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Abstract

This paper establishes a straightforward interconnection between the Kronecker canonical form and the special coordinate basis of linear
systems. Such an interconnection yields an alternative approach for computing the Kronecker canonical form, and as a by-product, the Smith
form, of the system matrix of general multivariable time-invariant linear systems. The overall procedure involves the transformation of a
given system in the state-space description into the special coordinate basis, which is capable of explicitly displaying all the system structural
properties, such as finite and infinite zero structures, as well as system invertibility structures. The computation of the Kronecker canonical
form and Smith form of the system matrix is rather simple and straightforward once the given system is put under the special coordinate basis.
The procedure is applicable to proper systems and singular systems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Kronecker canonical form has been extensively used
in the literature to capture the invariant indices and structural
properties of linear systems. It is now well understood that the
system structural properties play a crucial role in the design
of control systems. In this paper, we consider a multivariable
linear time-invariant system characterized by

� :
{

Eẋ = Ax + Bu,

y = Cx + Du,
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively, the
state, input and output of the given system, and E, A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are constant matrices.
The system � is said to be singular if rank(E) < n. Otherwise,
it is said to be a proper system. It is well understood in the
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literature that the structural properties of �, such as the finite
and infinite zero structures, as well as the system invertibility
structures, can be fully captured by its (Rosenbrock) system
matrix defined as follows (see, [13]):

P�(s) =
[
sE − A −B

C D

]
= s

[
E 0
0 0

]
−

[
A B

−C −D

]
. (2)

The computational problem of the Kronecker canonical form
of P�(s) is potentially ill-posed. It involves finding generalized
eigenvalues and eigenvectors for singular matrix pencils. Tradi-
tionally, the computation of the Kronecker canonical form was
carried out through certain iterative reduction schemes (see, for
example, [1,8,9,12,16]). Among these approaches, some were
based on the reduction of the system matrix to a generalized
Schur form (see, for example, [6,7]), and others the generaliza-
tion of Kublanovskaya’s algorithm for the determination of the
Jordan structure of a constant matrix (see, for example, [1]).

Instead of focusing on the computational issues of the
Kronecker canonical form of matrix pencils, the main objective
of this paper is to establish a straightforward interconnection be-
tween the Kronecker canonical form and the special coordinate
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basis of linear systems of Sannuti and Saberi [15]. We will
show that it is simple to derive a constructive procedure for
computing the Kronecker canonical form, and as a by-product,
the Smith form, of P�(s) by utilizing the special coordinate ba-
sis technique. The special coordinate basis was originally pro-
posed by Sannuti and Saberi [15], and was recently completed
by Chen [3], in which all the system structural properties of
the special coordinate basis were rigorously justified. The is-
sues on the computation of the special coordinate basis of lin-
ear systems have recently been studied in detail in Chu et al.
[5], which shows that a raw form of the special coordinate ba-
sis can be obtained using some almost orthogonal transforma-
tions. The software realization of the special coordinate basis
and other related decomposition techniques required is readily
available in Lin et al. [10]. Thus, the additional cost for com-
puting the canonical forms mentioned above is very minimal.

To be more specific, we recall that two pencils sM1 −N1 and
sM2 −N2 of dimensions m×n are said to be equivalent if there
exist constant nonsingular matrices P̃ and Q̃ of appropriate
dimensions such that

Q̃(sM1 − N1)P̃ = sM2 − N2. (3)

It was shown in Gantmacher [8] that any pencil sM −N can be
reduced to a canonical quasi-diagonal form, which is given by

Q̃(sM − N)P̃

=
[blkdiag{sI − J, Ll1 , . . . , Llpb

, 0
Rr1 , . . . , Rrmc

, I − sH }
0 0

]
. (4)

In (4), the last term, i.e., 0, corresponds to the case when there
are redundant columns or rows associated with the input matri-
ces and measurement matrices. J is in Jordan canonical form,
and sI − J has the following

∑�
i=1di pencils as its diagonal

blocks,

sImi,j
− Jmi,j

(�i ) :=

⎡
⎢⎢⎣

s − �i −1
. . .

