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Abstract—Currently, position sensors other than the read/write
head are not embedded into current hard disk drives (HDDs) due
to signal-to-noise ratio and nanometer resolution issues. Moreover,
a noncollocated sensor fusion creates nonminimum phase zero
dynamics which degrades the tracking performance. In this paper,
the singular perturbation theory is applied to decompose the
voice coil motor’s (VCM’s) and induced PZT active suspension’s
dynamics into fast and slow subsystems, respectively. The control
system is decomposed into fast and slow time scales for controller
designs, and control effectiveness is increased to tackle more
degrees-of-freedom via an inner loop vibration suppression with
measured high-frequency VCM’s and PZT active suspension’s
dynamics from the piezoelectric elements in the suspension. Exper-
imental results on a commercial HDD with a laser doppler vibrom-
eter show the effective suppression of the VCM and PZT active
suspension’s flexible resonant modes, as well as an improvement
of 39.9% in 3o position error signal during track following when
compared to conventional notch-based servos.

Index Terms—Hard disk drives (HDDs), PZT, singular
perturbation.

I. INTRODUCTION

N 2006, hard disk drives (HDDs) remain as the mainstream

of cheap nonvolatile mass data storage devices. Future
mobile devices are still relying on magnetism-based storage
methodologies despite facing the renowned superparamagnetic
effect by venturing into perpendicular recording technologies.
However, improvements in sensor fabrication technologies cou-
pled with low-cost digital signal processors (DSPs) allow high
signal-to-noise ratio (SNR), high resolution sensors, and en-
hanced servo algorithms to be embedded into future HDDs
while retaining economic competitiveness. Future HDDs will
need strong disturbance rejection capabilities for usage in
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portable devices which require ultrahigh data capacities and
ultrafast data transfer rates.

It is well known from a control theory that extraneous sensors
alleviate controllers’ orders and improve servo performance.
Incorporation of additional sensors for active vibration control
in HDDs has been studied in, e.g., [1]-[3] to actively damp
the resonant modes of actuators together with position error
signal (PES). However, a noncollocated sensor fusion results in
nonminimum phase zero dynamics in the closed-loop system
which degrades the tracking performance. By using singular
perturbation (SP) control [4], [5], [18], we can decompose the
plant to be controlled into fast and slow subsystems as well
as design their controllers independently for internal stability.
In fact, by relaxing the tracking requirement to ensure that
the slow dynamics are used for tracking the desired trajectory,
we can obtain the minimum phase zero dynamics even with
noncollocated actuator-sensor pairs.

In this paper, the rigid and flexible modes of a voice coil
motor (VCM), with a mounted PZT-actuated active suspension
(or PZT active suspension for short), are decomposed into
their slow and fast subsystems in a two time scale framework,
respectively. The piezoelectric elements in the PZT active
suspension are used as a sensor to detect the high-frequency
dynamics of the VCM and PZT active suspension for high-
frequency inner loop compensation in the active damping of
the flexible resonant modes. This approach is more robust than
digital notch filters, and a slow controller design for the rigid
body modes used in track-seeking or track-following operation
mode is independent of the inner loop controller used for high-
frequency vibration control. More importantly, it increases the
control effectiveness of the servo system since the flexible
modes increase the degrees-of-freedom (DOFs) of the VCM,
i.e., more DOFs than the number of control inputs. This system-
atic procedure also works for general nonlinear HDD models,
including pivot friction and flex cable nonlinearities, etc.

In this paper, Section II gives a brief introduction on the
SP control theory and its extension to a general linear time-
invariant (LTT) mechanical system to obtain fast and slow
subsystems with rigid and flexible modes. Section III captures
the experimental frequency responses to identify the essential
state matrices in the subsystems using rigid body and flexible
mode dynamics in a VCM with a mounted PZT active sus-
pension. Section IV discusses about the usage of the piezo-
electric elements in the PZT active suspension to measure the
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high-frequency dynamics of a VCM and suspension. Section V
designs the corresponding fast and slow controllers for inner
and outer loop compensation. The performance of the proposed
control scheme is verified with simulation and experimental
results and is discussed in Section VI. Conclusions and future
work directions are summarized in Section VII.

