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Abstract

This paper addresses a nonlinear H∞ control problem for a class of nonminimum phase nonlinear systems. The given system is first
transformed into a special coordinate basis, in which the system zero dynamics is divided into a stable part and an unstable part. A sufficient
solvability condition is then established for solving the nonlinear H∞ control problem. Moreover, based on the sufficient solvability condition,
an upper bound of the best achievable L2 gain from the system disturbance to the system controlled output is estimated for the nonlinear H∞
control problem. The proofs of our results yield explicit algorithms for constructing required control laws for solving the nonlinear H∞ control
problem. In particular, the solution to the nonlinear H∞ control problem does not require solving any Hamilton–Jacobi equations. Finally, the
obtained results are utilized to solve a benchmark problem on a rotational/translational actuator (RTAC) system.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The nonlinear H∞ control problem is to design a feedback
control law for a nonlinear system such that the closed-loop sys-
tem is internally stable, and has an L2-gain, from its disturbance
input to its system output, less than or equal to a prescribed
value � > 0. This problem has attracted much research effort
since the works of Van der Schaft (1991, 1992), and many in-
teresting results are available in the literature (see, for example,
Battilotti, 1996; Isidori, Schwartz, & Tarn, 1999; Jiang & Hill,
1998; Van der Schaft, 2000 and references therein). If � > 0 is
arbitrary, the problem is also known as the problem of almost
disturbance decoupling with internal stability. It was shown that
the almost disturbance decoupling problem is solvable if the
disturbance input does not affect the unstable part of zero dy-
namics of the system, see, for example, Isidori (1996a, 1996b),
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Marino, Respondek, van der Schaft, and Tomei (1994). When
the unstable zero dynamics of the system is affected by distur-
bance input, the almost disturbance decoupling problem is also
solvable for a special class of nonlinear systems whose zero dy-
namics contains a chain of integrators affected by disturbance
(Lin, 1998). However, for more general situations, disturbance
decoupling is generally not feasible. One has to seek to design
a controller that achieves a pre-specified L2-gain � > �∗, where
�∗ is the best achievable performance for the problem, i.e., the
problem is solvable for � > �∗ and not for � < �∗.

For linear systems, the optimal value �∗ can be perfectly
calculated by solving two Lyapunov equations if the system
is single-input and single-output (SISO) (see, for example,
Chen, 2000; Chen, Saberi, & Ly, 1992a, 1992b; Peterson,
1987; Scherer, 1992). It is shown in Chen (2000) and Chen et al.
(1992b) that the optimal value is only related to the unsta-
ble zero dynamics of the given system even for the singular
problem. For nonlinear systems, the problem of estimating the
optimal �∗ is investigated in Isidori et al. (1999) and Ji and Gao
(1995). An estimation of optimal H∞-gain for nonlinear H∞
control problem is obtained in Ji and Gao (1995). In Isidori
et al. (1999), the authors computed an upper bound of the
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optimal value �∗ for a class of nonlinear systems with sec-
ond order zero dynamics. In general, if the optimal value
�∗ is unknown, we need to solve Hamilton–Jacobi equations
recursively to construct an optimal control law. However,
for most nonlinear systems, it is very difficult to solve the
Hamilton–Jacobi equation analytically. To solve the nonlinear
H∞ control problem practically, some approximation methods
have been developed for solving the Hamilton–Jacobi equation
numerically, for example, Taylor series approximation (Huang
& Lin, 1995), and neural networks approximation (Abu-Khalaf
& Lewis, 2005; Abu-Khalaf, Lewis, & Huang, 2006). Some
properties of viscosity solutions of Hamilton–Jacobi equations
are investigated in Crandall, Evans, and Lions (1984).

In this paper, we aim to construct an H∞ control law with-
out solving any Hamilton–Jacobi equations. Consider a class
of nonlinear systems in the so-called output feedback form
(Marino & Tomei, 1991, 1993, 1995) characterized by

�̇ = A� + Bu + �(y) + G(�)w, y = C�, (1)

where � ∈ Rn is the state, w ∈ Rs the disturbance input, u ∈ R

the control input, and y ∈ R the system output or the controlled
output, and �(y)=[�i (y)], G(�)=[gij (�)] where �i (y) : R →
R, i=1, . . . , n, gij (�) : Rn → R, i=1, . . . , n, j =1, . . . , s are
some smooth nonlinear functions. Using special coordinate ba-
sis (SCB) technique, it follows from Chen, Lin, and Shamash
(2004) and Sannuti and Saberi (1987) that there exists a non-
singular matrix �s ∈ Rn×n such that the state transformation
�=�sx transforms the system (1) into the following SCB form:

