Mechatronics 21 (2011) 886-898

Contents lists available at ScienceDirect

Mechatronics

Mechatronics

journal homepage: www.elsevier.com/locate/mechatronics

Hybrid formation control of the Unmanned Aerial Vehicles

Ali Karimoddini ®?, Hai Lin®*, Ben M. Chen®, Tong Heng Lee®

2 National University of Singapore, Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive,

117456 Singapore, Singapore

b Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, Engineering Drive 3, 117576 Singapore, Singapore

ARTICLE INFO

Article history:
Available online 15 December 2010

Keywords:

Unmanned Aerial Vehicles (UAVs)
Formation control

Hybrid supervisory control

Polar partitioning

ABSTRACT

An essential issue in the formation control of Unmanned Aerial Vehicles (UAVs) is to design a reliable
controller in their path planner level to handle all interactions between the continuous dynamics of
the system and inherent discrete nature of the decision making unit, which has been embedded to coor-
dinate the control submodules. In this paper, we have proposed a new approach of hybrid supervisory
control of UAVs for a two-dimensional leader follower formation scenario. The approach is able to com-
prehensively capture internal relations between the path planner dynamics and the decision making unit
of the UAVs. To design such a hybrid supervisory controller for the formation problem, we have intro-
duced a new method of abstraction, based on polar partitioning of the state space. Furthermore, we have
utilized the properties of multi-affine vector fields over the polar partitioned space. Within this frame-
work, we design a modular decentralized supervisor in the path planner level of the UAVs to achieve
two major goals: first, reaching the formation and second, keeping the formation. In addition, an inter-col-
lision avoidance mechanism has been considered in the controller structure. The approach is robust
against uncertainty in the initial state of the system, in the sense that it can bring the follower UAV to
the desired position, starting from any arbitrary initial position inside the control horizon. Moreover,
the velocity bounds are applied through the design procedure so that the generated velocity references

can be given to the lower level of the control hierarchy, as the references to be followed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Formation control of cooperative multi-robot systems [1,2], is a
rapidly growing area that aims at reaching and keeping a particular
form of movement and has numerous applications in ground and
aerial robotics. Cooperative control in general and formation con-
trol in particular, provide a framework for analysis and design of
the team behavior of several autonomous vehicles. A team of ro-
bots, taking a cooperative structure, is more robust against the fail-
ures in the agents or in the communication links. Moreover, using
several simpler robots instead of a complex one, results in a more
powerful and flexible structure and could leverage the team effi-
ciency [3].

In the area of the aerial robotics, formation control of the Un-
manned Aerial Vehicles (UAVs) has aroused a challenging hot re-
search area and has attracted both academic and military
communities [4,5]. This is due to the fact that UAVs are not sub-
jected to the limitations of the ground robots like movement con-
straints and vision range limitations and therefore, they are quite

* Corresponding author.
E-mail addresses: karimoddini@nus.edu.sg (A. Karimoddini), elelh@nus.edu.sg
(H. Lin), bmchen@nus.edu.sg (B.M. Chen), eleleeth@nus.edu.sg (T. Heng Lee).

0957-4158/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechatronics.2010.09.007

fit solutions for missions such as terrain and utilities inspection
[6], search and coverage [7], search and rescue [8], disaster moni-
toring [9], aerial mapping [10], traffic monitoring [11], reconnais-
sance mission [12], and surveillance [13].

A typical formation control scenario consists of several parts,
including: reaching the formation, keeping the formation, and inter-
collision avoidance. Starting from an initial state, the UAVs should
achieve the desired formation within a finite time (reaching the for-
mation). Then, they should be able to maintain the achieved forma-
tion, while the whole structure needs to track a certain trajectory
(keeping the formation). Meanwhile, in all of the previous steps,
the collision between the agents should be prevented (inter-colli-
sion avoidance). Definitely, this interacting control structure im-
poses lots of switching between the control submodules and
hence, a decision making unit should be embedded in the control
architecture to support this complicated orchestra. The existing
formation control strategies, mainly focus on the keeping forma-
tion problem in which the formation problem could be reduced
to the design of a controller for a system, which has been slightly
deviated from the desired configuration [14-16]. There are also
some methods that focus on the reaching the formation such as
those are based on MILP programming, navigation function and po-
tential field approaches [17-20]. These approaches usually suffer

http://dx.doi.org/10.1016/j.mechatronics.2010.09.007
mailto:karimoddini@nus.edu.sg
mailto:elelh@nus.edu.sg
mailto:bmchen@nus.edu.sg
mailto:eleleeth@nus.edu.sg
http://dx.doi.org/10.1016/j.mechatronics.2010.09.007
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics

A. Karimoddini et al./ Mechatronics 21 (2011) 886-898 887

from the high computation cost and difficulty to be implemented
decentralizedly.

To integrate all three parts of the formation problem, one solu-
tion might be designing one controller for each part based on the
continuous dynamics of the system and then, combining them to
achieve the whole goal [21]. However, focusing on the continuous
dynamics of the system and ignoring the inter relations between
the submodules and the effects of the switching between different
operation modes may degrade the reliability of the system. More-
over, due to the high risk of crash, UAVs need a fully trustable oper-
ation algorithm. Therefore, it is necessary to find a way to take the
discrete part into account in addition to the continuous dynamics
of the system.

In this paper we propose a hybrid supervisory control architec-
ture for the path planner level of the helicopter UAVs, involved
in a leader follower formation scenario. Hybrid modeling and con-
trol [22], is a powerful framework that can capture both discrete
and continuous dynamics of the system, simultaneously and col-
lectively. It provides a comprehensive analysis for interactions be-
tween the discrete part and the continuous evolution of the
system. There are some efforts of capturing the formation control
within a hybrid framework [23-26]. However, they have mostly
ended only with the hybrid modeling rather than hybrid analysis
of the system. The reason is that despite the strength of hybrid
modeling theory, the hybrid analysis tools are typically difficult
to apply to the system. In contrast, the proposed approach in this
paper, provides a tractable framework for hybrid synthesis of the
formation control. Within this framework, we have introduced a
new method of abstraction based on polar partitioning of the state
space. Furthermore, we have utilized multi-affine function proper-
ties over the partitioned space to construct a hybrid model that can
be captured by a finite discrete event system (DES) model. Employ-
ing this technique, we will reduce the original hybrid system with
infinite states into a finite state machine that can be effectively
handled by well-established theories of DES supervisory control.
Within the DES supervisory control framework, we can design
the controller for reaching the formation, keeping the formation,
and collision avoidance, modularly.

After designing the DES supervisor, we will show that due to the
bisimulation relation between the plant and the abstracted system,
the designed DES supervisor for the abstracted system can be di-
rectly applied to the original hybrid model of the plant so that
the behavior of the hybrid plant and its DES model are the same.

So far, the abstraction approaches based on bisimulation rela-
tion are limited to a few simple classes of systems such as
timed-automata, multi rate automata, initialized rectangular auto-
mata and order minimal hybrid systems [27-30]. Recently, multi-
affine vector fields, have been used as a wider and more practical
class of hybrid systems, since they are decidable systems under tri-
angulation and rectangulation of the state space [31,32]. However,
formulating a formation problem within a rectangulated or trian-
gulated space is not optimal, in the sense that the direct path to
reach the desired point is not applicable. Instead, the proposed
method of abstraction based on polar partitioning of the state
space, can be appropriately applied to the formation problem.

Although the ground robots are not as sensitive as the aerial ro-
bots and they may not need such complicated control system, the
proposed approach in this paper with some modifications on the
path planner dynamics can be also applied to the ground robots,
as they have a 2-d path planner in the their embedded control
structure.