II. SINGULAR PERTURBATION THEORY (SPT) FOR LTI
MECHANICAL SYSTEMS

For a general LTI mechanical system, its state space repre-

sentation can be written as
TR Br
[l ] o

EAN!

and the output y of the mechanical system is given by

ARrR  Arr
Arr  Afr

2

[2% 2L, uy, and y are the states, control input, and output
of the mechanical system, respectively, and ¢ is a small positive
scalar (0 < € < 1) which represents that the flexible mode
dynamics are much faster than the rigid body modes. In fact,
€ can be used as a tuning parameter such that the rigid body
dynamics xr are developed along a time scale ¢ while the
flexible mode dynamics x are developed along the time scale
T =t/etoyield d(xp)/dr = eiy.

The SP design technique involves rewriting the system dy-
namics into slow and fast subsystems assuming that they oper-
ate on different time scales and which make them independent
of each other [4], [5]. This technique allows an independent
controller design while increasing the control effectiveness
which is essential for controlling more DOFs than dimensions
of control inputs. In the following section, we shall decompose
the general LTI mechanical system into slow (denoted by
superscript ~) and fast (denoted by superscript ~) subsystems,
respectively.

]T

A. Slow Subsystem

The slow subsystem dynamics are obtained by setting € = 0
together with the corresponding slow variables. As such, the
slow manifold equation is obtained by

0 = AprTr + AprZr + Bruy
3)

TR = —AE%‘(AFRER + Briy)
which, in essence, is an algebraic equation. Obviously, App is
assumed to be invertible which is obtained from the fast sub-
system dynamics to be detailed in the next section. Substituting
(3) into the top equation of (1), the slow system dynamics can
be obtained as

ir = (Arr — ArrAppArr) Tr + (Br — ArrAppBr) ﬂ(x:‘)
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Similarly, substituting (3) into (2), the output of the slow
subsystem ¢y is then given by
yv = (Cr — CrApArr) Tr — CrAREBriy.  (5)
It is worth noting that there is a direct feedthrough term in the
slow subsystem which reduces the relative degree (properness)
of the slow subsystem and must be confronted in any SP-based
design.

B. Fast Subsystem

In deriving the fast subsystem dynamics, we work in the fast
time scale with 7 = ¢ /e, and hence, the top equation in (1) can
be written as

d
—ag =¢etr ~ 0
ar "t R
assuming that the rigid body does not change much in the fast
time scale, and hence, Tg =~ 0.
Similarly, the bottom equation in (1) can be written as

an = (@~ )
T T g T

= AprZTR + Apr(ZF + Tr) + Br(ay + v ).

Q)

N

Using the slow manifold equation in (3), the state equation of
the fast dynamics can be obtained as

d _ - -
—Ip = ArrZr + Briy

dr ®)

with the assumption that d(Zr)/d7 = 0 or the slow parts of the
flexible modes do not vary much in the fast time scale.
The output of the fast subsystem is, hence, given by

©)

jyv = Cpip.

III. SYSTEM IDENTIFICATION

In a conventional HDD, the VCM is the only actuator with
the R/W (read/write) head mounted on the tip of the suspension.
Typically, a VCM can be represented by rigid body dynamics
(low-frequency double integrator) and flexible mode dynamics
(high-frequency resonant modes, including suspension modes),
respectively. In this section, we shall identify the state matri-
ces required for subsystem decomposition using experimental
frequency responses.

A picture of a typical VCM, with a mounted PZT active
suspension, is shown in Fig. 1. For our application, Agp is
assumed to be negligible as the rigid and flexible modes are
mechanically decoupled or the flexible resonant modes are
assumed to have little or no induced dynamics on the bulky
VCM. Similarly, Apg is also assumed to be negligible as the
flexible resonant modes occur at high frequencies where the
gain of the rigid body is very small due to at least —40-dB/dec
amplitude reduction from its low-frequency double integrator
properties. These assumptions are validated prior to using a dif-
ferential laser doppler vibrometer (LDV), and the experimental
procedures are omitted here for brevity.
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Fig. 1. Drawing of a VCM with a mounted PZT active suspension (not drawn
to scale) showing inputs (arrow to actuator) and output or measurement signals
(out of actuator), respectively.

-100 T

. —2001',':'
(=2 :

[0}
T -300f

GJ N
% _400 rl.l. .......
= Iy

o : SRR S
600 — Model ::::::i : : ::::::i
102 108 104

Frequency (Hz)

Fig. 2. Frequency response of a transfer function from wy to y. Both the
VCM’s and PZT active suspension’s flexible resonant modes are excited and
identified.