ẋ−
a = A−

a x−
a + L−

a y + �−
a (y) + H−

a (x)w,

ẋ0
a = A0

ax
0
a + L0

ay + �0
a(y) + H0

a(x)w,

ẋ+
a = A+

a x+
a + L+

a y + �+
a (y) + H+

a (x)w,

ẋ1 = x2 + �1(y) + H1(x)w, y = x1,

ẋi = xi+1 + �i (y) + Hi (x)w, i = 2, . . . , r − 1,

ẋr = Ex + bu + �r (y) + Hr (x)w, (2)

where b is a nonzero scalar, A−
a ∈ Rn−

a ×n−
a has all its eigenval-

ues strictly in the left-half plane, A0
a ∈ Rn0

a×n0
a has all its eigen-

values on the imaginary axis, and all those of A+
a ∈ Rn+

a ×n+
a are

strictly in the right-half plane. Moreover, n+
a +n0

a +n−
a +r =n.

In the past two decades, various control problems have been
investigated for the nonlinear system in the output feedback
form, such as global stabilization (Marino & Tomei, 1993),
adaptive control (Khalil, 1999), nonlinear output regulation
(Ding, 2003b; Serrani, Isidori, & Marconi, 2001), and distur-
bance rejection (Ding, 2003a, 2006; Lan, Chen, & Ding, 2006;
Lin, Qian, & Huang, 2003; Marino & Tomei, 2005), just to
name a few. However, most of these works are based on an
assumption that the given system is of minimum phase, that is,
n+

a + n0
a = 0. In particular, the nonlinear H∞ control problem

has been studied in Ezal, Kokotovic, Teel, and Basar (2001)
and Isidori (1999) for a class of nonlinear systems of the form
(2) with n+

a +n0
a +n−

a =0. In Ezal et al. (2001), an output feed-
back control law is obtained to achieve local near-optimality
and semi-global inverse H∞ optimality. The output feed-
back control law is constructed based on the solutions of two

Riccati equations. In Isidori (1999), the existence of the non-
linear smooth state feedback control law that solves the global
H∞ control problem is investigated under the assumption that
there exists a pair {K, X} solves a Riccati equation. In fact,
it is shown that if {K, X} solves the Riccati equation, there
exists {u(x), V (x)} such that it solves the Hamilton–Jacobi
equation corresponding to the nonlinear H∞ control problem.
In this paper, we consider the nonlinear H∞ control problem
for the nonminimum phase systems of the form (2), that is,
n+

a + n0
a > 0. It should be noted that the systematic design

of the global stabilizer for the nonminimum phase systems is
limited to one-dimensional unstable zero dynamics (see, e.g.,
Ding, 2001; Robertsson & Johansson, 1999). In Lan and Chen
(2006), we developed a global stabilization technique for the
nonminimum phase nonlinear systems with higher order zero
dynamics. The stabilizing control law is constructed explicitly
by combining a robust stabilization technique (Khargonekar,
Petersen, & Zhou, 1990; Petersen, 1988) and a backstepping-
like strategy proposed by Tsinias (1991). We will extend this
technique to solve the following nonlinear H∞ control prob-
lem which gives an explicit construction of the H∞ control
law without solving any Hamilton–Jacobi equations. Though
only the state feedback control is considered in this paper, it is
possible to extend our results to the output feedback control by
using the available observer techniques (Arcak & Kokotovic,
2001a, 2001b; Krstic, Kanellakopoulos, & Kokotovic, 1995).

Nonlinear H∞ Control Problem by Linear Feedback. Given
� > 0, find, if possible, a linear state feedback control law of
the form:

u = K� (3)

such that the equilibrium at � = 0 of the closed-loop system
consisting of (1) and (3) is globally asymptotically stable, and
has an L2 gain, from the exogenous disturbance input w to the
output y, that is less than or equal to �, i.e.,∫ T

0
‖y(t)‖2 dt ��2

∫ T

0
‖w(t)‖2 dt (4)

for all T �0 and zero initial state �(0) = 0.