The rest of this paper is organized as follows. After describing
the problem in Section 2, the principles of polar partitioning and
the properties of multi-affine vector fields over the partitioned
space are proposed in Section 3. In Section 4, we design several
multi-affine controllers for each partition such that the controlled

system can flexibly stay in the current partition or move to either
of its adjacent partitions. Section 5 focuses on the extraction of the
finite DES model of the system. Then, in Section 6, a DES supervisor
has been designed for both the formation control and the inter-col-
lision avoidance. In Section 7, the designed supervisor has been ap-
plied to the original continuous system. The simulation results are
presented in Section 8. Section 9 depicts the future plan of our re-
search work. The paper is concluded in Section 10.

2. Problem description

In a leader follower scenario in which the leader tracks an arbi-
trary generated path, the follower should reach the formation,
starting from an initial position inside the control horizon. After
reaching the formation, it should be maintained, while the whole
formation, as a rigid body, needs to jointly follow the trajectory
generated by the leader [33].

Usually the control structure of a UAV is a hierarchical architec-
ture in which the attitude of the UAV is controlled in the lower le-
vel and then, the path planner is responsible for the movement of
the UAV in the higher level of this hierarchy [34,35]. Therefore, in
this structure, if the generated path respects the physical con-
straints of the UAV motion, the lower level controller of the UAV
is able to track it [23]. Hence, for autonomous helicopters, as a
large class of UAVs, it is rational to consider the path planner
dynamics of the UAV helicopter as a mass point model with the fol-
lowing dynamics:

X=u xeR? uecUCR? (1)

where x is the position of the UAV; u is the UAV velocity, and U is
the constraint set. Here, we assume that the UAVs are flying in
the same altitude, the altitude control works well, and the follower
velocity is in the following form:

Vfollower = Vleuder + Vrel (2)

where the follower should reach and keep the formation by an
appropriate selection of relative velocity, V.. Alternatively, one
can consider a relatively fixed frame (Fig. 1), in which the follower
moves with the velocity of V... Here, the control horizon is a neigh-
borhood of the desired position with the radius of R,,. Now, the for-
mation problem can be expressed as follows:

Problem 1. Given the dynamics of the path planner as (1) and
the velocity of the follower in the form of (2), design the formation
controller to generate the relative velocity of the follower (Vie),
such that starting from any initial state inside the control horizon,
it eventually reaches the desired position, while avoiding the inter-
collision between the leader and the follower. Moreover, after
reaching the formation, the follower UAV should remain at the de-
sired position for ever.

" Follower

Leader

\‘\-.__‘_ emerT
Desired position

Fig. 1. Relative frame; the follower should reach the desired position starting from
any point inside the circle as the control horizon.

888 A. Karimoddini et al./Mechatronics 21 (2011) 886-898

To tackle this problem, we will propose the polar partitioning of
the state space in which the direct path to the desired position is
applicable. We also will utilize the properties of multi-affine func-
tions over the polar abstracted space that will result in a hybrid
system and can be captured by a finite DES model which is bisim-
ilar to the original model of the plant. Then, we will design a DES
supervisor for the obtained DES model and apply the resulting
supervisor to the original hybrid model of the plant, as the bisim-
ulation relation guarantees an equivalent behavior for the DES
model and the original one [27].

3. Multi-affine vector fields over polar partitioning of the state
space

3.1. Polar partitioning of the state space

In the polar coordinates with 0 < 0 < 2x, consider a circle Cg,,
with the radius of R,,, which has been partitioned by the curves
{r=rl0<ri<Rm, fori<j:ri<r, i=1,...,n, 11 =0, 1y =
Rn} and {0=06,j0<06;<2m, for j<k:0;<06 j=1,...,n9,0; =
0,0,, = 2m}. As an example, {r,~ = n’ffl (i-1),i=1,...,n; and

0; :nf—’f](jf 1), j=1,...,ny} are such curves that we will use
through our further derivations.

Using this notation, we will have (n, — 1)(n, — 1) partitioning
elements. An element R;j={p=(1,0)|ri <1< Tis1, 0; <O < 0jq} is a
subset of the circle Cg, surrounded by the above curves. For the
partitioned space Cg, we have: Nint(Ry;) =0, and |JRi; = Cg,,
where int(R;;) is the interior of the element R;;. Fig. 2, illustrates
an example of such a partitioned space with n,=3 and ny=9.

The intersection between the element R;; and the partitioning
curves generates the vertices and the edges (Fig. 3). We use V(e)
to denote the set of vertices that belong to the edge e, and E(v)
for the set of edges that vertex v belongs to them.

The vertices of the element R;; are arranged as shown in Fig. 4.
We use the following notation to label the vertices:

Vo = Voo
U1 = Vo1
Uy = V1o
U3 = VUn

r:ri,O:Oj
r=ri1,0=10; 3)
r:ri79:9j+l

r="rip1,0=0;1

To detect which partitioning curves have generated the vertex
Ve, we define the functions ¥;: {tu}-{0,1} and ¥,
{t,u} - {0,1} as:

1 x=0
lI’](x):{O i:1 (4)

Fig. 2. Partition labels.

Vertex
E |

Edge

Tk

Fig. 3. Vertices and edges in the element R;;.

Fig. 4. Vertices of the element R;;.

0 x=0
e ={] 4 5)

The element R;; has four edges {E!,E_,E; E, } and correspond-

T T

ingly, four outer normal vectors {n;,n;,n;,n;} (Fig. 5).

Remark 1. The element with r; = 0 (Fig.6), is a special case of the
element R;;. In fact, in this element, 7, and 2, are coincident, since
for both vertices we have r=0; however, their value of 0 are
different.

3.2. The properties of multi-affine vector fields over the partitioning
elements

In this section we will use the properties of multi-affine vector
fields over the mentioned partitioned system in the polar domain.
The affine and multi-affine functions are defined as follows:

Definition 1 (Affine function). A function g: R — R is said to be
affine, if:Vx1,x; € R and oy, 0, € R satisfying oy +0p =1 : g(oq X1+
O2Xz) = 018(X1) + 028(X2)

Definition 2 (Multi-affine function).

e A function g : R" — R is said to be multi - affine, if it is affine in
each parameter, meaning that by fixing all parameters, except
one, the resulting function is affine with respect to the free
parameter.

e A function g : R" — R™ is said to be multi-affine, if it is multi-
affine in each fucntion g;: R" - R, i=1,...,m.

Fig. 5. Outer normals of the element R;;.

A. Karimoddini et al./Mechatronics 21 (2011) 886-898 889

V
V, 1

Vo
Fig. 6. R, is a special case of the element R;;.

In the following proposition, we will show a very useful prop-
erty of multi-affine functions over the circle Cg, and its partition-
ing elements R;;. According to the following propositions, a
multi-affine function over the element R;; can be expressed un-
iquely in terms of the values of the function at the vertices of R;;.