. . .

s − �i −1
s − �i

⎤
⎥⎥⎦ , (5)

j = 1, 2, . . . , di , i = 1, 2, . . . , �. Lli , i = 1, 2, . . . , pb, is an
(li + 1) × li bidiagonal pencil, i.e.,

Lli :=

⎡
⎢⎢⎢⎣

−1

s
. . .
. . . −1

s

⎤
⎥⎥⎥⎦ . (6)

Rri , i = 1, 2, . . . , mc, is an ri × (ri + 1) bidiagonal pencil, i.e.,

Rri :=
⎡
⎣ s −1

. . .
. . .

s −1

⎤
⎦ . (7)

Finally, H is nilpotent and in Jordan canonical form, and I −sH
has the following d pencils as its diagonal blocks,

Inj +1 − sJ nj +1(0) :=

⎡
⎢⎢⎣

1 −s
. . .

. . .

1 −s

1

⎤
⎥⎥⎦ , (8)

j = 1, 2, . . . , d. Then, {(s − �i )
mi,j , j = 1, 2, . . . , di} are fi-

nite elementary divisors at �i , i = 1, 2, . . . , �. The index sets
{r1, r2, . . . , rmc} and {l1, l2, . . . , lpb} are right and left minimal
indices, respectively. Lastly, {(1/s)nj +1, j = 1, 2, . . . , d} are
the infinite elementary divisors.

In the context of this paper, we will focus on

sM − N = s

[
E 0
0 0

]
−

[
A B

−C −D

]
= P�(s), (9)

the (Rosenbrock) system matrix pencil associated with �. The
definition of structural invariants of � is based on the invariant
indices of its system pencil. In particular, the right and left in-
vertibility indices are, respectively, the right and left minimal
indices of the system pencil, the finite and infinite zero struc-
tures of the given system are related to the finite and infinite
elementary divisors of the system pencil.

The Smith form of the system matrix is another way to cap-
ture the invariant zero structure of the given system �. We
recall the definition of the Smith form from the classical text of
Rosenbrock and Storey [14]. Given a polynomial matrix A(s),
it was shown in [14] that there exist unimodular transforma-
tions M(s) and N(s) such that

S(s) = M(s)A(s)N(s) =
[
D(s) 0

0 0

]
, (10)

where

D(s) = diag{p1(s), p2(s), . . . , pr(s)}, (11)

and where each pi(s), i = 1, 2, . . . , r , is a monic polynomial
and pi(s) is a factor of pi+1(s), i = 1, 2, . . . , r − 1. Note
that a unimodular matrix is a square polynomial matrix whose
determinant is a nonzero constant. S(s) of (10) is called the
Smith canonical form or Smith form of A(s). We will show in
this paper that it is straightforward to obtain the Smith form
of P�(s) once it is transformed into the Kronecker canonical
form.

The rest of the paper is organized as follows: in Section 2,
we present the main results of this paper, i.e., the interconnec-
tion of the Kronecker canonical form and Smith form of the
system matrix, P�(s), and the special coordinate basis of �.
The results will be illustrated by a numerical example. Finally,
some concluding remarks will be drawn in Section 3.

2. Kronecker and Smith forms of the system matrix

Before proceeding to present our main results, we first show
that the Kronecker canonical form and Smith form of the system
pencil of singular systems can be captured by converting the
singular system into an auxiliary proper system. This can be
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done as follows. Without loss of generality, we assume that E

is in the form of

E =
[
I 0
0 0

]
, (12)

and thus A, B and C can be partitioned accordingly as

A =
[
Ann Ans
Asn Ass

]
, B =

[
Bn
Bs

]
, C = [Cn Cs ] . (13)

Rewriting the system pencil of (9) as

(14)

it is simple to see that the invariant indices of � are equivalent
to those of a proper system characterized by (Ax, Bx, Cx, Dx).
Thus, without loss of generality, we focus on the computation
of the Kronecker canonical form and Smith form of the system
matrix of a proper system characterized by

� :
{

ẋ = Ax + Bu,

y = Cx + Du,
(15)

i.e., the following matrix pencil,

P�(s) =
[

sI − A −B

C D

]
, (16)

throughout the reminder of this paper. We next recall that the
Kronecker canonical form of the system matrix of �, i.e., P�(s),
is invariant under nonsingular state, input and output transfor-
mations, �s, �i and �o, and is invariant under any state feed-
back and output injection. Such a fact follows directly from the
following manipulation:

UP�(s)V =
[
�−1

s −K̃�−1
o

0 �−1
o

] [
sI−A −B

C D

] [
�s 0

�iF̃ �i

]

=
[

sI−(Ã+B̃F̃+K̃C̃ + K̃D̃F̃ ) −(B̃ + K̃D̃)

C̃ + D̃F̃ D̃

]

=
[

sI − AKF −BK
CF D̃

]
, (17)

where (Ã, B̃, C̃, D̃) is the transformed system and is given by

Ã = �−1
s A�s, B̃ = �−1

s B�i,

C̃ = �−1
o C�s, D̃ = �−1

o D�i, (18)

F̃ and K̃ are, respectively, the state feedback and output in-
jection gain matrices under the coordinate of the transformed
system, and finally, �KF characterized by the matrix quadru-
ple (AKF, BK, CF, D̃) with AKF = Ã + B̃F̃ + K̃C̃ + K̃D̃F̃ ,
BK = B̃ + K̃D̃ and CF = C̃ + D̃F̃ is the resulting transformed
system under the state feedback and output injection laws.