The following assumptions on the given system are made:
A1: (A, B) is stabilizable;
A2: �i (0) = 0, i = 1, . . . , n, and, there exist n positive real

numbers li , i = 1, . . . , n, such that

|�i (y)|� li |y|, ∀y ∈ R. (5)

and lastly,
A3: There exist positive real numbers kij , i = 1, . . . , n, j =

1, . . . , s such that for all � ∈ Rn

|gij (�)|�kij .

Remark 1.1. Under Assumption A2, and noting that �+
a (0)=0

and �0
a(0) = 0, there exist constant matrices D+

a ∈ Rn+
a ×p,

D0
a ∈ Rn0

a×p and a Lebesgue measurable matrix function



Author's personal copy

740 W. Lan, B.M. Chen / Automatica 44 (2008) 738–744

G(y):R→Rp, i = 1, . . . , p, where p is an appropriate positive
integer, such that[

�0
a(y)

�+
a (y)

]
=
[

D0
a

D+
a

]
G(y)y := Ds

aG(y)y, (6)

where (G(y))TG(y)�1 for all y ∈ R. Moreover, under As-
sumption A3, it is clear that there exist constant matrices H+

a ∈
Rn+

a ×s , H 0
a ∈ Rn0

a×s , such that[
H+

a (x)

H0
a(x)

] [
H+

a (x)

H0
a(x)

]T

�
[
H+

a

H 0
a

] [
H+

a

H 0
a

]T

:= Hs
a (Hs

a )T.

2. Solution to nonlinear H∞ control problem

In this section, we will consider the solvability of the nonlin-
ear H∞ control problem by linear feedback for the system (1).
The sufficient conditions are described by the following theo-
rem, and a nonlinear H∞ control law is constructed explicitly
in its proof.

Theorem 2.1. Under Assumptions A1–A3, let PL > 0, PD �0
and Ph �0 be the unique solutions of (7)–(9).

A+
a PL + PL(A+

a )T = L+
a (L+

a )T, (7)

A+
a PD + PD(A+

a )T = D+
a (D+

a )T, (8)

A+
a Ph + Ph(A

+
a )T = H+

a (H+
a )T. (9)

If there exists a real 0 < c < 1 such that

Pc = PL − 1

c
PD > 0 (10)

and

x�

(
1

c
D0

a(D
0
a)

T − L0
a(L

0
a)

T
)

x < 0 (11)

for any eigenvector x of −(A0
a)

T, then the nonlinear H∞ control
problem is solvable by a linear state feedback for given � > �̂ :=
max{�̂+, �̂0}, where

�̂+ =
√

�max(P
−1
c Ph)/(1 − c)

and

�̂0 =

√√√√√√√max‖x‖=1

⎧⎪⎪⎨
⎪⎪⎩

x�H 0
a (H 0

a )Tx

(1 − c)x�

(
L0

a(L
0
a)

T − 1

c
D0

a(D
0
a)

T
)

x

⎫⎪⎪⎬
⎪⎪⎭

for any eigenvector x of −(A0
a)

T.

Proof. Let us ignore the dynamics of x−
a , and denote

xs
a =

[
x0
a

x+
a

]
, As

a =
[
A0

a 0
0 A+

a

]
, Ls

a =
[

L0
a

L+
a

]
,

�s
a(y) =

[
�0

a(y)

�+
a (y)

]
, Hs

a(x) =
[
H0

a(x)

H+
a (x)

]
.

Since � > �̂ := max{�̂+, �̂0}, we have

x�

(
1

(1 − c)�2 H 0
a (H 0

a )T + 1

c
D0

a(D
0
a)

T − L0
a(L

0
a)

T
)

x < 0

for any eigenvector x of −(A0
a)

T. Then, by Theorem 4 of
Scherer (1992), for any Z0, there exists a solution Z of the
Lyapunov inequality

A0
aZ + Z(A0

a)
T + 1

(1 − c)�2 H 0
a (H 0

a )T

+ 1

c
D0

a(D
0
a)

T − L0
a(L

0
a)

T < 0 (12)

such that Z > Z0. Let

P =
[
Z Y T

Y X

]−1

, (13)

where

X = PL − 1

c
PD − 1

(1 − c)�2 H+
a (H+

a )T (14)

and Y is the unique solution of

A+
a Y + Y (A0

a)
T + 1

(1 − c)�2 H+
a (H 0

a )T

+ 1

c
D+

a (D0
a)

T − L+
a (L0

a)
T = 0 (15)

and Z is a solution of (12) such that P > 0. Then we have

(As
a)

TP + PAs
a + P

(
1

(1 − c)�2 Hs
a (Hs

a )T

+1

c
Ds

a(D
s
a)

T − Ls
a(L

s
a)

T
)

P �0.