By exciting the VCM at uy, the frequency response of
the VCM, with the PZT active suspension measured from y,
is shown in Fig. 2. The identified mathematical model of

y(s)/uv(s) is
y(s)  2974514.7531 s? + 1696s + 7.994 x 10°
uy(s) 52 52 4+ 980.2s + 6.005 x 108
52 4+ 56555 + 3.198 x 109
52 4+ 754s 4+ 1.421 x 109
y 52 + 94255 + 8.883 x 109
s2 4+ 361.3s + 5.221 x 109
s2 4+ 2.513 x 10°s 4+ 6.317 x 1010
52 4 39585 + 1.741 x 1010

(10)

The phase response of the fitted mathematical model is less
than exemplary, but is sufficient in picking up the essential rigid
and flexible resonant modes, the latter consisting of VCM, and
induced PZT active suspension’s resonant modes, as shown
in Fig. 2. As we are using a gain stabilization in the outer
loop at a gain crossover frequency of about 700 Hz and phase
compensation of the first flexible resonant mode at 3.9 kHz in
the inner loop (to be discussed in detail in Section V) where the
experimental and identified model match well, the differences
in phase response occurring at higher frequencies are tolerable
and do not affect a closed-loop stability.
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Fig.3. Frequency response of transfer function from wy, to yy (i.e., only “E”-
block). The VCM has identified double integrator rigid body modes as well as
flexible resonant modes at 3.9 and 6.0 kHz.

In the following sections, we shall detail the procedures for
determining the state space representation of the VCM with a
mounted PZT active suspension in the form of (1) and (2), with
the identified experimental frequency responses.

A. Transfer Function Identification

Before we identify the rigid body dynamics, the frequency
responses of the VCM from wuy to yy and the PZT active sus-
pension from w ;s to y are shown in Figs. 3 and 4, respectively.
As shown in Fig. 3, the VCM itself has identified the rigid
body mode (low-frequency double integrator) and flexible body
modes (high-frequency resonant modes) at 3.9 and 6.0 kHz,
respectively, while the PZT active suspension has flexible body
modes at 5.9, 11.5, and 21.0 kHz. It is worth noting that Figs. 3
and 4 serve solely as a reference for modal analysis of the
VCM’s and PZT active suspension’s flexible resonant modes.
As such, the phase differences between the experimental and
identified mathematical model are considered to be satisfactory
and do not affect the stability of the closed-loop system.

When the PZT active suspension is mounted onto the VCM,
the proximity in frequencies of the two resonant modes of
the VCM and PZT active suspension at 6.0 and 5.9 kHz,
respectively, resulted in an overall resonant mode near 6 kHz
being observed as shown in Fig. 2, although both resonant
modes are excited in that frequency region of 5.9 to 6 kHz
during a swept sine identification. As such for simplicity, but
without loss of generality, these flexible resonant modes are
identified as a common mode at 6 kHz in the compound system
y(s)/uy (s) as shown in Fig. 2 and (10) for SP control.

For our application, the PZT active suspension is employed
solely as a sensor and fast subsystem observer to detect high-
frequency dynamics of the VCM and PZT active suspension.
As such, Fig. 4 serves as a good reference for the sufficiency
of a reduced order model to isolate the flexible modes arising
from the VCM and PZT active suspension.
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Fig.4. Frequency response of transfer function from u s to y. The PZT active
suspension has identified flexible body modes at 5.9, 11.5, and 21.0 kHz.

1) Flexible Body: To obtain the flexible body dynamics
Vr(s) of the VCM with a mounted PZT active suspension,
the low-frequency integrators are subtracted from a transfer
function y(s)/uy (s) with a lifted dc gain (to match that in
Fig. 2) to form Vr(s) given by

s+ 1.421 x 10°
52 4 980.2s + 6.005 x 108
52 4+ 1471s + 1.002 x 10° o
s2 4+ 754s +1.421 x 109
52 4+ 17665 + 4.784 x 10°
52 +361.3s5 +5.221 x 109
52 4+ 6860s + 1.611 x 10'°

1
X 2139585 + 1.741 x 1010 an

Ve (s) = — 355.9008

and Vy(s) will be used for identification of the fast subsystem.
2) Rigid Body: As such, the rigid body dynamics Vi(s) of
the VCM with a mounted PZT active suspension are given
by the isolated low-frequency integrators with a lifted dc gain
described above [or difference between (10) and (11)] to form

35595 +5.5 x 107
- 2

VR(s) (12)

s
and Vi (s) will be used to identify the slow subsystem in the
following section.

