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Improving Transient Performance in Tracking
General References Using Composite Nonlinear

Feedback Control and Its Application to
High-Speed XY -Table Positioning Mechanism

Guoyang Cheng, Member, IEEE, Kemao Peng, Member, IEEE, Ben M. Chen, Fellow, IEEE, and Tong H. Lee

Abstract—We adopt in this paper the newly developed com-
posite nonlinear feedback (CNF) control method to track general
target references for systems with input saturation. The original
formulation of the CNF control technique is only applicable to
set-point tracking, in which the target reference is set to be a
constant. In this paper, a reference generator, which is able to
produce more general reference signals such as sinusoidal and
other waves, will be proposed to supplement the CNF control
technique to yield a good performance. The resulting control law
comprises the reference generator and a modified CNF control
law, which is proven to be capable of tracking a target reference
with fast settling time and minimal overshoot. Simulation and
experimental results on an XY -table show that the proposed
technique gives a very satisfactory performance.

Index Terms—Actuator saturation, control applications, motion
control, nonlinearities, robust control, servo systems, tracking
control.

I. INTRODUCTION

ONE OF THE important issues in tracking control is
the transient performance. Short settling time and small

overshoot are two typical specifications in desirable transient
performance. Another major concern is the capability of track-
ing various references. However, contradiction exists between
these specifications, especially for systems whose control input
is limited. For example, quick response results in a large over-
shoot. Usually, tradeoffs have to be made in tracking controller
design.

Much research work has been carried out in the literature to
improve tracking performance for systems with input nonlin-
earities. For example, Lin et al. [10] proposed the idea of using
a nonlinear feedback term to improve tracking performance for
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a class of second-order linear systems under state feedback.
Turner et al. [19] later extended the results of [10] to higher
order and multiple-input systems under a restrictive assumption
on the system. However, both [10] and [19] considered only the
state feedback case. Recently, Chen et al. [2], [3] developed
a composite nonlinear feedback (CNF) control technique for a
more general class of systems with measurement feedback and
successfully applied the technique to solve a hard-disk-drive
servo problem. The CNF control consists of a linear feedback
law and a nonlinear feedback law without any switching ele-
ment. The linear part is designed to yield a closed-loop system
with a small damping ratio for a quick response, and the nonlin-
ear part is used to increase the damping ratio of the closed-loop
system as the system output approaches the target reference to
reduce the overshoot caused by the linear part. Nonetheless,
none of the aforementioned results considers the case when
the systems have external disturbances. More recently, the CNF
control technique has successfully been upgraded in [14] and
[15] to deal with systems with external disturbances. In [14] and
[15], an integrator is integrated to the control system design to
attenuate steady-state bias caused by external disturbances. The
overall design retains the fast rise-time property of the original
CNF control.

Unfortunately, in all the formulations of the CNF control
technique mentioned previously, the target reference has always
been assumed to be the step function, which gives rise to
the doubt as to whether the technique is capable of tracking
a general nonstep reference. This motivates us to develop a
more complete result. In this paper, we adopt the CNF con-
trol technique to track general target references for a class
of linear systems with input saturation. In particular, a refer-
ence generator, which produces more general signals such as
sinusoidal and other waves, will be proposed to supplement
the CNF control technique to yield a good performance for
tracking general nonstep references. As a result, the resulting
control law comprises the reference generator and a CNF
control law. Simulation and experimental results on an XY -
table show that the proposed method yields a very satisfactory
performance.

The outline of this paper is given as follows. In Section II, the
theory of the generalized CNF control technique for tracking
general nonstep references will be presented. In particular, a
reference generator will be designed and integrated as part
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of the controller. Some illustrative examples will be given in
Section III, while experimental tests on an XY -table will be
carried out in Section IV. Finally, we make some concluding
remarks in Section V.

II. FAST TRACKING OF GENERAL TARGET REFERENCES

A generalized version of the CNF control design will
be introduced in this section, where a reference generator
is included to produce the desired reference signal for the
CNF control to track. The new approach will retain the fast
settling property of the original CNF control and the capacity
of the enhanced CNF control to eliminate steady-state bias
due to disturbances, and, at the same time, is capable of
tracking nonstep references. More specifically, we consider a
linear system with an amplitude-constrained actuator, which is
characterized by

ΣP :

{
ẋ = Ax+Bsat(u) + Ew, x(0) = x0

y = C1x
h = C2x

(1)

where x ∈ R
n, u ∈ R, y ∈ R

p, h ∈ R, and w ∈ R are the
state, control input, measurement output, controlled output,
and disturbance input of system ΣP , respectively. A, B, C1,
C2, and E are appropriate dimensional constant matrices.
The function sat : R → R represents the actuator saturation
defined as

sat(u) = sgn(u)min {umax, |u|} (2)

with umax being the saturation level of the input. The following
assumptions on the given system are made.

1) (A,B) is stabilizable.
2) (A,C1) is detectable.
3) (A,B,C2) is invertible with no invariant zero at s = 0.
4) w is a bounded unknown constant disturbance.
5) h is a subset of y, i.e., h is also measurable.