Now let

V0(x
s
a) = 1

(1 − c)
(xs

a)
TPxs

a; 	0(x
s
a) = −(Ls

a)
TPxs

a .

It is not difficult to show that

�V0(x
s
a)

�xs
a

(As
ax

s
a + Ls

a	0(x
s
a) + �s

a(	0(x
s
a)) + Hs

a(x)w)

� − 
0‖xs
a‖2 + 	2

0(x
s
a) + �2‖w‖2 (16)

for some 
0 > 0.
Then, based on (16), a linear state feedback control law for

solving the nonlinear H∞ control problem of the system (1)
can be constructed by using the inductive procedure developed
in Tsinias (1991) for solving a global stabilization problem for
a class of minimum phase nonlinear systems.

Step H.1: Consider the system

ẋs
a = As

ax
s
a + Ls

ax1 + �s
a(x1) + Hs

a(x)w,

ẋ1 = x2 + �1(x1) + H1(x)w,

y = x1

viewing x2 as control input and let

V1(x
s
a, x1) = V0(x

s
a) + 1

2�1(x1 − 	0(x
s
a))

2 (17)
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and

	1(x
s
a, x1)

= − 1

�1

�V0(x
s
a)

�xs
a

Ls
a − m1

�1
(x1 − 	0(x

s
a))

− �1

4�2
1

(x1 − 	0(x
s
a))

×
(

HT
1 H1 + �	0(x

s
a)

�xs
a

Hs
a (Hs

a )T
(

�	0(x
s
a)

�xs
a

)T
)

+ �	0(x
s
a)

�xs
a

(As
ax

s
a + Ls

ax1) − 1

�1
(x1 + 	0(x

s
a)), (18)

where �1 and m1 are design parameters to be determined
later, and �1 > 0 is an arbitrary small constant real. Then
x2 = 	(xs

a, x1) yields

V̇1(x
s
a, x1)� − 
0‖xs

a‖2 − m1(x1 − 	0(x
s
a))

2

− y2 − (�2 + �2
1)w

2

+ �V0(x
s
a)

�xs
a

D+
a G(x1)(x1 − 	0(x

s
a))

− �1(x1 − 	0(x
s
a))

�	0(x
s
a)

�xs
a

�+
a (x1)

+ �1(x1 − 	0(x
s
a))�1(x1).

It is clear that there exist two positive constants 0 < r01 < 
0
and r02 > 0 such that∣∣∣∣�V0(x

s
a)

�xs
a

Ds
aG(x1)(x1 − 	0(x

s
a))

∣∣∣∣
�r01‖xs

a‖2 + r02(x1 − 	0(x
s
a))

2 (19)

for all (xs
a, x1) ∈ Rn0

a+n+
a +1. Moreover, it was shown in Tsinias

(1991) that there exist two positive constants r11 > 0 and r12 > 0
such that∣∣∣∣(x1 − 	0(x

s
a))

�	0(x
s
a)

�xs
a

�s
a(x1)

∣∣∣∣
�r11(‖xs

a‖2 + (x1 − 	0(x
s
a))

2) (20)

and

|(x1 − 	0(x
s
a))�1(x1)|

�r12(‖xs
a‖2 + (x1 − 	0(x

s
a))

2) (21)

for all (xs
a, x1) ∈ Rn0

a+n+
a +1. By (19), (20) and (21), we have

V̇1(x
s
a, x1)� − (
0 − r01 − �1(r11 + r12))‖x+

a ‖2

− (m1 − r02)(x1 − 	0(x
s
a))

2

+ �1(r11 + r12)(x1 − 	0(x
s
a))

2

− y2 + (�2 + �2
1)w

2. (22)

Select �1 and m1 such that

0 < �1 <

0 − r01

r11 + r12
, r02 + �1(r11 + r12) < m1 (23)

and note that 	0(x
s
a) is linear, it is clear that there exists a

positive constant 
1 > 0 such that

V̇1(x
s
a, x1)� − 
1

∥∥∥∥xs
a

x1

∥∥∥∥
2

− y2 + (�2 + �2
1)w

2. (24)

Step H.i: (i�2) Denote

Xi =

⎡
⎢⎢⎣

xs
a

x1
...

xi

⎤
⎥⎥⎦ , 
i (y) =

⎡
⎢⎢⎣

�s
a(y)

�1(y)
...