Proposition 1. Consider a multi - affine function g(x) : R> — R? over
the region R;;. The following property always holds true:

3
Vx = (r,0) € Rij: g(x) = Y _ hig(v:) (6)
i=0
where v, i=0,..,3, are the vertices of the element R;; and 4
i=0,...,3, are obtained as follows:

Ji=)v;PZ(u)(l _ /lr)‘fﬁ(“)lz’z(f)(-l _ AH)VH(U (7)

where t and u are the corresponding binary digits of the index i of v; as
declared in (3) and
r—r;

_ _ 00
Tig1 —Ti

A =
' Ojs1 = 6

Proof. Let x = (r,0) € R;;. Then, from the partitioning procedure, we
have: r; <1 <1 and 0; < 0 < 0j,1. Hence, r and 0 can be written
affinely as follows:

F= (1=t 0< i <12 fy = L
0=(1=0)0)+Ja01 0<io<1= k=52

Now, consider a trajectory starting from the vertex v, to the point x,
and moving only along the polar directions. As an example,
Vo = (ri,ej)sﬂl X1 = (r, Bj)sipzxz =x=(r,0) is such a trajectory. In
fact, in each step of this trajectory, we change only one parameter,
and fix the other one to take the advantages of multi-affine func-
tions. When in the function g, the parameter 0 is fixed and only r
is varying, we use the notation g, to highlight the fixedness of 0.
The notation g, (r) is used to show that in the function g, the
parameter 0 is fixed at 0, and only r can change. Similarly, we can
define g; and g, (0) for the case that r is fixed and 0 is varying.
According to the definition, as g is a multi-affine function, g, and
g, are affine. Using the properties of the affine functions, since in
Step 1, the parameter 0 is fixed and only r changes:

801) = &l (1) = Gyl (1 — 20)Ti + 2Fie)
= (1= 20)gl, (1) + Ayl (i)
= (1= 4)g(ri, ;) + 4&(risa, 6))
In Step 2, 0 changes and r is fixed. Therefore:
8(%2) = &1,(0) = &/1,(1 — 70)0; + 290;.1)
= (1= 20)8:1:(0)) + 208, (011) = (1 = 40)& (1, 0;) + 208(T, 0j1)
= (1= 20)8ly, (1) + 408y, (T)

i1

In the first step, we have already obtained g,,\(,j(r). The same

procedure, can be followed to obtain g(,\(,w (r). Substituting these
two values in the second step, we will obtain g(x,) as follows:

8(x2)=(1 = 29)[(1 — 2)g(r0)) + 4 &(rie1,0)] + 2l(1 — 2,)g(r;,
Opp1) + 2 8riwn,0p31)] = (1 = 2p)(1 — 2.)8(w0) + (1 = Zo)Ar g(v1) +
2o(1 = 2)g(wn) + 292y g(ws) which is equivalent to (6). O

Remark 2. It can be verified that for all x = (r,0) € R;, the resulting
coefficients 4, i=0,...,3, have the property that 4; >0 and

S ohi=1.

Corollary 1. For a multi - affine function defined over the element R;;
and for all edges E; of Ri;, q € {r,0} and s € {+,—}, the following prop-
erty holds true:

Vx=(r,0)cE:gx)= > g(v) (8)

v,-eV(EfI)
where 2; can be obtained as follows:

e For edges EF and E; : 4; = 212" (1
o For edges Ej and E; : J; = 272" (1

_ AH)‘W”
_ /*Lr)‘l’l(u)

Proof. : This is a special case of Proposition 1 and it needs to follow
only Step 1 of the proof of the previous proposition. [

In the following proposition, we will show that the coefficients
in Proposition 1 and Corollary 1 are unique and there is one and
only one multi-affine function over Cg, that have the fixed values
of g(v;) at the vertices of R;;.

Proposition 2. Consider a map g : R> — R? over the region R; j- There
exists one and only one multi-affine function f : R*> — R? satisfying
ftvi)=g(v;), foralli=0,1,2,3.

Proof. The existence has been already guaranteed by Proposition
1. The proof of uniqueness is by contradiction. Assume that f is
not unique, and there is another multi-affine function f such that
flw)=f(»)=g(v), or equivalently, f'(#)=flu)—f(»)=0, for
i=0,1,2,3. Since fand f are multi-affine, it follows from the defini-
tion that f =f — f also is multi-affine. Hence, using Proposition 1,
Vx € Rij: f"(x) = Zf’zoiif”(v,-) = 0. Therefore, VxeR;j, fix)=f(x),
which contradicts with the assumption. O

4. Two control features over the polar partitioning elements

Using the properties of the multi-affine functions, we are inter-
ested in the behavior of the trajectories of the system over the ele-
ments R;;. In particular, we will investigate that under what
conditions the trajectories would remain inside an element R;;
for ever (Invariant region), or would deterministicly leave through
a particular edge (Exit edge).

4.1. Controller for an invariant region

In an invariant region, the trajectories of the system will remain
inside the region, regardless of the initial state of the system. The
formal definition of the invariant region is given as follows:

Definition 3 (Invariant region). In the circle Cg, and the vector
field x = g(x),g : R> — R?, the region R;; is said to be invariant
region (Fig. 7), if Vx(0) € int(R;;), then x(t) € R;; for t > 0.

In the following theorem, we will find the conditions to have
the region R;; as an invariant region.

890 A. Karimoddini et al./ Mechatronics 21 (2011) 886-898

%

L
R,

Fig. 7. Invariant region.

Theorem 1 (Sufficient condition for R;; to be an invariant
region). For a continuous multi - affine vector field
X =g(x),g: R?> — R?, the element R;; is an invariant region if for
each edge Efl of Rij and its corresponding outer normal n$, q € {r,0} and
s € {+ -}, we have:

sT S
ny -g(v) <0 Vo e V(E) 9)

Proof. Each edge E of R;; has two vertices. According to the Corol-
lary 1, for each Ef,, we have the property that
Vx = (r,0) € E, : g(x) => kg(vi) vieV(E,), where 4 >0 and
>~ 4 = 1. Hence, knowing that nf]T -&(v;) <0 for all v; € V(E}) will
result in ngT -g(x) < 0 for all x € E;. Since g(x) is continuous, it will
be concluded that nf,T -g(x) < 0, for the neighborhood of all x € E.
Therefore, the trajectories of the system cannot touch the edge E;.
Alternatively, the trajectories of the system will never leave R;;
through the edge E;. Since this is true for all edges, the trajectories
of the system do not leave the region R;;. O

Corollary 2 (Controller for an invariant region). For a continuous
multi-affine vector field X = h(x,u(x)) = g(x),g : R> — R?, R;; is an
invariant region if there exists a controller u : R* — U C R?, such that
for each vertex v, i=0,1,2,3, with incident edges Efl € E(v;), and cor-
responding outer normals né, q € {r,0} and s € {+,—}:

Ui:Uﬁ{ueRz\ngT~g(vi)<0, for all EZeE(vi)}sfé@ (10)

where the convex set U represents the velocity bounds.

Corollary 2 is the direct implication of Theorem 1. The difference
is that: firstly, here, the conditions are arranged in terms of the ver-
tices rather than the edges. Secondly, we have selected the controller
such that the controlled system respects the velocity bounds. If one
of U; is empty, this means that the controller is infeasible.

Remark 3. In the case that all U;# 0, it is sufficient to pick an
arbitrary value for u(#;) from the set U. By this selection,
g(x) = h(x,u(x)), as a multi-affine function, satisfies the conditions
of Theorem 1 and makes R;; as an invariant region. In addition,
using Proposition 1, if we construct u (x) as a multi-affine function,
since U is a convex set, the multi-affineness of u(x) will guarantee
that u(x) € U, for all x € R;;. In this case, the feedback controller u(x)
at each value of x € R;; is uniquely determined by the value of u at
the vertices of the region R;;.