Note that all these assumptions are fairly standard for tracking
control. We aim to design a generalized CNF control law for
the system with disturbances such that the resulting controlled
output would track an arbitrary reference, e.g., r, as fast and
as smooth as possible without having steady-state bias. We first
design a reference generator, which can produce any nonstep
signal as the reference to be tracked. Then, we follow the given
procedure in [14] to design a modified enhanced CNF control
law. The generalized CNF control law consists of the reference
generator and the modified enhanced CNF control law.

A. Reference Generator

A reference generator, which will produce reference r to
be tracked, will be designed in this section. The reference

generator is constructed based on the nominal plant. Consider
an auxiliary plant characterized by

Σaux :
{

ẋe = Axe +Bue, xe(0) = xe0

r = C2xe
(3)

where xe ∈ R
n, ue ∈ R, and r ∈ R are the state, control input,

and output of the auxiliary system Σaux, respectively. r is the
reference produced to be tracked. A, B, and C2 are appropriate
dimensional constant matrices of the system ΣP .

Next, we design a linear control law for the auxiliary system
Σaux as follows:

ue = Fexe + rs (4)

where Fe is the feedback gain matrix and rs is an external signal
source. The auxiliary system (3) and the linear control law (4)
are combined to form the reference generator as follows:

ΣRef :

{
ẋe = (A+BFe)xe +Brs, xe(0) = xe0

ue = Fexe + rs

r = C2xe.

(5)

The reference generator (5) can generate an arbitrary type
of output signal, such as the step signal, ramp signal, and
sinusoidal signal by designing Fe, setting the initial value xe0,
and choosing rs. For example, to generate a polynomial signal

r(t) = a0 + a1t+ · · ·+ an−1t
n−1

we just set rs = 0 and choose an Fe such that the eigenvalues
of A+BFe are all zero, and let

xe0 =




C2

C2(A+BFe)
...

C2(A+BFe)n−1



−1 


a0

1!a1
...

(n− 1)!an−1


 .

To generate a simple sinusoidal signal r(t) = a1 sin(ω1t+ φ),
we again set rs = 0 and choose an Fe such that two eigenvalues
of A+BFe are at ±jω1 and the rest are at zero, and

xe0 =




C2

C2(A+BFe)
...

C2(A+BFe)n−1



−1




a1 sinφ
a1ω1 cosφ

0
...
0


 .

For more general signals r(t), we might need a nonzero
external signal rs. For some cases, rs can come from another
auxiliary linear system. For the circumstance when r(t) can be
generated by an autonomous linear exosystem, similar ideas
have been adopted to reformulate the tracking problem into
an equivalent output regulation problem by augmenting the
exosystem (see, e.g., [8]). Actually, here, we use the reference
generator to construct target state xe, which is an important
variable in the CNF control technique.
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B. CNF Control System Design

In this section, we will design a generalized CNF control law
using the reference generator presented in the previous section.
The procedure presented here is similar to the design of the
enhanced CNF control law [14], except for a slight difference.
However, the generalized CNF control law is capable of track-
ing nonstep references.

We follow the usual practice to augment an integrator into the
given system. Such an integrator will eventually become part of
the final control law. To be more specific, we define an auxiliary
state variable

ẋi := e := h− r = C2x− r (6)

which is implementable as h is assumed to be measurable, and
augment it into the given system as follows:


˙̄x = Āx̄+ B̄sat(u) + B̄rr + Ēw
ȳ = C̄1x̄
h = C̄2x̄

(7)

where

x̄ =
(

xi

x

)
x̄0 =

(
0
x0

)
ȳ =

(
xi

y

)
(8)

Ā =
[
0 C2

0 A

]
B̄ =

[
0
B

]
B̄r =

[
−1
0

]
(9)

and

Ē =
[
0
E

]
C̄1 =

[
1 0
0 C1

]
C̄2 = [ 0 C2 ] . (10)

We note that it is straightforward to verify that under assump-
tions 1 and 3, the pair (Ā, B̄) is stabilizable.

Next, we proceed to carry out the design of modified en-
hanced CNF control laws for two different cases, i.e., the state
feedback case and the reduced-order measurement feedback
case. The full-order measurement feedback case is straightfor-
ward once the result for the reduced-order case is established.

1) State Feedback Case: We first investigate the case when
all the state variables of the plant (7) are measurable, i.e.,
ȳ = x̄. In conformity with the augmented system (7), the ref-
erence generator can be rewritten as


˙̄xe = Āx̄e + B̄ue + B̄rr
ue = [0 Fe]x̄e + rs

r = C̄2x̄e

(11)

where

x̄e =
(
0
xe

)
x̄e0 =

(
0

xe0

)
.

Defining x̃ = x̄− x̄e, then, from (7) and (11), we obtain

˙̃x = Āx̃+ B̄ {sat(u)− ue}+ Ēw. (12)

This error equation will be used in the design of the modified
enhanced CNF control law. The procedure that generates a
modified enhanced CNF state feedback law will be done in

three steps. In the first step, a linear feedback control law will be
designed; in the second step, the design of nonlinear feedback
control will be carried out; and, lastly, in the final step, the
linear and nonlinear feedback laws will be combined to form
a generalized CNF control law.