B. Subsystem Ildentification

With the identified flexible body and rigid body dynamics for
the VCM with mounted PZT active suspension in (11) and (12),
the fast and slow subsystems operating on two different time
scales as detailed in Section II earlier can now be formulated,
respectively.

1) Fast Subsystem Gy : To obtain the fast subsystem state
Gy and its space matrix triple (Apg, Br, Cr), Vi (s) is rewrit-
ten in state space representation with xp as the state. Obviously,

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 3, JUNE 2007

Gain (dB)

102 108 104
Frequency (Hz)

Fig.5. Frequency response of fast subsystem Gy from Vi (s) after decompo-
sition. The flexible resonant modes at natural frequencies 3.9, 6.0 (from VCM
and PZT active suspension), 11.5, and 21.0 kHz are captured and retained.

the pair (Arr, Br) is stabilizable and App is invertible which
makes the SP control possible. The frequency response of Gy is
shown in Fig. 5. As shown in Fig. 5, the flexible resonant modes
at natural frequencies of 3.9, 6.0 (from VCM and PZT active
suspension), 11.5, and 21.0 kHz are captured and retained.

2) Slow Subsystem Gy : Similarly, Vi (s) is then rewritten
in state space representation with xg as the state to obtain
the state space triple (Arr, Br,Cr). Using (4) and (5), the
dynamics of the slow subsystem Gy can be obtained in a
transfer function form as

-~ yv(s)
Gv = ﬁv(s)

~ —0.05037s? + 355.9s + 5.5 x 107
- ;s ,

(13)
s
The frequency response of Gy is shown in Fig. 6. As shown in
Fig. 6, the low-frequency integrators with a lifted dc gain are
captured and retained.
It is worth noting from (13) that the introduction of the
feedthrough term CFAE%BF in (5) makes the slow subsystem
Gy proper.

IV. ESTIMATING HIGH-FREQUENCY DYNAMICS

For the SP control to be feasible, the fast dynamics of Gy
should be estimated or measured for vibration rejection using
an inner loop compensation. This translates directly into a
construction of an estimator for state reconstruction or real-
time measurements of the VCM’s and PZT active suspension’s
high-frequency dynamics. In this section, we will use the latter
by employing the piezoelectric material in the PZT active
suspension as a sensor solely to obtain these flexible mode’s
vibratory signals in both the VCM and PZT active suspension.
This is possible as when piezoelectric materials (e.g., PZT
elements) are subjected to strain, charges arise on the surface
of the material and, hence, setting up an electric field analogous
to back electromotive force in electromagnetic systems.
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Fig. 6. Frequency response of slow subsystem Gy, after system decompo-
sition. The low-frequency integrators with a lifted dc gain are captured and
retained.
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Fig. 7. Frequency response of transfer function from y to u s using the PZT

active suspension as a sensor.

For our experiments, a Briiel and Kjer signal condition-
ing amplifier of gain 10 and bandpass corner frequencies of
10 Hz and 30 kHz is used. Using a similar methodology to
that detailed in [3], a swept sine excitation is injected at uy
while y measured from the LDV is connected to channel 1
and ups from the PZT active suspension through the ampli-
fier output is connected to channel 2 of the Dynamic Signal
Analyzer HP 35670A. The frequency response of the transfer
function from y to wuys is measured and shown in Fig. 7.
It should be noted that any high-speed low-noise instrumen-
tation amplifiers (e.g., AD524 from analog devices) can be
employed here.

As shown in Fig. 7, the estimation is effective at most
frequencies and the frequencies of the antiresonant zeros cor-
respond to the natural frequencies of the VCM and PZT active
suspension. The online state estimator measured ujy; from
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amplifier to y has differentiator effects and can be identified
with the following noncausal transfer function as

uM(s)

=1.2841 x 107'%5%(s* 4 96.765s + 5.852 x 10°)
vy(s)

y s 5% 4+ 301.6s + 1.421 x 109
s+ 2.513 x 10° 52 + 226.25 + 7.994 x 108

y 52 +72.26s + 5.221 x 10°
52 + 565.55 + 3.198 x 109

s2 4+ 1319s + 1.741 x 1010

14
X 21 1.068 x 10%s + 1.141 x 1010 (14

and the high-frequency VCM’s and PZT active suspension’s
dynamics can hence be easily estimated online through a digital
inverse of (14) from the output of the amplifier, as detailed
in the next section. This method is shown to have high SNR
and nanometer resolution estimation, and interested readers are
referred to [3] for an in-depth analysis which is not reiterated in
this paper.

