the resulting H1 filter
gain. It should be noted that it is not possible to use a constant � for this problem as

the Jacobian matrices ~Fk and ~Hk are time-varying. A specific � is required to be
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determined in real-time and used for each step. As for the initial states, we take

P0¼diag{0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1} and x0¼ 0.

4. Experimental Results

In this section, we evaluate the practical performance of the designed H1 filters. To

prove the efficiency of our design, we compare the estimation result with the output

data of a commercial product, namely, an NAV420 from Crossbow. Such a product has

a GPS-aided AHRS navigation system developed through years of extensive
application experience. Its attitude and position estimation is based on Crossbow’s

self-developed extended Kalman filter algorithm.
Among various flight tests conducted for the GPS signal enhancement, we select a

triangle-path flight test as a sample to evaluate the performance of the H1 filter we
design. The comparison results are shown in Figures 4 and 5. The result clearly shows

that with the enhancement of the GPS signals, the problem of jumping in the position
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Figure 4 Comparison of the x–y position estimated by H1 filter
(bold line) and that measured by NAV420 (thin line)
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position signal; (c) body-frame z-axis position signal
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Figure 6 Comparison of Euler angles estimated by H1 filter
(solid line) and those estimated by NAV420 (dashed line): (a) roll
angle; (b) pitch angle; (c) yaw angle
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signals has been successfully resolved. Furthermore, the high frequency noises in the
GPS position signals are totally eliminated.

The result for the Euler-angles determination is depicted in Figure 6. It can be noted
that with the H1 filter, the attitude estimation responds more quickly. Furthermore, it
provides a faster estimation than the algorithm adopted by NAV420. The estimated
result is flatter when the UAV is stationary, while the attitude estimation from NAV420
needs a longer time to converge. Again, the result indicates the obtained H1 filter for
Euler-angles determination is very satisfactory.

5. Conclusion

A low-cost attitude determination and navigation optimization system has been
investigated in this paper. We have obtained a better attitude measurement with fast
response and with no estimation bias using the recently developed H1 filtering
technique. The experimental results have shown that such a scheme is very effective.
The design has been implemented and used on our UAV system to provide reliable
measurement for conducting various automatic flight control systems.
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