4.2. Controller for an exit edge

In the case that the trajectories of the system leave the region
from a unique edge, regardless of the initial state of the system,
this edge is called the exit edge and formally can be defined as
follows:

Definition 4 (Exit edge). In the circle Cg, with the vector field
x=g(x), g:R? — R?, the edge E;, q € {r,0} and s € {+,-}, is said
to be an exit edge (Fig. 8), if Vx(0) € int(R;;), there exist t(finite) > 0
and ¢ > 0 satisfying:

R,

Fig. 8. Exit edge.

1. x(t) e int(R;;) for t € [0,7)
2. x(t)eE; fort=1
3. x(t)¢R;jfor te(t,T+¢)

In the following theorem, we will explain the condition to have
a particular edge in R;; as an exit edge.

Theorem 2 (Sufficient condition for an exit edge). For a continuous
multi — affine vector field X = g(x), g(x) : R* — R?, the edge E; with
the outer normal ng, is an exit edge if:

1. n;',TT-g(vi)<0 VE,#E, and Vv e V(E)
2. nf] ~g(l/,') >0 Ve R,’_j

where q, q € {r,0}and s, s € {+ —}.

Proof. The first requirement guarantees that the trajectories of the
system do not leave R;; through the edges EZ',#EZ. This has been
already proven in Theorem 1. The second requirement is to drive
the trajectories of the system out through the edge E;. According
to the Proposition 1, for the multi-affine function g, there exist
2 =0, i=0,...,3, such that ¥x=(r,0) € R : g(X) = > o 4&(vi).
Since /; are positive, then, nf]T -g(v;) > 0, for all »;, will result in
1 g(x) = i pAng .g(v;) > 0, forall x € R;;.This means that the tra-
jectories of the system have a strictly positive velocity in the direc-
tion of ng, steering them to exit from R;; through the edge Ef,. O

Corollary 3 (Controller for an Exit edge). For a continuous multi-
affine vector field X = h(x,u(x)) = g(x), g : R* — R* E; with the outer
normal nj,q € {r,0} and s € {+,—}, is an exit edge if there exists a con-
troller u : R? — U C R?, such that for each vertex v, i=0,1,2,3, the
following property holds true:

Ui = U[{u € R*n}.g() > 0, for all v; and

s* s* S s* (1 1)
m. g(v) > 0, for all Ey#E;, v e ().) }#0
where the convex set U represents the velocity bounds.

Corollary 3 is the direct implication of Theorem 2 for which we
check the feasibility of the feedback controller, applying the veloc-
ity constraints U. Clearly, if one of the above sets U;, i=0,...,3, is
empty, the controller is not feasible. Moreover, if we construct u
as a multi-affine function, since U is a convex set, the multi-affine-
ness of u(x) will guarantee that the resulting system respects the
velocity bounds.

Remark 4. The strictly positive inequalities in Theorem 2, guar-
antee that the trajectories of the system, immediately leave the
exit edge upon reaching this edge so that we can ignore the time
duration that the trajectories spend on the exit edges.

4.3. Construction of the controller

In previous sections, the feasibility conditions for an invariant
region and an exit edge were explained. Here, we will explain

A. Karimoddini et al./ Mechatronics 21 (2011) 886-898 891

the construction of the controller by computation of the sets U;
which are introduced in Corollaries 2 and 3.

First, we construct the controller Cp to make the region R;; as an
invariant region. According to the Theorem 1, in order to construct
an invariant region, (9) should be satisfied for all four edges of R;;.
Starting from the edge E,, we then need to have:

n’.g(v;) <0 forv; and v (12)
where n;f varies with the angle g as:

n"=1/4p

r

0 < B < O (13)

The solutions of (12) for a particular value of 8 can be selected
from the set {g|+Z < Zg < B+ 32}, which is shown by the gray
region in Fig. 9. Consequently, the solutions that satisfy (12) for
all values of g inside the interval [0;,0;+1], are the the vectors se-
lected from the set gg: = {g]0;:1 +5 < £g < 0; + ¥}, as it is shown
in Fig. 10.

Following this procedure, the legal regions for other edges can
be obtained accordingly:

Y Y
8 = {g\@m 5 < /g < b +§}
g = {801 — < Lg < O}
g, = {810 < Zg <0+ 7}

0

It follows from vy € V(E;) NV (E,) that the legal value for g(vo)
should be selected from the set Qo = g¢- N g .Therefore, we can
find the legal sets ©;, for all »;,i=0,1,2,3, as follows:

Qo ={gl0j < 28 <0;+3}

Q) ={g|5+ 01 < ZLg<T+0;}
Q, = {801 — § < 28 < Oj11}
Qs = {g|T+ 041 < £8 < 0; + 37}

According to Theorem 1, to have the region R;; as an invariant
region, it suffices to select an arbitrary value for g(#;) from the
set €2;. In other words, it is required to design the controller u(z;)
such that g(#;) be located inside the set ;. Here, for the path plan-
ner dynamics, given by (1), we have x = g(x) = u. Therefore, to
have the region R;; as an invariant region, it is sufficient to select
the values of u(#;) from the set U; = U ©; and construct the con-
troller u(x) based on Proposition 1. Recall that the set U represents
the velocity constraints. Therefore, since U is a convex set and u is
constructed as a multi-affine function, selecting u(¢;), i=0,...,3
from the set U, will result in Vx € R;j, u = g(x) € U.

As it can be seen in (14), the sets Q;, i=0,...,3, are not empty.
Moreover, if the velocity constraints are expressed as a convex

Fig. 9. The solution of (12) for a particular value of .

Fig. 10. All solution of (12) for 0; < B < 0j41.

set containing the origin, the sets U;=U (N ;, i=0,...,3, are not
empty. Hence, for the dynamics x = u, the controller C, exists
and can be constructed as discussed above.

The same procedure can be followed for the exit edges. As an
example, the sets U; for the edge E., as an exit edge, are as
follows:

15
U2=U3=Uﬂ{g|9j+]+75<lg<9j+37n} (13)

{UO =U; =UN{gl01 +Z< 28 < O+ 7}

In summary, for each region R;j, there exist five controllers that
can keep the trajectory of the system inside the region or drive it
out through one of four exit edges. This result has been formally
illustrated in the following proposition.

Proposition 3. [Existence of the Controllers] Let u : R*> — R? as a
multi-affine feedback controller for the system described by x = u,
over a polar partitioned space Cg, with the partitioning elements R;;
and with the given convex velocity constraints that contains the origin.
Then, there exists a controller, labeled by Cy, that makes the element
R;; as an invariant region and also, there exist the controllers, labeled
by C, that make the edges Ej as exit edges where q e {r,0} and
se{+-}.

5. DES model of the system

Using the above partitioning procedure and then, finding the
controllers to either make each region R;; as an invariant region
or make an edge as an exit edge for this region, we will obtain a hy-
brid system with infinite state that can be converted to a finite
state machine bisimilar to the original one. For a finite state ma-
chine, one can construct a supervisor using control synthesis tech-
niques based on the Discrete Event Systems (DES) supervisory
control theory initiated by Ramadge and Wonham [36]. The fol-
lowing part will introduce some notations to describe a finite state
machine by an automaton and then, we will extract the DES model
of the system within this framework.

5.1. Representation of a finite state machine

Formally, a finite state machine can be represented by an
automaton which is a quintuple G = (X, 2, o, Xo,X;,), where X is the
set of states; X, C X is the set of initial states; X,, is the set of final
(marked) states; X' is the (finite) set of events, and a:X x ¥ — X is
the transition function. o is a partial function and determines the
possible transitions in the system caused by an event.

The sequence of events composes a string. ¢ is an empty string,
and X" is the set of all possible strings over the set = including «.