Step s.1) Design a linear feedback control law based on
(12), i.e.,

uL = F x̃+ ue (13)

where F is chosen such that 1) Ā+ B̄F is an
asymptotically stable matrix and 2) the closed-
loop system C̄2(sI − Ā− B̄F )−1B̄ has certain
desired properties. Let us partition F = [Fi Fx]
in conformity with xi and x. The general guide-
line in designing such an F is to place the
closed-loop pole of Ā+ B̄F corresponding to the
integration mode xi to be sufficiently closer to
the imaginary axis compared to the rest of the
eigenvalues, which implies that Fi is a relatively
small scalar. The remaining closed-loop poles of
Ā+ B̄F should be placed to have a dominating
pair with a small damping ratio, which in turn
would yield a fast rise time in the closed-loop
system response.

Step s.2) Given a positive definite symmetric matrix W ∈
R

(n+1)×(n+1), we solve the following Lyapunov
equation:

(Ā+ B̄F )′P + P (Ā+ B̄F ) = −W (14)

for P > 0. Such a solution is always existent as
(Ā+ B̄F ) is asymptotically stable. The nonlinear
feedback portion of the modified enhanced CNF
control law uN is given by

uN = ρ(e)B̄′P x̃ (15)

where ρ(e), with e = h− r being the tracking
error, is a nonpositive function of |e|, which is to
be used to gradually change the system closed-
loop damping ratio to yield better tracking per-
formance. The choice of design parameter W is
the same as that presented in [14]. The choice of
design parameter ρ(e) will be presented later in
Section III.

Step s.3) The linear feedback control law and nonlinear
feedback portion derived in the previous steps
are now combined to form a generalized CNF
control law

u = uL + uN = F x̃+ ue + ρ(e)B̄′P x̃. (16)

The generalized CNF control law comprises the reference
generator (5) and the modified enhanced CNF control law (16).

Theorem 2.1: Consider the given system (1), with y = x and
disturbance w being bounded by a nonnegative scalar τw, i.e.,
|w| ≤ τw. Let

γ := 2τwλmax(PW−1)(Ē ′PĒ)1/2. (17)
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Then, for any ρ(e), which is a nonpositive function of |e| and
tends to a constant as t → ∞, the generalized CNF control law
comprising (5) and (16) will drive system-controlled output h
to track arbitrary reference r from an initial state x̄0 asymp-
totically without steady-state bias, provided that the following
conditions are satisfied.

1) There exist scalars δ ∈ (0, 1) and cδ > γ2 such that

∀x̄ ∈ X(F, cδ) := {x̄ : x̄′P x̄ ≤ cδ}
⇒ |F x̄| ≤ (1− δ)umax. (18)

2) Initial condition x̄0 satisfies

x̄0 − x̄e ∈ X(F, cδ). (19)

3) Control signal ue to construct the target reference satisfies

|ue| ≤ δumax (20)

where ue is defined in (5).
Proof: For simplicity, we drop the variable e in ρ(e)

throughout this proof. Based on (12), the closed-loop system
comprising the augmented system (7) and the generalized con-
trol law composed of (5) and (16) can be expressed as

˙̃x = (Ā+ B̄F )x̃+ B̄v + Ēw (21)

where

v := sat(u)− F x̃− ue (22)

and

u = F x̃+ ue + ρB̄′P x̃. (23)

Next, for x̃ ∈ X(F, cδ) and |ue| ≤ δumax, we have

|F x̃+ ue| ≤ |F x̃|+ |ue| ≤ umax.

Depending on the range of u, the range of v can be estimated
from (22) and (23) in three cases, i.e.,


ρB̄′P x̃ < v < 0, u < −umax

v = ρB̄′P x̃, |u| ≤ umax

0 < v < ρB̄′P x̃, u > umax

. (24)

Obviously, for all possible situations, we can always write v as

v = qρB̄′P x̃ (25)

for some nonnegative variable q ∈ [0, 1]. Thus, for the case
when x̃ ∈ X(F, cδ) and |ue| ≤ δumax, the closed-loop system
comprising the given augmented plant (7) and the generalized
CNF control law of (5) and (16) can be expressed as the
following:

˙̃x = (Ā+ B̄F + qρB̄B̄′P )x̃+ Ēw. (26)

Let us define a Lyapunov function

V = x̃′P x̃. (27)

Following the same line of reasoning as those in [14], we
can show that (26) is stable, provided that the initial condi-
tion x̄0, the control signal to construct the target reference
ue, and disturbance w satisfy those conditions listed in the
theorem. Furthermore, the closed-loop system, in the absence
of disturbance w, has V̇ < 0 and is thus asymptotically stable.
With the presence of disturbance w and with x̃(0) = x̄0 − x̄e ∈
X(F, cδ), where cδ > γ2, the corresponding trajectory of (26)
will remain in X(F, cδ) and converge to a point on a ball
characterized by {x̃ : x̃′P x̃ ≤ γ̃2}, with γ̃ ≤ γ when ρ trends
to a constant as t → ∞. Since xi(t) =

∫ t

0 e(τ)dτ converges to
a constant, it is clear that the tracking error e(t) → 0 as t → ∞.
This completes the proof of Theorem 2.1. �

2) Measurement Feedback Case: In practical situations, it is
unrealistic to assume all the state variables of a given plant to be
measurable. In what follows, we will design an enhanced CNF
control law using only information measurable from the plant.
In principle, we can design either a full-order measurement
feedback control law, for which its dynamical order will be
identical to that of the given plant, or a reduced-order measure-
ment feedback control law, in which we make full use of the
measurement output and estimate only the unknown part of the
state variable. As such, the dynamical order of the controller
will be reduced. It is more feasible to implement controllers
with smaller dynamical order. The development of this section
follows pretty closely from that of [3].