V. DESIGN OF CONTROLLERS

According to the SP theory, the overall control signal uy
is given by uy = uy + uy, where uy and uy are designed
separately using the slow and fast subsystems, respectively.
Ensuring that the pair (App, Br) is stabilizable, the composite
control uy results in the following overall state trajectories
given by

rr =Tr + O(¢)

where O(¢) denotes the terms of order £ according to a theorem
by Tikhonov [15]. This independent design of two control
inputs practically increases the control effectives of the flex-
ible system [14], and the fast control signal « is a boundary
layer correction that suppresses the high-frequency vibrations
analogous that with sliding mode control.

In fact, this procedure is equivalent to the direct design of
a state feedback on the system without any direct or inverse
time scaling as we will be using in this section. As such, it
possesses better numerical properties as ill-conditioned scenar-
ios (from the large gains and small time constants in HDDs)
are commonly encountered during controller synthesis and
optimization designs using Hs or H., techniques.

The proposed SP control topology using the PZT active
suspension as a sensor to determine the VCM’s high-frequency
dynamics is shown in Fig. 8. The superscripts =, ~, and *
denotes slow subsystems, fast subsystems, and estimates,
respectively. The slow controller (Cy/) and fast controllers
(Cy and é}‘/) operate at slow frequency f and fast frequency
f = f/e, respectively. The fast subsystem dynamics ¢y are
measured from the PZT active suspension through a signal
conditioning amplifier and estimated through é’{/
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Fig. 8. Block diagram of the proposed SP-based servo system. The slow controller (C'y,) and fast controllers (Cy and é’{/) operate at slow frequency f and

fast frequency f = f/e, respectively.

A. Fast Subsystem Estimator G,

For fast inner loop compensation to be implementable, the
high-frequency dynamics of the VCM and PZT active suspen-
sion, as mentioned in Section IV, should be available. By de-
signing the fast subsystem estimator é’{, as the inverse of (14)

s+2.513 x 10°
52 +96.76s + 5.852 x 108
y 5% +226.2s +7.994 x 10°
52 4+ 301.6s + 1.421 x 109
y 52 + 565.5s + 3.198 x 10°
52 +72.265 + 5.221 x 109
52 +1.068 x 10*s 4 1.141 x 100
s2 + 1319s + 1.741 x 1010

_ 7.787803 x 10'°

Gy (s) -

(16)

the high-frequency dynamics estimate g, can be obtained
online using the output of the amplifier (from measured u )
as input. This low-pass filter removes much measurement
noise from the online estimator which permits a low-order fast
controller Cy to be designed.

B. Fast Controller OV

To calculate the fast control signal %, we can design any
standard linear quadratic Gaussian [20], H2 or even H, output
feedback controller for high-frequency inner loop compensa-
tion. For our design, the nice in phase properties of the PZT
active suspension, as shown in Fig. 2, is exploited, and a low-
order lead compensator of the form is used

~ 5+ 6283
OV = 15T < 109 1n
as the fast controller C’v with 1 < k < 20. C’V is analogous to
a high-gain proportional-derivative control commonly used for
controlling robot manipulators [5].

The amount of active high-frequency vibration suppression
is increased with a larger x, but the sensing noise from the
PZT elements in the PZT active suspension and conditioning
amplifier will be accentuated accordingly and vice versa for

a smaller value of k. As such, x acts as a compromise to
balance between the amount of suppression of high-frequency
mechanical vibrations (and inner loop stability) and the amount
of sensing noise permeated to and tolerable in the PES. For
the rest of our discussions, we have chosen x = 10, although
the fast controller design can be further optimized if the distur-
bance and noise spectra entering the servo loop are precisely
known [19].

C. Slow Controller Cy

As the slow subsystem contains mainly of the rigid body
modes (low-frequency double integrator), the lag-lead compen-
sator recommended in [3] augmented with a low-pass filter

ar fyv

2
18
Vs +2ml0s + 2020 fy s + oV (18)

27va 27va
= s + s+
C (S) 2c «

where 5 < a <10 is used. Ky can be calculated by setting
|Cyv (j2m fv)Gv (j2m fv)| = 1, where Gy is the slow subsys-
tem identified in the previous section.