892 A. Karimoddini et al./Mechatronics 21 (2011) 886-898

The function o can be extended to the strings as tex:X x 2 — X.In
this case, .y can be constructed inductively, as follows:

o Oex(X,€)

=X
® Oexi(X,50) =

o Oex(X,5),0) Vse X and 6 € X

The language of the automaton G, denoted by L(G) or Lg, is the
sequence of strings that can be generated by G, following the legal
transition relations as:

L(G) = {s € 2"|3xp € Xo S.t. ext(Xo,S) is defined.}

The marked language, denoted by L,(G) or L, consists of the
strings that can be generated by the automaton G and end with
the marked states:

L (G) = {s € Z"|3xo

€ Xo S.t. dext(Xo,S) is defined and Oy (Xo,S) € Xm}

The event set X consists of two types of events: controllable
event set X. and uncontrollable event set X,. The controllable
events are those that can be disabled or enabled by an external
supervisor; however, the uncontrollable events cannot be affected
by the supervisor.

5.2. Extracting the DES model of the system

Using the above notations, one can extract the DES model of the
partitioned system. Here, the states of the system are regions R;j,
for which the controller will determine the next destination state
of the transitions, deterministicly. According to Proposition 3, for
the given dynamics x = u and for each region R;;, there exist four
multi-affine controllers Cf] that can lead the trajectories of the sys-
tem out through the exit edges Ef] with q € {r,0} and s € {+,—}, and
there exists one controller Cy that can keep the state of the system
inside the region R;;.

In addition to the controllable events, when the trajectories of
the system cross the partitioning curves, they generate observable
events which inform the DES controller about the current state of
the system. Indeed, according to Corollary 3, after issuing a com-
mand {C;|q € {r,0},s € {+,—}}, the trajectories of the system will
leave the region form the corresponding exit edge. Hence, after
issuing a controllable event C;, the system remains in a detection
state d;; until the trajectory of the system crosses the exit edge.
Upon crossing the exit edge, the event O;; will be generated which
can be adopted as a feedback information for the supervisor. These
events are inherently uncontrollable, in the sense that depending
on the initial state of the system, according to Corollary 3, the
generated trajectory eventually will cross the exit edge within a fi-

o

Fig. 11. DES model of the system with controllable and uncontrollable event sets
. ={C/,C,C;,Cp,Coy and Ty = {01 <i<nmy—1, 1<j<n,—1}

nite time, but the exact time is not known and the system should
wait to observe the event.

Moreover, at the initial step of the algorithm, the plant starts
from one of the detection states and recognizes in which state
now the system is. Then, based on detected information, an appro-
priate controllable event will be generated by the supervisor to
control the system, accordingly.

The graph representation that models some of the states and
transitions in this system has been depicted in Fig. 11. The arrows
starting from R, , and ending with d. , are labeled the same as the
controller labels. These labels can be captured by the controllable
events in the DES model. The arrows starting from d, . and ending
with R, , are labeled with the observable events 0;;, 1 <i<n,—1,
1 <j < ny— 1. The entering arrows stand for the initial states. As it
is shown in Fig. 11, the system can start from any of the detection
states. The controller job is to bring the trajectories of the system
to one of the regions R;;,1 <j < ny— 1, as the final states, regard-
less of the initial state of the system.

Regarding the above discussions, the DES model of the plant can
be represented as follows:

G=(X,2,2X0,Xmn)
.X={Ru“<i<nr—],
1<j<ny—13UA{di1 <
o Xo={d;j|1 < 1<nr—11<]
® Am {Rl‘)‘l <]\n()_l}gx
e X =X.U2X, where
- 2 _{C+ C, C;,C(,,Co}

n—11<j<
ny—1}

ngfl}

- 2y {OIJ|1<1<nr71,1 <jg<ng -1}
Rij g=Cy
diy1j o0=C/ forizn -1
diyy o=C/ fori#1
e a(Rij,0) = dijq1 0=C, forj# ny—1
diq g=C, forj=n, -1
dija o=C, forj#1
diny-1 o=C, forj=1

O((d,“,;g) = Rij 0= O,‘_j

Remark 5. In the definition of the transition function «, we have
two exceptions. Firstly, for the states Ryj, 1 <j <ny— 1, the con-
troller C, is not defined, since, if we define the controller C,, the
transition to the next state is unknown and it becomes nondeter-
ministic. Secondly, for the states R, _1j, 1 <j<ny— 1, the transi-
tion C; is undefined, due to the fact that this controller will lead
the trajectories of the system outwards the control horizon, C,.

5.3. Refining the DES model of the plant

Since in the obtained DES model the initial state is not unique,
hence, the resulting DES model is nondeterministic. Moreover,
depending on n, and n,, the number of states could be too large
to analyze the system. Therefore, it is required to refine the plant
representation to obtain a deterministic model with reduced num-
ber of states. To refine the plant model, it is sufficient to merge the
states with similar situation. In this case each of the finial states
R:j, the last states R, _qj, the states R;;, i# 1 and i # n,— 1, and
the detection states d;; will fall into new separate states. The re-
fined model and the original plant are language equivalent, mean-
ing that L(G) = L(Gyes) and Lin(G) = Lin(Grey) [37]. The resulting refined
model of the plant is shown in Fig. 12.

In the next section, we will design a supervisor for the extracted
DES model of the system to satisfy the control requirements.

6. Designing a DES supervisor for the system

Here, the control objective is to bring the trajectories of the
system to the desired position, regardless of the initial state of

A. Karimoddini et al./ Mechatronics 21 (2011) 886-898 893

the system. Meanwhile, we should avoid the collision between the
UAVs. The design procedure is modular, i.e., we first will design the
controller for reaching and keeping the formation and then, we will
design the controller for collision avoidance. Finally, the whole
controller will be obtained using the parallel composition
operation.

6.1. Designing a DES supervisor for reaching and keeping the
formation

Using the polar partitioning approach, the formation can be
achieved if the controller drives the system directly to the regions
Ri;1<j<nyg—1,as it is shown in Fig. 13. Clearly, after reaching
the formation by this scenario, the controller should maintain
the state of the system at the final state to keep the formation. This
specification is realized by the automaton H in Fig. 14. The lan-
guage generated by this automaton is denoted by Lgp... The speci-
fication is controllable with respect to the language L(G) = L(Gre)
and the event set X', since:

Vs €Lpee and o€ X, and so€L(G),then 5o € L.

In words, L, is controllable since uncontrollable events need
not to be disabled. Indeed, the controllability is the existence con-
dition of a supervisor for the control goal described by the specifi-
cation Lgpec [37].

To design the supervisor for the above controllable specifica-
tion, we use the parallel composition as a binary operation to dis-
able undesirable strings.

Definition 5 (Parallel Composition). [38] Given two automata
Gy = (X1, 21, 01,X0,, Xm,) and Gy = (X2, 22,002,X0,,Xm,),
G =G1||G2 = (X, Z,0,%0,Xp,) is said to be the parallel composition of
G; and G, with:

e X=X xXp
e X=2,U2%
® Xo = Xo, X Xo,
o X = Xm, % X,
® VY(x1,X,)eX,0€X, then o(x,0) =
o (001(X1,0),02(X2,0))
if oq1(x1,0)! and o, (xz,0)! and ceX; (N X,
o (01(x1,0),%2) if a1(X1,0)! and g€X; — X,
o (X1,00(x2,0)) if 0a(x2,0)! and geX; — X4
o undefined otherwise

In this operation, the common events should happen synchro-
nously, whereas the private events can happen independently.