For simplicity of presentation, we assume that C1 in the
measurement output of the given plant (1) is already in the form

C1 = [Ip 0]. (28)

The augmented plant (7) can then be partitioned as the
following:




 ẋi

ẋ1

ẋ2


 =


 0 C21 C22

0 A11 A12

0 A21 A22





 xi

x1

x2


 +


 0
B1

B2


 sat(u)

+


−1

0
0


 r +


 0
E1

E2


w

ȳ =
[
1 0 0
0 Ip 0

]
 xi

x1

x2




h = [0 C21 C22]


 xi

x1

x2




(29)

where
xi

x1

x2


= x̄


xi(0)
x1(0)
x2(0)


=


 0
x10

x20


= x̄0 ȳ=

(
xi

y

)
=

(
xi

x1

)
.

Clearly, xi and x1 are readily available and need not be esti-
mated. We only need to estimate x2. There are two main steps
in designing a reduced-order measurement feedback control
laws, namely 1) the construction of a full-state feedback gain
matrix F and 2) the construction of a reduced-order observer
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gain matrix KR. The construction of gain matrix F is totally
identical to that given in the previous section. The reduced-
order observer gain matrix KR is chosen such that the poles
of A22 +KRA12 are placed in appropriate locations in the
open left-half plane. Now, given a positive definite matrix
W ∈ R

(n+1)×(n+1), let P > 0 be the solution to the Lyapunov
equation, i.e.,

(Ā+ B̄F )′P + P (Ā+ B̄F ) = −W. (30)

The reduced-order enhanced CNF control law is then
given by

ẋc = (A22 +KRA12)xc + [A21 +KRA11

−(A22 +KRA12)KR] y + (B2 +KRB1) sat(u) (31)

and

u =
(
F + ρ(e)B̄′P

)



 xi

x1

xc −KRy


 − x̄e


+ ue (32)

where ρ(e) is a nonpositive function of |e|, which is to be
chosen to yield a desired performance.

Next, let us partition matrices F and P in conformity with
xi, x1 and x2 as follows:

F = [Fi F1 F2] P = [Pi P1 P2] . (33)

Given another positive definite matrix WR ∈ R
(n−p)×(n−p)

with

WR > F ′
2B̄

′PW−1PB̄F2 (34)

let QR > 0 be the solution to the Lyapunov equation

(A22 +KRA12)′QR +QR(A22 +KRA12) = −WR. (35)

Note that such a QR exists as A22 +KRA12 is asymptotically
stable.

We have the following result.
Theorem 2.2: Consider the given system (1), with distur-

bance w being bounded by a nonnegative scalar τw, i.e., |w| ≤
τw. Let

γR := 2τwλmax

([
P 0
0 QR

] [
W −PB̄F2

−F ′
2B̄

′P WR

]−1
)

×
√[

Ē ′PĒ + (E2 +KRE1)′QR(E2 +KRE1)
]
. (36)

Then, there exists a scalar ρ∗ > 0 such that for any ρ(e), a
nonpositive function of |e| with |ρ(e)| ≤ ρ∗ while trending
to a constant as t → ∞, the generalized reduced-order CNF
control law comprising (5), (31), and (32) will drive the system-
controlled output h to track arbitrary reference asymptotically

without steady-state bias, provided that the following condi-
tions are satisfied:

1) There exist positive scalars δ ∈ (0, 1) and cRδ > γ2
R

such that

∀x̄ ∈ X(F, cRδ) :=
{
x̄ : x̄′

[
P 0
0 QR

]
x̄ ≤ cRδ

}

⇒ |[F F2]x̄| ≤ (1− δ)umax. (37)

2) The initial conditions x̄0 and xc0 = xc(0) satisfy(
x̄0 − x̄e

xc0 − x20 −KRx10

)
∈ X(F, cRδ). (38)

3) The control signal ue to construct the target reference
satisfies

|ue| ≤ δumax (39)

where ue is defined in (5).
Proof: Again, we drop variable e in ρ(e) throughout this

proof for simplicity. Let

x̃ = x̄− x̄e x̃c = xc −KRy − x2.

Then, the closed-loop system comprising the augmented system
(7) and the generalized reduced-order control law comprising
(5), (31), and (32) can be expressed as( ˙̃x

˙̃xc

)
=

[
Ā+ B̄F B̄F2

0 A22 +KRA12

] (
x̃
x̃c

)

+
[
B̄
0

]
v +

[
Ē

−(E2 +KRE1)

]
w (40)

where

v := sat(u)− [F F2]
(

x̃

x̃c

)
− ue (41)

and

u = [F F2]
(

x̃

x̃c

)
+ ue + ρB̄′[P P2]

(
x̃

x̃c

)
. (42)

Next, for
(

x̃
x̃c

)
∈ X(F, cRδ) and |ue| ≤ δumax, we have∣∣∣∣[F F2]

(
x̃

x̃c

)
+ ue

∣∣∣∣ ≤
∣∣∣∣[F F2]

(
x̃

x̃c

)∣∣∣∣ + |ue| ≤ umax.