We are now ready to show that the Kronecker canonical form
of P�(s) can be obtained neatly through the special coordinate
basis of �. The following is a step-by-step algorithm that gen-
erates the required nonsingular transformations U and V for

the canonical form:
Step KCF 1: Computation of the special coordinate basis

of �.
Apply the result of Chu et al. [5] (see also [4,15]) to find

nonsingular state, input and output transformations, �s ∈ Cn×n,
�i ∈ Rm×m and �o ∈ Rp×p, such that the given system � of
(15) is transformed into the special coordinate basis as given in
Theorem 2.4.1 of Chen [4] or in the following compact form:

Ã = �−1
s A�s

=
⎡
⎢⎣

Aaa LabCb 0 LadCd
0 Abb 0 LbdCd

BcEca LcbCb Acc LcdCd
BdEda BdEdb BdEdc A∗

dd + BdEdd + LddCd

⎤
⎥⎦

+ B0C0,

B̃ = �−1
s B�i = [B0 B1 ] =

⎡
⎢⎣

B0a 0 0
B0b 0 0
B0c 0 Bc
B0d Bd 0

⎤
⎥⎦ ,

and

C̃ = �−1
o C�s =

[
C0
C1

]
=

[
C0a C0b C0c C0d
0 0 0 Cd
0 Cb 0 0

]
,

D̃ = �−1
o D�i =

[
Im0 0 0
0 0 0
0 0 0

]
,

where A∗
dd ∈ Rnd×nd , Bd ∈ Rnd×md and Cd ∈ Rmd×nd have the

following forms:

A∗
dd = blkdiag{Aq1 , . . . , Aqmd

}, (19)

and

Bd = blkdiag{Bq1 , . . . , Bqmd
},

Cd = blkdiag{Cq1 , . . . , Cqmd
}, (20)

with Aqi
, Bqi

and Cqi
, i=1, 2, . . . , md, being given as follows:

Aqi
=

[
0 Iqi−1
0 0

]
, Bqi

=
[

0
1

]
,

Cqi
= [1, 0, . . . , 0]. (21)

Also, we assume that Aaa ∈ Cna×na is already in the Jordan
canonical form, i.e.,

Aaa = blkdiag{Ja,1, Ja,2, . . . , Ja,k}, (22)

where Ja,i , i = 1, 2, . . . , k, are some ni × ni Jordan blocks:

Ja,i = diag{�i , �i , . . . , �i} +
[

0 Ini−1
0 0

]
, (23)

and (Abb, Cb), with Abb ∈ Rnb×nb and Cb ∈ Rpb×nb , is
in the form of the observability structural decomposition



Author's personal copy

B.M. Chen et al. / Systems & Control Letters 57 (2008) 28 – 33 31

(see, for example, [2,4,11, Theorem 2.3.1] for its dual version),
i.e.,

Abb = A∗
bb + LbbCb = blkdiag{Abb,1, . . . , Abb,pb} + LbbCb,

(24)

and

Cb = blkdiag{Cb,1, . . . , Cb,pb}, (25)

with

Abb,i =
[

0 Ili−1
0 0

]
, Cb,i = [1 0 ] , i = 1, 2, . . . , pb.

(26)

Finally, (Acc, Bc), with Acc ∈ Rnc×nc and Bc ∈ Rnc×mc , is
assumed to be in the form of the controllability structural de-
composition of Theorem 2.3.1 of [4] (see also [2,11]), i.e.,

Acc = A∗
cc + BcEcc = blkdiag{Acc,1, . . . , Acc,mc} + BcEcc,

(27)

and

Bc = blkdiag{Bc,1, . . . , Bc,mc}, (28)

with

Acc,i =
[

0 Ili−1
0 0

]
, Bc,i =

[
0
1

]
, i = 1, 2, . . . , mc. (29)

Step KCF 2: Determination of state feedback and output
injection laws.