Fig. 12. Refined model of the plant G

- Follower

Leader
o]

Fig. 13. The control idea is driving the state of the system directly to the regions
Ry

(Yf.l
& é:f)
i (Ef izl @) @

g Lj

Fig. 14. The control specification of the system.

Nl Ny
& %.11=8 &5
0',}'
(©Y)
CN
A

Fig. 15. Supervisor automaton Sy for the formation control.

Using the parallel composition operator, we design the supervi-
sor Syas it is shown in Fig. 15. It can be seen that the supervisor and
the specification have a similar structure. The difference is that all
the states of the supervisor are marked. This will allow that the
marked states of the closed loop system to be solely determined
by the plant.

The closed loop system, can be obtained based on the parallel
composition operator as G = G||Sy. Since all the events are common
between the plant and the supervisor and the specification is a
sublanguage of the plant language, the generated and marked lan-
guages of the closed loop system are:

Le, = L(Gl|Sy) = L(G) N L(Sy) = L(Grer) N L(Sy) = L(Sy) = Lopec
Lmrl = L(GHSf) N Lm(G) = Lspec n Lm(G) =1L

Mspec

The refined closed loop is shown in (Fig. 16).

6.2. Designing a DES supervisor for the collision avoidance

So far, we had assumed that the leader is not inside the control
horizon (R, < d). For the general case, that the leader can be any-
where, it is possible to have collision between the leader and the
follower when the follower is in region R;; and the leader is in re-
gion Ry, k <i (Fig. 26). To prevent the inter-collision, it is sufficient
that the follower do not enter to the region in which the leader is

894 A. Karimoddini et al./Mechatronics 21 (2011) 886-898

Cr

N
e Y)

— 1,72

Fig. 16. The refined closed loop system.

Fig. 17. Modified DES model of the plant.

located. This scenario can be implemented by another supervisor
Sca- Before that, we need to slightly modify the plant such that it
generates an event for the detection of the leader as an obstacle
(Fig. 17). Accordingly, the supervisor Sy will be changed so that it
does nothing when facing with a collision situation. The collision
avoidance will be then tackled by the supervisor Sc,, in a modular

| Leader *Follower

Fig. 19. Inter-collision avoidance supervisor.

_—

-

“
\\kof ;

Fig. 20. The refined closed loop system automaton G
S=5lSca-

where Gy, = S||Grs and

ref * ref

fashion. In the modified plant, if the leader is on the way of the fol-
lower to the origin, knowing the position of the leader, the follower
will generate the event Ob to inform the supervisor about the dan-
ger of collision.

Fortunately, the leader has a fix position in the relative frame.
Therefore, to guarantee the inter-collision avoidance between the
leader and the follower, it is sufficient that after observing the
event Ob, the follower turns anticlockwise, and then, again moves
towards the desired position (Fig. 18). This plan can be designed in
a modular way, i.e., first, we design a supervisor for the collision
avoidance and then, we combine it with the modified supervisor
Sr. The designed collision avoidance supervisor S¢, has been shown
in Fig. 19.

6.3. The closed loop system

Obtaining the formation supervisor and collision avoidance
supervisor as above, the whole controller can be achieved through
the parallel composition of these control submodules, S = Sq|Sc.
The refined closed loop system is the parallel composition of the
refined plant and the whole supervisor, def = S||Gres. The refined
closed loop system is shown in Fig. 20.

7. Applying the controller to the original continuous plant

In the previous sections, utilizing the proposed polar partition-
ing method combined with the designed multi-affine controllers,
we achieved a hybrid system that was abstracted to a finite DES
model.

The advantage of the abstraction is that it reduces an infinite
state system into a finite state machine which can be properly han-
dled by the well-established theories of DES supervisory control, as
we saw in the previous section.

Indeed, if we can construct the abstracted system such that it
bisimulates the original continuous system, the designed supervi-
sor for the abstracted system is guaranteed to work for the original
plant as well. By convention, we say that the original system is
similar to the abstracted one when for any transition in the original
plant, there exists a transition in the abstracted system. If the con-
verse is also true, we say that these two systems are bisimilar. In
fact, the bisimulation relation, guarantees the same behavior in
two systems [27].

By construction and by utilizing the multi-affine controllers, the
exit edge for each of the control labels is unique. Moreover, for each
exit edge, the adjacent partition that is common in that exit edge is
unique. Therefore, the transitions in the DES model are deterministic
and the DES model bisimulates the abstracted model (Fig. 21).

The bisimulation relation between the DES plant and the origi-
nal continuous model, will result in the same behavior in these sys-
tems, so that the DES supervisor for the abstracted system can be
easily applied to the original plant as it is shown in Fig. 22. To re-
fine the DES supervisor, it is sufficient to apply the corresponding

A. Karimoddini et al./Mechatronics 21 (2011) 886-898

C

o e { &)

R &)
: ‘-\%Dggg R /6{ -

/
\

Fig. 21. Bisimulation relation between the plant and abstracted model.

U . U p
41 DES Supervisor 1] 4 DES, e 127
Supervisor
i i iy i |
1 I
1 Actuator detector | 1
I
: | <&
1 1
1 I L
1 1 DES model
: u = f(xu Flaae _x : of the Plant |
. < >%d |
I

Fig. 22. Applying the discrete supervisor to the original plant.

continuous controller u x) instead of the control labels u; € X,
where u.(x) = f(x,uq) = 32 o4i(x)ua(;) where ug(w), i=0,...,3,
are determined at the vertices #;, corresponding to the control label
uy. This translation from control labels to the continuous control
law is the role of Actuator block shown in Fig. 22. In this figure,
the Detector block recognizes the current position of the UAV and
considering the partitioning curves, it generates the observable
events for the supervisor. The set of Plant, Detector, and Actuator
blocks together can be captured by the DES model of the system,
as discussed in Section 5.

8. Simulation

This control architecture has been applied to a leader- follower
formation problem. Let R;; < d, and assume that the follower path
planner dynamics is given as (1). The control horizon is 20 m,
and we have selected n,.=5 and n,=13. Using Corollaries 2 and
3, the sets U; for the control labels Cy and C, are given as (14)

0.5

895

and (15), respectively. It is sufficient that we pick up the appropri-
ate values for u(#;) at each vertex from the sets U;, while respecting

the velo

city bounds. With these values of u(#;), we can construct

the feedback control law u(x) based on Corollaries 2 and 3. Here,
the velocity amplitude of the UAV in the relative frame is required

to be <1
cient to

.5 m/s. Therefore, to meet the velocity bounds, it is suffi-
select the amplitude of u(#;) < 1.5 m/s.

According to the above discussion, for the controller C,, the se-
lected values of u(#;) at the vertices of the region R;; are selected as

follows:

where 1
The ¢
region R

%4— 01‘ — 0.1(61‘“ — (‘)]))
T4 051 +0.1(01 — 0)))
324011 +0.1(011 — 6)))
Z+ 0 — 0.1(0p41 — 0)))

o — —

<ign—-11<j<n-1.
ontroller u(x), corresponding to the control label G, for the
.j» is in the form of u(x) = 27 (4u(w;), where 2(x) can be

obtained through Proposition 6. We can follow the same procedure
to construct the controller for the control label C, .