Similarly, as in the proof of Theorem 2.1, we can rewrite v as

v = qρB̄′[P P2]
(

x̃

x̃c

)
(43)

for some nonnegative variable q ∈ [0, 1]. Thus, for the case
when (

x̃

x̃c

)
∈ X(F, cRδ)

and |ue| ≤ δumax, the closed-loop system comprising the given
augmented plant (7) and the generalized reduced-order CNF
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control law composed of (5), (31), and (32) can be expressed
as the following:( ˙̃x
˙̃xc

)
=

[
Ā+ B̄F + qρB̄B̄′P B̄F2 + qρB̄B̄′P2

0 A22 +KRA12

] (
x̃
x̃c

)

+
[

Ē
−(E2 +KRE1)

]
w. (44)

The rest of the proof follows along similar lines of reasoning
as those given in Theorem 2.1 and those for the measurement
feedback case in [3]. �

C. Selection of W and Nonlinear Gain ρ(e)

The procedures for selecting design parameter W and non-
linear gain ρ(e) are the same as those given in [3]. Basically, the
poles of the closed-loop system approach the locations of the
invariant zeros of an auxiliary system Gaux(s) := B̄′P (sI −
Ā− B̄F )−1B̄ as |ρ| becomes larger and larger. According to
[3], Gaux(s) is stable and invertible with a relative degree
equal to 1, and is of minimum phase with n stable invariant
zeros. The locations of the invariant zeros of Gaux(s) can
actually be manipulated by selecting an appropriate W > 0. In
general, we should try to deploy the invariant zeros of Gaux(s),
which are corresponding to the closed-loop poles for larger
|ρ|, such that the dominant ones have a large damping ratio,
which in turn will yield a smaller overshoot. We refer interested
readers to [3].

The selection of nonlinear function ρ(e) is relatively simple.
One possible choice of ρ(e) is given as follows:

ρ(e) = −β
∣∣∣e−α|e| − e−α|h(0)−r|

∣∣∣ (45)

where α and β are appropriate positive scalars that can be
chosen to yield a desired performance, i.e., fast settling time
and small overshoot. This function ρ(e) changes from 0 to ρ0 =
−β|1− e−α|h(0)−r|| as the tracking error approaches zero. In
general, parameter ρ0 should be chosen such that the poles of
Ā+ B̄F + ρ0B̄B̄′P are in the desired locations. Finally, we
note that the choice of ρ(e) is nonunique. Any function would
work so long as it has similar properties of that given in (45).

III. ILLUSTRATIVE EXAMPLES

The proposed generalized CNF control technique will be ver-
ified in this section to track the step reference, ramp reference,
sinusoidal references, and transcendental reference.

We consider a second-order system characterized by
 ẋ =

[
0 1

−10 5

]
x+

[
0
100

]
sat(u) +

[
0
100

]
w

y = h = [ 1 0 ]x
(46)

where umax = 2 and the disturbance is assumed to be w =
−0.1 for the simulation. Our task here is to design a control
law such that the system output can track a sinusoidal reference
fast and accurately

r(t) = a0 + a1 · sin(ω1t+ φ) + a2 · sin(ω2t). (47)

For the preceding signal, a reference generator can be designed
as follows:

Σaux :




ẋe =
[

0 1
−ω2

1 0

]
xe +

[
0
100

]
rs

xe(0) =
(

a0 + a1 sinφ
a2ω2 + a1ω1 cosφ

)
r = [ 1 0 ]xe

(48)

where rs is an external signal given by

rs(t) =
1
100

[
a0ω

2
1 + a2

(
ω2

1 − ω2
2

)
sin(ω2t)

]
· 1(t)

with 1(t) being the unit step signal. Moreover, we have

ue =
[
0.1− ω2

1
100 −0.05

]
xe + rs. (49)

Since there is disturbance in the system, we introduce an
integration term ẋi = h− r and obtain the corresponding aug-
mented plant as in (7). Defining

x̃ = x̄−
(
0
xe

)

and following the procedures given in the previous section, we
first obtain a linear state feedback law given by

uL = F x̃+ ue (50)

where

F = −[0.0158 1.4799 0.1255] (51)

which places the poles of Ā+ B̄F at −0.01 and a conjugate
pair with a damping ratio of 0.3 and natural frequency of 4π.
Next, we choose W to be a diagonal matrix with the diagonal
elements being 0.085, 5, and 0.003, respectively. Solving the
Lyapunov equation of (14), we obtain

P =


 4.2791 2.0709× 10−1 2.6913× 10−2

2.0709× 10−1 4.9240× 10−1 1.7135× 10−2

2.6913× 10−2 1.7135× 10−2 2.4682× 10−3




which is indeed positive definite. The nonlinear feedback gain
matrix is then given by

Fn = B̄′P = [2.6913 1.7135 0.2468]. (52)

The reduced-order observer gain matrix is selected as

KR = −25 (53)

which places the observer pole at −20, and the nonlinear gain
function is selected as follows:

ρ(e) = −2
∣∣∣e−|e| − e−1

∣∣∣ . (54)
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Fig. 1. Tracking a unit step reference.