Let

F̃ = −
[

C0a C0b C0c C0d
Eda Edb Edc Edd
Eca 0 Ecc 0

]
, (30)

and

K̃ = −
⎡
⎢⎣

B0a Lad Lab
B0b Lbd Lbb
B0c Lcd Lcb
B0d Ldd 0

⎤
⎥⎦ . (31)

It is straightforward to verify that the resulting �KF is charac-
terized by

AKF =
⎡
⎢⎣

Aaa 0 0 0
0 A∗

bb 0 0
0 0 A∗

cc 0
0 0 0 A∗

dd

⎤
⎥⎦ ,

BK =
⎡
⎢⎣

0 0 0
0 0 0
0 0 Bc
0 Bd 0

⎤
⎥⎦ , (32)

and

CF =
[0 0 0 0

0 0 0 Cd
0 Cb 0 0

]
, D̃ =

[
Im0 0 0
0 0 0
0 0 0

]
. (33)

Step KCF 3: Finishing touches.
It is now simple to verify that the (Rosenbrock) system matrix

associated with �KF has the following form:

1. The corresponding term associated with Ja,i is given by

sI − Ja,i =

⎡
⎢⎢⎣

s − �i −1
. . .

. . .

s − �i −1
s − �i

⎤
⎥⎥⎦ , (34)

which is already in the format of (5).
2. The corresponding term associated with (Abb,i , Cb,i ) is

given by

[−1 0
0 Ili

] [
Cb,i

sI − Abb,i

]
=

⎡
⎢⎢⎢⎣

−1

s
. . .
. . . −1

s

⎤
⎥⎥⎥⎦ , (35)

which is in the format of (6).
3. The corresponding term associated with (Acc,i , Bc,i ) is

given by

[ sI − Acc,i −Bc,i ] =
⎡
⎣ s −1

. . .
. . .

s −1

⎤
⎦ , (36)

which is in the format of (7).
4. Lastly, the corresponding term associated with (Aqi

, Bqi
,

Cqi
) is given by

[
sI − Aqi

−Bqi

Cqi
0

]
=

⎡
⎢⎢⎢⎢⎣

s −1 0
. . .

. . .
...

s −1 0
s −1

1 · · · 0 0 0

⎤
⎥⎥⎥⎥⎦ . (37)

Let

Uqi
=

⎡
⎢⎢⎣

0 · · · 1 0
... T

...
...

1 · · · 0 0
0 · · · 0 −1

⎤
⎥⎥⎦ , Vqi

= −

⎡
⎢⎢⎣

0 0 · · · 1
...

... T
...

0 1 · · · 0
1 0 · · · 0

⎤
⎥⎥⎦ .

(38)

Then, we have

Uqi

[
sI−Aqi

−Bqi

Cqi
0

]
Vqi

=

⎡
⎢⎢⎣

1 −s
. . .

. . .

1 −s

1

⎤
⎥⎥⎦ , (39)

which is now in the format of (8).
The Kronecker canonical form of the system matrix of �KF,
or equivalently the system matrix of �, i.e., (16), can then be
obtained by taking into account the additional transformations
given in (35) and (38) together with some appropriate permu-
tation transformations. This completes the algorithm.



Author's personal copy

32 B.M. Chen et al. / Systems & Control Letters 57 (2008) 28–33

Next, we proceed to show the Smith form of the system ma-
trix, P�(s), can be explicitly displayed under special coordinate
basis as well.

Step Smith 1: Determination of the Kronecker form of P�(s).
Utilize the special coordinate basis of � to determine the

Kronecker canonical form of P�(s) as given in the previous
algorithm. However, for the Smith form of P�(s), we need
not to decompose Aaa into the Jordan canonical form, which
might involve complex transformations. Instead, we leave Aaa
as a real-valued matrix. Note that the transformations involved
in the Kronecker canonical form are constant and nonsingular,
and thus unimodular.

Step Smith 2: Determination of unimodular transformations.

1. Using the procedure given in the proof of Theorem 7.4 in
Chapter 3 of Rosenbrock and Storey [14], it is straightfor-
ward to show that the term sI − Ja,i in (34) can be deduced
to the following Smith form:

(sI − Ja,i ) ⇀↽ diag{
ni−1︷ ︸︸ ︷

1, . . . , 1, (s − �i )
ni }. (40)

In general, following the procedure given in [14], we can
compute two unimodular transformations Ma(s) and Na(s)

such that sI − Aaa is transformed into the Smith form, i.e.,

Ma(s)(sI − Aaa)Na(s) = {pa,1(s), pa,2(s), . . . , pa,na (s)}.
(41)

Clearly, these polynomials are related to the invariant zero
structures of the given system �.