�i (y)

⎤
⎥⎥⎦ , Hi =

⎡
⎢⎢⎣

Hs
a

H1
...

Hi

⎤
⎥⎥⎦

H̄i(x) =

⎡
⎢⎢⎣
Hs

a(x)

H1(x)
...

Hi (x)

⎤
⎥⎥⎦ , Fi(Xi, xi+1) =

⎡
⎢⎢⎣

A+
a x+

a + L+
a x1

x2
...

xi+1

⎤
⎥⎥⎦

and consider the system

Ẋi = Fi(Xi, xi+1) + 
i (y) + H̄i(x)w,

y = x1

with xi+1 as control input. Define

Vi(Xi) = Vi−1(Xi−1) + 1
2�i (xi − 	i−1(Xi−1))

2, (25)

	i (Xi) = − 1

�i

�Vi−1(Xi−1)

�xi−1

+ �	i−1(Xi−1)

�Xi−1
Fi−1(Xi−1, xi)

− mi

�i

(xi − 	i−1(Xi−1))

− �i

4�2
i

(xi − 	i−1(Xi−1))

(
�	i−1(Xi−1)

�Xi−1

× Hi−1HT
i−1

(
�	i−1(Xi−1)

�Xi−1

)T

+ HT
i Hi

)
(26)

recursively where �i > 0 and mi > 0 are design parameters to
be defined later, and �i > 0 is any arbitrary small constant real.
Assume there exists a scalar 
i−1 > 0 such that

�Vi−1(Xi−1)

�Xi−1
[Fi−1(Xi−1, 	i−1(Xi−1))

+ 
i−1(x1) + H̄i−1(x)w]
� − 
i−1‖Xi−1‖2 − y2 + (�2 + �2

1 + · · · + �2
i−1)w

2

then let xi+1 = 	i (Xi) we have

V̇i(Xi)� − (
i−1 − �i (ri1 + ri2))‖Xi−1‖2

− (mi − �i (ri1 + ri2))(xi − 	i−1(Xi−1))
2

− y2 + (�2 + �2
1 + · · · + �2

i )w
2,

where ri1 > 0 and ri2 > 0 are positive constants such that∣∣∣∣(xi − 	i−1(Xi−1))
�	i−1(Xi−1)

�Xi−1

i−1(x1)

∣∣∣∣
�ri1((xi − 	i−1(Xi−1))

2 + ‖Xi−1‖2)

and

|(xi − 	i−1(Xi−1))�i (x1)|
�ri2((xi − 	i−1(Xi−1))

2 + ‖Xi−1‖2).
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Selecting �i and mi such that

0 < �i <

i−1

ri1 + ri2
, �i (ri1 + ri2) < mi

it is clear that there exists a positive constant 
i > 0 such that

V̇i(Xi)� − 
i‖Xi‖2 − y2 + (�2 + �2
1 + · · · + �2

i )w
2. (27)

Step H.r: Let

Vr(Xr) = Vr−1(Xr−1) + 1
2�r (xr − 	i−1(Xr−1))

2,

	r (Xr) = − 1

�r

�Vr−1(Xr−1)

�xr−1

+ �	r−1(Xr−1)

�Xr−1
Fr−1(Xr−1, xr )

− mr

�r

(xr − 	r−1(Xr−1))

− �r

4�2
r

(xr − 	r−1(Xr−1))

(
�	r−1(Xr−1)

�Xr−1

×Hr−1HT
r−1

(
�	r−1(Xr−1)

�Xr−1

)T
)

− �r

4�2
r

HT
r Hr(xr − 	r−1(Xr−1)). (28)

By induction, there is a positive constant 
r > 0 such that

�Vr(Xr)

�Xr

(Fr(Xr, 	r (Xr)) + 
r (x1) + Hr(x)w)

� − 
r‖Xr‖2 − y2 + (�2 + �2
1 + · · · + �2

r )w
2. (29)

Therefore, the linear state feedback control law

u = Kx := 1

b
(	r (Xr) − Ex) (30)

solves the H∞ control problem of the system (2). Noting that
A−

a is stable, (30) completes the proof of Theorem 2.1. �

Remark 2.1. By Theorem 2.1, the achievable L2 gain can be
estimated by solving the following minimization problem on c

�̂∗ = min
0<c<1

PL−PD/c>0
x�( 1

c
D0

a(D0
a)T−L0

a(L0
a)T)x<0

max{�̂+, �̂0} (31)

where x is the eigenvector of −(A0
a)

T.