Finally, the reduced-order generalized CNF control law is
given by(

ẋi

ẋv

)
=

[
0 0
0 −20

](
xi

xv

)
+

[
1

−510

]
y

+
[

0
100

]
sat(u)−

[
1
0

]
r (55)

and

u = ue + (F + ρ(e)Fn)





 xi

y
xv + 25y


 −

(
0
xe

)
 (56)

where xe is given in (48) and ue is given in (49).
For comparison, we also design an enhanced CNF controller

following the procedure given in [14], i.e.,

u = (F + ρ̄(e)Fn)


 xi

y − r
xv + 25y


 + 0.1r (57)

with

ρ̄(e) = −5
∣∣∣e−|e| − e−1

∣∣∣ (58)

where F and Fn are given in (51) and (52), respectively, and xi

and xv are given in (55).

A. Step Reference

We first check the performance of the generalized CNF
control law in tracking a unit step reference. Obviously, we can
just let a0 = 1, a1 = 0, ω1 = 0, φ = 0, a2 = 0, and ω2 = 0.
Simulations are carried out in MATLAB. Simulation results for
unit step reference are shown in Fig. 1. Judging from the figure,
the output responses settle into the target fast and smoothly, and
there is barely any difference between the output response of the
generalized CNF control and that of the normal CNF control.
In other words, the generalized CNF control can achieve the
same performance as the normal CNF control for step reference
target.

Fig. 2. Tracking a sinusoidal reference.

B. Sinusoidal Reference With Single Frequency

Next, we test the tracking performance with a sinusoidal
reference

r(t) = sin
(
2πt+

π

6

)
.

Fig. 2 shows the simulation results. It can be seen that the output
response with normal CNF control lags behind the reference
signal; there is steady-state tracking error. In contrast, the
output response with generalized CNF control almost perfectly
tracks the target.

C. Sinusoidal Reference With Multiple Frequencies

Next, we test the tracking performance for a sinusoidal
reference with two frequency components

r(t) = 1 + 0.3 sin
(
2πt+

π

4

)
+ 0.1 sin(6πt).

Simulation results are shown in Fig. 3. It is obvious that the
output response with normal CNF control lags behind the
reference signal; hence, there is tracking error. In contrast,
the output response with generalized CNF control can still
perfectly track the target reference.

D. Ramp Reference

We now test the tracking performance with a ramp reference
r(t) = a0 + a1t. For this reference signal, the reference gener-
ator can be designed as follows:

Σaux :


 ẋe =

[
0 1
0 0

]
xe, xe(0) =

(
a0

a1

)
r = [ 1 0 ]xe

(59)

with ue = [0.1 − 0.05]xe.
Fig. 4 shows the simulation results for r(t) = 0.1 + 0.3t. It is

clear that the generalized CNF control achieves almost perfect
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Fig. 3. Tracking a sinusoidal reference with multiple frequencies.

Fig. 4. Tracking a ramp reference.

tracking without steady-state error, whereas a constant bias
occurs at the steady-state output with the normal CNF control.

E. Transcendental Reference

Finally, we test the tracking performance with a transcenden-
tal reference r(t) = esin(ω1t) with ω1 = 2π. For this reference
signal, the reference generator can be designed as follows:

Σaux :


 ẋe =

[
0 1
0 0

]
xe +

[
0
100

]
rs

r = [ 1 0 ]xe

(60)

with

xe(0) =
(
1
ω1

)

and rs being an external signal given by

rs(t) =
1
100

ω2
1e

sin(ω1t)

[
1 + cos(2ω1t)

2
− sin(ω1t)

]
(61)

Fig. 5. Tracking a transcendental reference.

Fig. 6. XY -table used in experiments.

and

ue = [0.1 − 0.05]xe + rs. (62)

Simulation results in Fig. 5 clearly show that the output under
the generalized CNF control almost perfectly tracks the tran-
scendental signal, whereas the output under the normal CNF
control always lags behind the target.

IV. APPLICATION IN AN XY -TABLE TRAJECTORY

TRACKING CONTROL

In this section, we demonstrate the application of the pro-
posed control technique in solving the trajectory tracking con-
trol problem in an XY -table. The likes of XY -tables, e.g.,
machine tools, are commonly used in the manufacturing in-
dustry. The precision control of an XY -table has been widely
studied (see, e.g., [4], [6], [9], [11]–[13], [17], and [18]).

Fig. 6 is a photograph of the XY -table we are working
with. In each axis of the XY -table, there is a brush-type dc
servomotor (model MT22G2-10) that drives its load with a ball
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screw. The XY -table has a maximum speed of 5000 r/min and
a maximum travel of 0.5 m (or 0.25 m in both directions) in
each axis, and the displacement of each axis is measured by
an optical encoder with 4000 pulse/revolution. A pulsewidth-
modulation (PWM) power amplifier is used in the current mode
to drive the two motors of the XY -table. A pencil is attached to
the mover (as the load) of the XY -table, which in turn is driven
by the servomotors to move along the X-axis and Y -axis and,
thus, can produce or draw any desirable 2-D trajectory onto the
paper underneath.