2. The term corresponding to (Abb,i , Cb,i ) given in (35) has a
constant Smith form:

[
Ili

0

]
= −

⎡
⎢⎢⎣

1

s
. . .

...
. . .

. . .

sli · · · s 1

⎤
⎥⎥⎦

×

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

−1

s
. . .
. . . −1

s

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ Ili . (42)

Note that the first term on the right-hand side of the above
equation is a unimodular matrix.

3. Similarly, the Smith form for the term corresponding to
(Acc,i , Bc,i ) given in (36) is also a constant matrix:

[Iri 0 ] = Iri

⎛
⎝

⎡
⎣ s −1

. . .
. . .

s −1

⎤
⎦

⎞
⎠ Nri (s), (43)

where

Nri (s) = −

⎡
⎢⎢⎣

1

s
. . .

...
. . .

. . .

sri · · · s 1

⎤
⎥⎥⎦

[
0 1
Iri 0

]
(44)

is a unimodular matrix.

4. Lastly, the Smith form for the term corresponding to
(Aqi

, Bqi
, Cqi

) given in (38) is an identity matrix:

Iqi+1 = Iqi+1

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1 −s
. . .

. . .

. . . −s

1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

×

⎡
⎢⎢⎣

1 s · · · sqi

. . .
. . .

...
. . . s

1

⎤
⎥⎥⎦ . (45)

Once again, the last term of the equation above is a unimod-
ular matrix.

Finally, in view of (41)–(45) together with some appropriate
permutation transformations, it is now straightforward to obtain
unimodular transformations M(s) and N(s) such that

M(s)P�(s)N(s) =
[
D�(s) 0

0 0

]
, (46)

where

D�(s)

= diag{
nbcd︷ ︸︸ ︷

1, . . . , 1, pa,1(s), pa,2(s), . . . , pa,na (s)}, (47)

and where nbcd = nb + nc + nd + m0 + md.

We illustrate the above results with the following example.

Example 2.1. Consider system characterized by (15) with

A =
⎡
⎢⎣

1 −1 0 0
0 1 0 1

−1 2 1 1
−1 3 1 1

⎤
⎥⎦ , B =

⎡
⎢⎣

0 0
0 0
0 1
1 0

⎤
⎥⎦ , (48)

and

C =
[

0 0 0 1
0 1 0 0

]
, D =

[
0 0
0 0

]
, (49)

which is already in the form of the special coordinate basis with
an invariant zero at 1, and na = nb = nc = nd = 1. Following
the algorithm given in Steps KCF 1–3, we obtain

F̃ =
[

1 −3 −1 −1
1 0 −1 0

]
, K̃ =

⎡
⎢⎣

0 1
−1 −1
−1 −2
0 0

⎤
⎥⎦ ,

AKF =
⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ ,
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and BK =B, CF =C, D̃ =D, and the required two nonsingular
transformations,

U =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1
0 0 0 0 0 −1
0 1 0 0 1 1
0 0 1 0 1 2
0 0 0 −1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ ,

V =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 −3 −1 0 1 −1
1 0 −1 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

which transform P�(s) into the Kronecker canonical form, i.e.,

Next, following the algorithm given in Steps SMITH 1–2, we
obtain two unimodular matrices,

M(s) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
0 0 1 0 1 2
0 0 0 −1 0 0
0 0 0 0 1 0
1 0 0 0 0 −1
0 −1 0 0 −1 s − 1

⎤
⎥⎥⎥⎥⎥⎦ ,

and

N(s) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0

−3 0 1 s − 1 1 1
0 −1 0 0 1 1 − s

⎤
⎥⎥⎥⎥⎥⎦ ,

with det[M(s)] = −1 and det[N(s)] = 1, which convert P�(s)

into the Smith form, i.e.,

M(s)P�(s)N(s) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 s − 1 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

Clearly, the polynomial in the entry (4,4) of the above Smith
form of P�(s), i.e., s − 1, results from the invariant zero of �.

3. Conclusions

In this paper, we have demonstrated that the well known
Kronecker canonical form and Smith form of the system ma-
trix of a general multivariable linear system, either proper or
singular, can be captured using the special coordinate basis
technique in a straightforward manner. The results have been
implemented in an m-function in MATLAB and have been re-
ported recently in a technical report [10]. Interested readers
might directly contact the authors for a beta version of the tool
kit.
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