3. H∞ control of the RTAC system

The model of the RTAC system is shown in Fig. 1, and
the normalized motion equation of the RTAC system is given
by Bupp, Bernstein, and Coppola (1998a, 1998b) and Huang
(2004)

�̈ + � = ε(�̇
2

sin � − �̈ cos �) + 0.1w, (32)

�̈ = −ε�̈ cos � + �, (33)

where � is the normalized displacement of the cart, � the angular
position of the eccentric mass, w the normalized disturbance,

M N

I
m

θ

k

f

d

Fig. 1. Model of the RTAC system.

� the normalized control input. ε is the coupling ratio between
the translational and rotational motion. Let y = �, �1 = � +
ε sin �, �2 = �̇ + ε�̇ cos �, �3 = �, �4 = �̇. Moreover, define
x0
a = [�1 �2]T, x1 = �3, and x2 = �4. Then, with a pre-state

feedback

� = ε cos �3(�1 − (1 + �2
4)ε sin �3) − (1 − ε2 cos2 �3)u

the state space representation of (32)–(33) is given in the SCB
form with n+

a = n−
a = 0, n0

a = 2 and r = 2, that is,

ẋ0
a = A0

ax
0
a + L0

ay + �0
a(y) + H 0

a w, (34)

ẋ1 = x2, y = x1, (35)

ẋ2 = u − (0.1ε cos y)w/(1 − ε2cos2 y), (36)

where

A0
a =

[
0 1

−1 0

]
, L0

a =
[

0
ε

]
, H 0

a =
[

0
0.1

]

�0
a(y) =

[
0

ε(sin(y) − y)

]
.

It is clear that the system (34)–(36) satisfies Assumption
A1–A3. Since all the invariant zeros ±1j are on the imagi-
nary axis, the achievable L2 gain can be estimated by solving
the optimal problem (31) which gives �̂∗ = 0.7854 under
c = 0.3634. Let � = 0.9, and Z > 0 be a solution of

Z(A0
a)

T + A0
aZ + 1

(1 − c)�2 H 0
a (H 0

a )T

+ 1

c
D0

a(D
0
a)

T − L0
a(L

0
a)

T < 0. (37)

Let P = Z−1 and define

V0(x
0
a ) = 1

1 − c
(x0

a )TPx0
a, 	0(x

0
a ) = −(L0

a)Px0
a

then, (16) is satisfied with 
0 = 0.1. By Step H.1, we have

V1(x
0
a , x1) = V0(x

0
a ) + 1

2�1(x1 − 	0(x
0
a ))2

	1(x
0
a , x1) = − 2

�1
(L0

a)
TPx0

a − (L0
a)

TP(A0
ax

0
a + L0

ax1)

− 1

�1
(x1 + 	0(x

0
a )) − m1

�1
(x1 − 	0(x

0
a ))

− �1

4�2
1

((L0
a)

TPH 0
a)

2(x1 − 	0(x
0
a )),
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where �1 = 0.1, m1 = 15 and �1 = 0.05. Then by Step H.2, let
X1 = [(x0

a )T x1]T, and

H1 =
[
H 0

a

0

]
, F1(X1, x2) =

[
A0

ax
0
a + L0

ax1
x2

]

the H∞ control law is given by

u = − 1

�2

�V1(X1)

�x1
+ �	1(X1)

�X1
F1(X1, x2)

− �2

4�2
2

(
H 2

2 +
(

�	1(X1)

�X1
H1

)2
)

(x2 − 	1(X1))

− m2

�2
(x2 − 	1(X1)), (38)

where H2 = −0.1ε/(1 − ε2), �2 = �2 = 0.05, and m2 = 0.16.

4. Conclusions

The nonlinear H∞ control problem is investigated for a class
of nonminimum phase nonlinear system. The nonlinearity of
the system relies the measurable output only, and satisfies some
linear growth conditions. After transforming the system into
the SCB form, the sufficient condition of the nonlinear H∞
control problem is related to the solvability of three Lyapunov
equations on the unstable zero dynamics. And the achievable
L2 gain estimation can be calculated based on the solutions of
these Lyapunov equations.
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