The relation between the linear motion of the XY -table
along each axis and the motor input current (before the
PWM amplifier) has been identified as the following transfer
functions [17]:

Gx(s) =
8.034

s2 + 2.825s
(63)

and

Gy(s) =
6.774

s2 + 3.226s
. (64)

The amplitude of the control input (electric current expressed
in amperes) to the motor is limited by 1 A, i.e., umax = 1 A.
The output displacement is expressed in meters.

The preceding two models can be cast into the state-
space form

Σx :


 ẋx =

[
0 1
0 −2.825

]
xx +

[
0

8.034

]
sat(ux)

hx = [ 1 0 ]xx

(65)

and

Σy :


 ẋy =

[
0 1
0 −3.226

]
xy +

[
0

6.774

]
sat(uy)

hy = [ 1 0 ]xy

(66)

where (ux, xx, hx) and (uy, xy, hy) correspond to the control
input, state vector, and output displacement of the two axes of
the XY -table.

In what follows, controllers are designed for the two sub-
systems (axes) to track some target trajectory rx(t) and ry(t),
using the generalized CNF control technique.

We first consider the subsystem for the X-axis. Given a si-
nusoidal target reference rx(t) = a1 · sin(ω1t+ φ), a reference
generator can be designed as follows:

Σrx :




ẋex =
[

0 1
−ω2

1 0

]
xex

xex(0) =
(

a1 sinφ
a1ω1 cosφ

)
rx = [ 1 0 ]xex

(67)

with

uex =
[
− ω2

1
8.034 0.3516

]
xex. (68)

We introduce an integration term ẋix = hx − rx into the
systemΣx and obtain the corresponding augmented system. We

choose the preliminary conjugate poles with a damping ratio
of 0.3, natural frequency of 6 rad/s and the integration pole at
−0.01, the linear state feedback gain matrix is then given by

Fx = −[0.0448 4.4854 0.0977].

Next, we choose matrix Wx = diag(0.2, 40, 0.06) and solve the
related Lyapunov equation; the nonlinear feedback gain matrix
is then obtained as

Fnx = [2.2317 4.6961 1.3676].

Now, a reduced-order observer is designed with the observer
pole placed at −15. The nonlinear gain function is chosen as

ρx(hx, rx) = −3.5
∣∣∣e−3|hx−rx| − e−3|hx(0)−rx(0)|

∣∣∣ . (69)

Note that friction exists in all mechanical systems where there
is relative motion and becomes more influential at the beginning
of motion or at low velocity when the contact surfaces seem to
get stuck. As a result, tracking error will occur if friction is not
compensated. Inspired by the idea of [1] and [16], we propose
the following friction compensation term for the two axes of the
XY -table:

uf = γ · tanh (λ(r − h)) · e−η|v̂| (70)

where γ corresponds to (or can be a bit larger than) the static
friction (i.e., the break-away force), λ and η are positive tuning
parameters, and v̂ is the estimated velocity of motion. Obvi-
ously, the compensation term is bounded by γ and will become
influential only when the motion is slow while the tracking error
r − h is relatively large.

The generalized CNF control law for the X-axis is given by(
ẋix

ẋcx

)
=

[
0 0
0 −15

] (
xix

xcx

)
+

[
1

−182.625

]
hx

+
[

0
8.034

]
sat(ux)−

[
1
0

]
rx (71)

and

ux = [Fx + ρx(hx, rx)Fnx]





 xix

hx

xcx + 12.175hx


 −

(
0

xex

)


+ uex + 0.18 tanh (2000(rx − hx)) e−5|xcx+12.175hx|. (72)

The controller design for the Y -axis is similar. For a sinusoidal
target reference ry(t) = a1 · sin(ω1t), the reference generator
can be designed as follows:

Σry :




ẋey =
[

0 1
−ω2

1 0

]
xey

xey(0) =
(

0
a1ω1

)
ry = [ 1 0 ]xey

(73)
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with

uey =
[
− ω2

1
6.774 0.4762

]
xey. (74)

We again introduce an integral augmentation and choose the
preliminary conjugate poles with a damping ratio of 0.3 and
natural frequency of 6 rad/s and the integration pole at −0.01.
Furthermore, we choose matrix Wy = diag(0.3, 56, 0.08), and
the nonlinear gain function

ρy(hy, ry) = −2
∣∣∣e−2|hy−ry | − e−2|hy(0)−ry(0)|

∣∣∣ . (75)

Again, an observer is designed with a pole at −15. Finally, we
obtain a generalized CNF control law for the Y -axis as follows:(

ẋiy

ẋcy

)
=

[
0 0
0 −15

] (
xiy

xcy

)
+

[
1

−176.61

]
hy

+
[

0
6.774

]
sat(uy)−

[
1
0

]
ry (76)

and

uy =uey + ( [−0.0531 −5.3198 −0.0567]
+ ρy(hy, ry) [3.3475 6.6886 1.7901] )

×





 xiy

hy

xcy + 11.774hy


 −

(
0

xey

)


+ 0.2 tanh (2000(ry − hy)) e−5|xcy+11.774hy |. (77)

For comparison, we present the following finely tuned modified
proportional–integral differential control laws for the X- and
Y -axis of the XY -table, respectively:


ux =

(
0.2211

s + 1.3552 + 0.3744s
1000s+1

)
(rx − hx)

uy =
(

0.4432
s + 2.6574 + 0.6356s

1000s+1

)
(ry − hy)

. (78)

The parameters in the preceding PID control laws are tuned
through simulation to obtain the best possible performance.