The first lag term of C'y is used to increase the low-frequency
gain for low-frequency disturbance rejection and tracking accu-
racy in the slow outer loop. The second term of Cy, increases
the phase margin of the outer open loop to ensure a stability
during crossover region and speeding up of the rigid mode
in the VCM. An additional low-pass filter is cascaded in the
third term of Cy to increase the high-frequency roll-off and
stability of the stiffened VCM and PZT active suspension due
to a reduced relative degree after an inner loop compensation.

The separation of the zeros of Cy is increased with a larger
«, thereby reducing the low-frequency gain of the integral
portion while resulting in a higher corner frequency which
increases the phase margin of the outer open loop. fy is the gain
crossover frequency of the compensated VCM open loop and is
usually chosen at about one-fifth of the natural frequency of the
first major resonant mode of the VCM for stability in digital
control of HDD servo systems. For an improved low-frequency
performance in disturbance rejection and tracking, o = 5 and
fv = 700 (the natural frequency of the first resonant mode is at
3.9 kHz) are chosen for our design.
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Fig. 9. Frequency response of transfer function from uy to y with +10%
shift in natural frequencies of the flexible modes.

VI. PERFORMANCE EVALUATION

The proposed SP-based controllers designed in Section V
earlier are discretized at a nominal slow sampling frequency
f of 5 kHz, and ¢ = 0.0625 is chosen. Due to the parame-
terization by e, the fast subsystem estimator G and fast
controller Cy are discretized at a fast sampling frequency f of
80 kHz, where f f/e. tis interesting to note that in discrete
time domain, this formulation is analogous to that of using a
multirate digital control with the proposed slow controller C'y
operating on the measured PES at nominal sampling frequency
f and fast controllers éi‘/ and Cy in inner loop mimicking high
sampling frequency f from higher spindle rotation speeds (i.e.,
more PES data). However, the SP control design methodology
is an independent design procedure for subsystems separated
in two different time scales which directly ensures a closed-
loop stability. The multirate digital control on the other hand
relies on small gain theorem to ensure that the fast controller
has gain less than or equal to one at all frequencies (e.g., [6])
or sampled-data points analysis in frequency response [7], [8]
for stability analysis. In this section, the effectiveness of our
proposed SP control scheme is verified with simulation studies
and experimental implementations.

A. Simulation Studies

Digital notch filters [21] and phase-stabilized compensators
[17] are commonly used by HDD industries to attenuate the
gain at natural frequencies of the flexible resonant modes or in-
crease the phase around gain crossover frequency, respectively,
for closed-loop stability with the former commonly employed
for their structural simplicities and robust properties. To further
improve the servo performance of the notch-based servos,
multirate digital notch filters are usually designed and operated
at a positive integer multiple of nominal sampling frequency.
Interested readers are kindly referred to [16] for more details
and advantages of digital multirate controllers, or [9] for the
HDD track-following servo control benchmark problem where
the multirate digital notch filters are employed effectively. For
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illustration purposes, the fast single-rate and multirate notch-
based servos are compared with the proposed SP-based servo.

1) Robustness Analysis: To demonstrate the robustness of
the proposed SP-based servo, the natural frequencies of the
flexible modes in the VCM and PZT active suspension are
perturbed by +10%, as shown in Fig. 9.

The identified vibration and noise models reported in [10]
for a servo track writing process with a spindle motor rotating
at 5400 r/min (revolutions per minute) are used to emulate
input torque disturbances d;(s), output disturbances d,(s) and
noise sources n(s) of today’s high end HDDs, respectively. The
transfer functions are given by

159.9
52 4+ 113.1s + 3.198 x 105
52 —2.691s + 5.262 x 10°
s2 4+ 0.754s + 3.948 x 105
y s” = 585.65 +3.765 x 10°

52 40.2011s + 1.011 x 106
y 52 4+ 4161s + 2.008 x 107

52 4 2455 4+ 1.668 x 107

y 5% 4 2402s + 5.634 x 108

52 4 477.55 + 5.701 x 108

dz(S) =

19)

do(s) =0.00163

(20)

and noise source n(s) is of Gaussian distribution with zero
mean and a variance of 0.001. Similarly, a noise source of
Gaussian distribution with zero mean and a variance of 0.001
is added to mimic the noise in the PZT elements when used
as a sensor. This numerical value is close to the experimen-
tal PZT noise variance estimated from self-sensing actuation
(SSA)—using the PZT active suspension as sensor and actuator
simultaneously—as reported in [3].