20 B
_-< | AN
N
15+ . - \ P T N / N
, N7 | < N
- \ /o N
10 < s N 7 h BN
/ ~ Y ~ ~ N _
~ -\ | 7~ >
/ /o~ - V2 \ ; N _ =N N
. I \ \
S / RN ST T PR
I / / SN s A !
| /R Ve \ | |
ofF—- — 4. - - L SE T g
\ \ \ - | ~ I |
N P RAN /
—5’\ \ L o X ~.q / /
\ N7 S N / ‘ \ N /
\ _-7N ~/ | N7 A /
-10F < N /T =g = TN s ~
N 7
N - 7 | \ _ /
AN VA _ N\ Ve
-15 - ~ ; e \ -
~ -
~ | N~
-20 . P SO Y S \ \
-20 -15 -10 -5 0 5 10 15 20
Fig. 23. Simulation of the system for an initial state inside the region R4 .

0.4
0.3
0.2

0.1

-0.1

Velocity (m/s)

-0.2

-0.3

-0.4

-0.5

L

L I L

40
Time (sec)

50 60 70 80

Fig. 24. Generated velocities V, and V, for an initial state inside the region Ry ;.

896 A. Karimoddini et al./Mechatronics 21 (2011) 886-898

20

Radial error (m)

0 10 20 30

40 50 60 70 80
Time (sec)

Fig. 25. Absolute distance from the desired position.

Using the above mentioned multi-affine controllers and apply-
ing the DES supervisor, for an initial state inside the region R4,
the trajectory of the system and the generated velocities are shown
in Figs. 23 and 24, respectively. As it can be seen in Fig. 24, the gen-
erated velocities respect the velocity bounds. These generated
velocities should be given to the lower level of control architecture
as the references to be tracked.

The absolute value of the distance of the UAV from the desired
position is shown in Fig. 25. It has finally reached the first circle,
i.e., one of the regions Ry, and the general specification has been
achieved; however, it has not exactly reached the desired position
and there is a steady state error for this controller. This can be trea-
ted by two approaches. First, we can make the partitions finer, or at
least reduce the diameter of the first circle. Note that other circles
do not have any effect on the steady state error, hence, the final
precision depends only on the first circle diameter. However, from
the practical point of view, the diameter cannot be reduced drasti-
cally, due to the limitations on the sampling frequency and the
accuracy of the sensors. An alternative approach is tuning the vec-
tor fields in the regions R; ;. In this example, we have selected sym-
metric values for u(#), i=0,...,3, at all four vertices of Ry
Therefore, in the case of invariant region, the equilibrium point will

0;+0j:1
2

be at the center of the region <0f = and ry = %) However, by

selecting a smaller value for u(zy) and u(), the equilibrium point

Fig. 26. Collision avoidance mechanism.

will be pushed towards the origin and the steady state error will be
reduced.

In another example, to simulate the collision avoidance, when
R;, > d, assuming that the leader is located in Rz, and the initial
state of the follower is inside the region R4, the generated path
for the collision avoidance mechanism and reaching the formation
is depicted in Fig. 26. The control mechanism was explained in
Section 6.2.

9. Future plan

The developed framework for hybrid formation control, is going
to be implemented on the cooperative test-bed of NUS UAV heli-
copters. This test-bed consists of two small-scale UAV helicopters
as shown in Fig. 27. The avionic systems of these UAVs are com-
posed of a PC\104 computer as an onboard airborne computer sys-
tem that is modularly extended by extension boards such as an
A\D card, a DC-DC convertor card, and a serial communication
board. In this avionic system, the IMU sensor (NAV420, Crossbow),
as the major sensor, provides three-axis velocities, acceleration,
and angular rates in the body frame, as well as longitude, latitude,
relative height, and heading, pitch, and roll angles. The avionic sys-
tem is also equipped with several servo actuators that can manip-
ulate the helicopter to move in different directions. All of these
actuators are controlled by a servo board (HBC101, Pontech) as a
local controller. The details of the hardware of these UAVs are ex-
plained in [39]. The onboard computer program is developed using
the QNX Neutrino as a real-time operating system. The developed
software is able to communicate with the data acquisition board
(DIAMOND-MM-32-AT, Diamond), servo board, and the IMU sen-
sor. It is also able to log the data, compute the control signals,
and communicate with the ground station unit via a wireless com-
munication board (IM-500X008, FreeWave). The details of the on-
board program are illustrated in [40]. In [35], it has been shown
that these UAVs are able to have perfect altitude control during
the flight missions. Moreover, they can follow the generated path
as long as it respects the velocity bounds [34]. Therefore, this coop-
erative test-bed is appropriate for implementation of our hybrid
formation scenario.

Although with a perfect heave control, the formation of the
UAVs with a fixed altitude can be reduced to a two-dimensional
problem, a more interesting problem, that we will focus in our fu-

A. Karimoddini et al./Mechatronics 21 (2011) 886-898 897

Fig. 27. NUS cooperative UAVs test-bed.

ture research work, is to develop and formulate a 3D multiple fol-
lower scenario algorithm for the formation problem within hybrid
supervisory control framework.

The achieved hybrid system is completely flexible, in the sense
that the supervisor can select either of the adjacent partitions as
the transition destination. Using this flexibility, as a next stage,
we are going to implement more complex scenarios within the
symbolic control framework to achieve more complicated specifi-
cations expressed in temporal logics such as LTL or CTL.

10. Conclusion

In this paper, we proposed a new approach of hybrid supervi-
sory control for the leader follower formation problem. The ap-
proach was based on the polar partitioning of the state space.
Assuming that the dynamics of the path planner of the UAV is in
the form of x = u, several multi-affine feedback controllers were
designed to keep the system inside a partitioning element or drive
it out through the desired direction. These multi-affine feedback
controllers were then used to establish a hybrid controller that
makes the controlled system able to reach the formation, starting
from any arbitrary initial position inside the control horizon. In
addition, an inter-collision avoidance mechanism was embedded
in the controller in a modular way. After reaching the formation,
the supervisor will keep the obtained configuration. The switching
between different modes of operation were properly handled by
the supervisor and it can be guaranteed that the system will reach
the final states due to the bisimilarity relation between the ab-
stracted system and the original plant in the proposed abstraction
approach. Moreover, the velocity bounds were applied through the
design procedure so that the generated velocities can be followed
by the lower levels of control hierarchy. The control structure is
decentralized, that is, the controllers for the leader and the fol-
lower act locally. Furthermore, the control design procedure was
modular, i.e., we designed the controller for the formation control
and collision avoidance separately and then, they have been com-

bined using parallel composition operation, to achieve the whole
controller and to satisfy the general specification.

Acknowledgement

The financial supports from TDSI and TL@NUS are gratefully
acknowledged.

References

[1] Fierro R, Song P, Das A, Kumar V. Cooperative control of robot formations. In:
Cooperative control and optimization. Series on applied optimization, vol.
66. US: Springer; 2002. p. 79-93.

[2] Lee G, Chong NY. Decentralized formation control for small-scale robot teams
with anonymity. Mechatronics 2009;19(1):85-105.

[3] Pereira GAS, Kumar V, Campos MFM. Formation control with configuration
space constraints. In: Proceedings of inernational conference on intelligent
robots and systems, Las Vegas, 2003. p. 2755-60.

[4] Vachon M], Ray RJ, Walsh KR, Ennix K. F/A-18 performance benefits measured
during the autonomous formation flight project. NASA technical report, no.
NASA-TM-2003-210734, NASA Dryden Flight Research Center; 2003.

[5] Marconi L, Naldi R. Aggressive control of helicopters in presence of parametric
and dynamical uncertainties. Mechatronics 2008;18(7):381-9.

[6] Metni N, Hamel T. A UAV for bridge inspection: visual servoing control law
with orientation limits.] Automat Constr 2007;17(1):3-10.