Simulation and experiments are carried out for the XY -
table to move in a circle with a radius of 0.1 m, just like a
graphic plotter drawing a circle. For this purpose, we set the
target trajectory for the X-axis to be rx(t) = 0.1 cos(0.4πt) =
0.1 sin(0.4πt+ π/2) m and the trajectory for the Y -axis to
be ry(t) = 0.1 sin(0.4πt) m. Note that the frequency (or the
period) of the reference trajectory determines the time it takes
for the XY -table to finish drawing a full circle.

Simulation is done in MATLAB with SIMULINK. Note that,
in simulation, the friction effects are not included in the plant
models; hence, the term for friction compensation should be
ignored in the control laws. The results are shown in Figs. 7–9.
The simulation results show that the generalized CNF control
yields a much better performance compared to that of PID
control.

In the experiments, controllers are implemented on a dSpace
digital signal processor board installed in a personal computer

Fig. 7. Simulation: circular motion with generalized CNF control.

Fig. 8. Simulation: circular motion with PID control.

Fig. 9. Simulation: the drawn circle.
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Fig. 10. Block diagram of the XY -table servo system.

Fig. 11. XY -table experiment: circular motion with generalized CNF control.

Fig. 12. XY -table experiment: the drawn circle with generalized CNF
control.

(see Fig. 10). The sampling frequency is 100 Hz. The ex-
perimental results are shown in Figs. 11 and 12. Note that,
in the figures, two cycles of motion are displayed for better
illustration, although it only takes one cycle to draw a circle.
It is clear that the position error converges to zero after a
brief transient period, and, afterward, both the X-axis and

the Y -axis can track the target references accurately, even
at the neighborhood of zero velocity, when the static friction in
the physical plant is very influential with respect to the control
action. As a result, the circle shown in Fig. 12 is almost perfect.

Next, we let the XY -table draw a lemniscate of
Bernoulli characterized by the following parametric equations
(see, e.g., [5]):

x =
a cosωt

1 + sin2 ωt
(79)

and

y =
a sinωt cosωt
1 + sin2 ωt

(80)

where a = 0.1 m is related to the torus radius of the lemniscate
by a factor of

√
2, and ω = 0.2π is a timescale factor.

The reference generator for X-axis can be designed as
follows:

Σrx :




ẋex =
[
0 1
0 0

]
xex +

[
0

8.034

]
rsx

rx = [ 1 0 ]xex

uex = [ 0 0.3516 ]xex + rsx

(81)

with

xex(0) =
(
a

0

)

and rsx being given by

rsx(t) = −aω2 cosωt(sin4 ωt− 12 sin2 ωt+ 3)
8.034(1 + sin2 ωt)3

.

Similarly, the reference generator for Y -axis is designed as
follows:

Σry :




ẋey =
[
0 1
0 0

]
xey +

[
0

6.774

]
rsy

ry = [ 1 0 ]xey

uey = [ 0 0.4762 ], xey + rsy

(82)

with

xey(0) =
(
0
aω

)

and the external signal rsy being given by

rsy(t) = −aω2(0.75 sin 4ωt+ 3.5 sin 2ωt)
6.774(1 + sin2 ωt)3

.

The control laws for the two axes are basically same as those
given in (72) and (77), except that uex and uey now come from
(80) and (82), respectively. The modified PID control law (78)
is also applied for comparison. Simulation and experiments
have been carried out. The results are shown in Figs. 13–17.
It can be seen that the tracking performance in the first half
cycle is not quite satisfactory, but it gets better after the transient
process dies out. The generalized CNF control can obtain better
tracking performance than the PID control.
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Fig. 13. Simulation: tracking a lemniscate with generalized CNF control.

Fig. 14. Simulation: tracking a lemniscate with PID control.

Fig. 15. Simulation: the drawn lemniscate.

Fig. 16. XY -table experiment: tracking a lemniscate with generalized CNF
control.

Fig. 17. XY -table experiment: the drawn lemniscate with generalized CNF
control.

V. CONCLUDING REMARKS

A generalized CNF control technique has been presented
to track nonstep references. A reference generator, which is
capable of producing various references, has been adopted to
work together with the CNF control technique. The generalized
CNF control law is composed of the reference generator and
an enhanced CNF control law. Thus, it retains the advantages
of the CNF control technique such as fast rising time, small
overshoot, and without steady-state bias while being capable
of tracking various references. Illustrative examples and exper-
iments on an XY -table have been provided to demonstrate the
effectiveness of this control technique.
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