For comparison purposes, the slow controller Cy is dis-
cretized via bilinear transformation at f =80 kHz, f /2 =
40 kHz, and f / 4 = 20 kHz, which are termed CV, C’V, and
C+;, respectively. The numerical superscript indicates the ratio
of f to the sampling rate at which Cy is discretized at.

In designing the digital notch filters N (z), the small damping
ratio of each resonant pole of y(s)/uy (s) in (10) is canceled
and set to unity at the same natural frequency. Discretizing the
product of the notch filters at a fast sampling frequency f using
a pole-zero matching, we obtain N (z) as

—1.895z + 0.9878
—1.656z + 0.7362
22 — 1.774z + 0.9906

22 — 1.452 + 0.6242

22 — 1.235z + 0.9955

22 —(0.12452 + 0.1922
22 4+ 0.15562 + 0.9836

22 —0.9032z + 0.4053°

N(z) =0. 22894

21

Obviously, the gain of N(z) is less than or equal to one
at all frequencies required for multirate stability. As such,
the fast single-rate notch-based servo controller is given by
CV( z)N(z). The multirate notch-based servo controllers are

C?(2)N(z) and C (2) N (2).
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With the designed digital controllers, simulations are then
carried out to obtain the 30 PES with a perturbation of the
natural frequencies and are plotted in Fig. 10. As shown in
Fig. 10, the SP-based servo is robust to fluctuations in natural
frequencies with improved disturbance rejection capabilities at
frequency variations occurring in the high-frequency band. An
improvement of up to 38.2% in 30 PES is observed at nominal
natural frequencies of the flexible modes.

2) Disturbance-to-Noise Ratio (DNR): In this section, we
define a performance index called DNR which is the ratio of
output disturbance d,(s) power to PES measurement noise n(s)
power, i.e., DNR = 030 /o2. Simulations are then executed to
evaluate the proposed SP-based servo as a high-pass filter,
which is used for inner loop compensation which is generally
undesirable for HDD control (due to high PES sensing noise).

By simulating the DNR from 0.01 to 10 (which translates
from a noise level of a hundred times higher than an output
disturbance to a tenth smaller), the 30 PES is plotted in Fig. 11.
It can be seen that the proposed SP scheme works well even
when the noise level is high, when compared to that of the
multirate and fast single-rate notch-based servos.

From the above simulation results, it can be seen that the fast
single-rate notch-based servo has better servo performance than
their multirate’s counterparts due to extra computation cycles.
As such, the proposed SP-based servo will be compared to
the fast single-rate notch-based servo—or termed conventional
notch-based servo for short—in experimental implementations
for brevity, but without loss of generality in the rest of this

paper.

B. Experimental Implementation

The experimental setup used for verification of our proposed
SP-based control scheme is shown in Fig. 12.

For our experiments, the VCM with a mounted PZT active
suspension to be controlled is placed on a vibration isolation
table. The Polytec PSV-200 SLDV (Scanning LDV) measure-
ment system, consisting of the following: 1) color video camera
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Fig. 12. Experimental setup consisting of VCM with a mounted PZT active
suspension to be controlled on a vibration isolation table with the LDV
measurement system and dSPACE digital control system.

interface for exact positioning of laser spot, 2) vibrometer
controller for displacement and 3) velocity measurements,
4) personal computer (PC) data management system, and
5) the SLDV, as shown in Fig. 12, is used as a displacement
transducer to measure the displacement of the R/W head at the
tip of the PZT active suspension at a resolution of 0.5 yum/V.
The digital controllers designed in Section V are implemented
on the dSPACE digital control system using the DS 1103 PPC
controller board with an onboard TM320F240 DSP, as well
as analogue-to-digital (A/D) and D/A converters of voltage
limits at 10 V. It should be noted that although the SLDV
is a capable area scan for modal analysis, only a single point
measurement of the displacement of the R/W head at the tip of
the PZT active suspension is used.

1) Frequency Responses: The frequency response of the
transfer function from wuy to y using the PZT active suspension
as a sensor with high-frequency inner loop compensation is
shown in Fig. 13. The VCM’s flexible modes at 3.9 and 6.0 kHz,
and the PZT active suspension’s flexible modes at 5.9, 11.5, and
21.0 kHz are effectively damped with a reduced relative degree
using the proposed SP-based servo. This further justifies the
identification of the VCM’s and PZT active suspension’s reso-
nant modes at 6.0 and 5.9 kHz, respectively, as a common mode
at 6 kHz in the compound system y(s)/uy (s) in Section III-A
previously.
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Fig. 14. Frequency response of sensitivity transfer functions with proposed
SP-based servo and conventional notch-based servo.