[7] Ahmadzadeh A, Buchman G, Cheng P, Jadbabaie A, Keller J, Kumar V, Pappas G.
Cooperative control of UAVs for search and coverage. In: Proceedings of the
AUVSI conference on unmanned systems, 2006.

[8] Doherty P, Rudol P. A UAV search and rescue scenario with human body
detection and geolocalization. In: Advances in artificial intelligence. Lecture
notes in computer science, vol. 4830/2007. Berlin/Heidelberg: Springer; 2007.
p. 1-13.

[9] Sasa S, Matsuda Y, Nakadate M, Ishikawa K. Ongoing research on disaster
monitoring uav at jaxas aviation program group. In: SICE annual conference,
2008. p. 978-81.

[10] Bryson M, Sukkarieh S. Cooperative localisation and mapping for multiple
UAVs in unknown environments. In: Proceedings of 2007 IEEE aerospace
conference, 2007. p. 1-12.

[11] Puri A, Valavanis K, Kontitsis M. Statistical profile generation for traffic
monitoring. In: Using real-time UAV based video data, 2007 mediterranean
conference on control and automation, 2007. p. 1-6.

[12] Tian], Shen L, Zheng Y. Formulation and a MOGA based approach for multi-
UAV cooperative reconnaissance. In: Cooperative design, visualization, and
engineering. Lecture notes in computer science, 4101/2006. Berlin/
Heidelberg: Springer; 2006. p. 99-106.

[13] Tian X, Bar-Shalom Y, Pattipati KR. Multi-step look-ahead policy for
autonomous cooperative surveillance by uavs in hostile environments. In:
47th IEEE conference on decision and control, 2008. p. 2438-43.

[14] Hassan G, Yahya K, ul Haq I. Leader-follower approach using full-state
linearization via dynamic feedback. IEEE Int Conf Emer Technol 2006:297-305.

[15] Giuliettia F, Innocentib M, Napolitanoc M, Pollini L. Dynamic and control issues
of formation flight.] Aerosp Sci Technol 2005;9(1):65-71.

[16] Stipanovic DM, Inalhan G, Teo R, Tomlin C. Decentralized overlapping control
of a formation of Unmanned Aerial Vehicles. Automatica 2004;40(8):1285-96.

[17] Leonard N, Fiorelli E. Virtual leaders, artificial potentials and coordinated
control of groups. In: Proceedings of the 40th IEEE conference on decision and
control 3, 2001. p. 2968-73.

[18] Koditschek D, Rimon E. Robot navigation functions on manifolds with
boundary.] Adv Appl Math 1990;11(4):412-42.

[19] Mukai M, Azuma T, Fujita M. A collision avoidance control for multi-vehicle
using PWA/MLD hybrid system representation. In: Proceedings of the 2004
IEEE international conference on control applications, vol. 2, 2004. p. 872-7.

[20] Richards A, How J. Aircraft trajectory planning with collision avoidance using
mixed integer linear programming. In: Proceedings of the 2002 American
control conference, vol. 3, 2002. p. 1936-41.

[21] Wang X, Yadav V, Balakrishnan S. Cooperative UAV formation flying with
obstacle/collision ~ avoidance. IEEE Trans Control Syst Technol
2007;15(4):672-9.

[22] Antsaklis PJ, Kohn W, Lemmon MD, Nerode A, Sastry S, editors. Hybrid systems
V. Lecture notes in computer science, vol. 1567. Springer; 1999.

[23] Bayraktar S, Fainekos G, Pappas G. Experimental cooperative control of fixed-
wing Unmanned Aerial Vehicles. In: 43rd IEEE conference on decision and
control, vol. 4, 2004. p. 4292-8.

[24] Zelinski S, Koo T, Sastry S. Hybrid system design for formations of autonomous
vehicles. In: 42nd IEEE conference on decision and control, vol. 1, 2003. p. 1-6.

[25] Chen Q, Ozguner U. A hybrid system model and overlapping decomposition for
vehicle flight formation control. In: 42nd IEEE conference on decision and
control, vol. 1, 2003. p. 516-21.

[26] Karimoddini A, Lin H, Chen BM, Lee TH. Developments in hybrid modeling and
control of Unmanned Aerial Vehicles. In: Proceedings of the 7th IEEE
international conference on control and automation, Christchurch, New
Zealand, December 2009. p. 228-33.

898 A. Karimoddini et al./Mechatronics 21 (2011) 886-898

[27] Alur R, Henzinger TA, Lafferriere G, Pappas GJ. Discrete abstractions of hybrid
systems. Proc IEEE 2000;88(7):971-84.

[28] Lafferriere G, Pappas GJ, Yovine S. A new class of decidable hybrid systems.
Lecture notes in computer science, vol. 1569. Springer-Verlag; 1999. p.
137-51.

[29] Lafferriere G, Pappas GJ, Sastry S. O-Minimal hybrid systems.] Math Control,
Signals, Syst 2000;13:1-21.

[30] Henzingera TA, Kopkeb PW, Puria A, Varaiya P. What's decidable about hybrid
automata?] Comput Syst Sci 1998;57(1):94-124.

[31] Belta C, Habets L. Constructing decidable hybrid systems with velocity bounds.
In: 43rd IEEE conference on decision and control, vol. 1, 2004. p. 467-72.

[32] Belta C, Habets L. Controlling a class of nonlinear systems on rectangles. IEEE
Trans Autom Control 2006;51(11):1749-59.

[33] Tabuada PLP, Pappas GJ. Feasible formations of muti-agent systems. In:
Proceedings of the American control conference, 2001. p. 56-61.

[34] Karimoddini A, Cai G, Chen BM, Lin H, Lee TH. Hierarchical control design of a
UAV helicopter. In: advances in flight control systems. ISBN: 978-953-7619-X-
X, INTECH, in press.

[35] Karimoddini A, Cai G, Chen BM, Lin H, Lee TH. Multi-layer flight control
synthesis and analysis of a small-scale Uav helicopter. In: Proceedings of the
4th IEEE international conference on robotics, automation and mechatronics,
Singapore, 2010. p. 321-6.

[36] Ramadge P, Wonham W. The control of discrete event systems. Proc IEEE
1989;77(1):81-98.

[37] Cassandras CG, Lafortune S. Introduction to discrete event systems. Springer;
2008.

[38] Kumar R, Garg VK. Modeling and control of logical discrete event systems. The
Springer international series in engineering and computer science, vol.
300. Springer; 1995.

[39] Cai G, Lin F, Chen BM, Lee TH. Systematic design methodology and
construction of UAV helicopters. Mechatronics 2008;18(10):545-58.

[40] Dong M, Chen BM, Cai G, Peng K. Development of a real-time onboard and
ground station software system for a UAV helicopter. AIAA] Aerosp Comput,
Inform, Commun 2007;4(8):933-55.

	Hybrid formation control of the Unmanned Aerial Vehicles
	Introduction
	Problem description
	Multi-affine vector fields over polar partitioning of the state space
	Polar partitioning of the state space
	The properties of multi-affine vector fields over the partitioning elements

	Two control features over the polar partitioning elements
	Controller for an invariant region
	Controller for an exit edge
	Construction of the controller

	DES model of the system
	Representation of a finite state machine
	Extracting the DES model of the system
	Refining the DES model of the plant

	Designing a DES supervisor for the system
	Designing a DES supervisor for reaching and keeping the formation
	Designing a DES supervisor for the collision avoidance
	The closed loop system

	Applying the controller to the original continuous plant
	Simulation
	Future plan
	Conclusion
	Acknowledgement
	References