As such, we can expect a possible higher servo bandwidth
and low sensitivity with a reduced relative degree. This is
verified with the experimental sensitivity transfer functions S
of the proposed SP-based servo and conventional notch-based
servo, as shown in Fig. 14.

SP-based servo offers stronger vibration suppression capa-
bilities with a higher bandwidth and lower sensitivity such
that high-frequency disturbances would not be amplified by the
servo loop [11]. However, the complementary sensitivity trans-
fer functions 7' of the proposed schemes, as shown in Fig. 14,
reveal that a smaller roll-off at high frequencies (although at
the same closed-loop bandwidth) is obtained for the SP-based
Servo.

2) Time Responses: While the composite nonlinear feed-
back (CNF) technique [13] has been shown to reduce over-
shoot of step responses in HDDs [12], a linear track-following
controller is normally employed for short-span seeks in current
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Fig. 16. Experimental step response using the proposed SP-based servo.
Solid: displacement measured at tip of PZT active suspension. Dashed-dotted:
control signal.

HDDs. For comparison purposes the gain crossover frequen-
cies of both linear track-following controllers for conventional
notch-based servo and proposed SP-based servo are set at
700 Hz. The experimental step responses of 0.1 um using
the conventional notch-based servo and the proposed SP-
based servo are shown in Figs. 15 and 16, respectively. The
slow control signal @y and fast control signal uy are shown
in Fig. 17.

As shown in Figs. 15 and 16, the induced oscillations using
the proposed SP-based servos are also highly suppressed by
the fast control signal %y . However, the SP-based servo offers
a smaller overshoot due to an active vibration control, but a
slower seek, and settling time is traded off. This is expected as
the tracking requirements are relaxed in an SP framework [5]
and tracking is done by the slow subsystem (hence rigid body
modes). Also, a fast inner loop active vibration control results
in a phase reduction from 2 to 3.9 kHz where the first resonant
mode of the VCM occurs, as shown in Figs. 2 and 13. This
translates directly into a delay which results in a slower seek
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Bottom: control signal. A 30 PES of 0.0248 pm is observed.

response. However, it should be noted that a much higher gain
crossover frequency (corresponding to faster seek and settling
times) can be designed and achieved for the proposed SP-based
servo as the first in-plane resonant mode is well-damped, as
shown in Fig. 13 earlier.

Next, to mimic the effects of disturbance and noise sources
during track-following mode, the vibration models described
earlier in [10] are injected into the closed-loop systems during
an experiment. The experimental PES y measured with LDV
using the conventional notch-based servo and the proposed
SP-based servo are shown in Figs. 18 and 19, respectively. The
corresponding experimental slow control signal @y and fast
control signal %y are shown in Fig. 20. An improvement of
the experimental 30 PES from 0.0248 to 0.0149 pm (39.9%) is
observed. The 39.9% improvement in the experimental imple-
mentation is superior to the 38.2% obtained during the simula-
tion studies as the experiment was conducted on a VCM with a
mounted PZT active suspension, employing the PZT elements
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in the PZT active suspension solely as a sensor. As such, the
extraneous bridge circuit and its digital inverse reported in [3]
are not applicable, resulting in an effective reduced variance
of PZT sensor noise (less than 0.001 used in simulation stud-
ies) and, hence, a reduced noise power entering the SP-based
servo loop.

The histograms of the above PES data are plotted in Fig. 21,
revealing a tighter tolerance and much reduction in variance of
the PES.

VII. CONCLUSION

In this paper, an SP controller design method has been
proposed for a stronger vibration suppression in the VCM and
PZT active suspension using the piezoelectric elements in the
suspension as a sensor and fast subsystem observer to detect
the actuators’ high-frequency dynamics. The slow and fast con-
trollers are designed independently parameterized by a single
parameter ¢ for time scale separation. Experimental results
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bance and noise models described in [10]. Top: conventional notch-based servo.
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show an effective suppression of the VCM’s flexible modes at
3.9 and 6.0 kHz, as well as the PZT active suspension’s flexible
modes at 5.9, 11.5, and 21.0 kHz with an improvement of
39.9% in 30 PES during track-following. Future works include
extending the current work to dual-stage HDDs using SSA [3]
with an SP observer.
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