Improvement of transient performance in tracking
control for discrete-time systems with input
saturation and disturbances
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Abstract: The authors present an enhanced composite nonlinear feedback (CNF) control technique
for discrete-time systems with input saturation and with external disturbances. The conventional
CNF control is proven to be capable of yielding better transient performance in tracking control
for systems with input saturation. However, when the given system has external disturbances as
in most practical situations, the conventional CNF control yields some steady-state errors in the
resulting output response. The enhanced CNF technique presented is an extension of the conven-
tional one. It retains the good transient properties of the conventional CNF control and at the same
time has the additional capacity for eliminating steady-state bias because of unknown constant
disturbances. A numerical example and practical disk drive servo system design are provided
to demonstrate the effectiveness of this control technique. Experimental results show that the
new design yields a huge improvement over classical approaches.

1 Introduction

Transient performance is one of the important issues in
tracking control problems that include target-tracking and
output regulation (see e.g. [1, 2]). In general, quick response
and a small overshoot are desirable in most of the target-
tracking control problems. However, it is well-known that
quick response will result in a large overshoot. Thus, most
design schemes have to make a trade-off between these
two transient performance indices. In this article, we
have considered a tracking problem for a class of discrete-
time systems with input saturation and with external
disturbances. Particular attention was paid to improving
the transient performance of the closed-loop system by
using the so-called enhanced composite nonlinear feedback
(CNF) control technique.

To improve tracking performance, Lin ef al. [3] proposed
the CNF control technique in their pioneering work on a
class of second-order linear systems. Turner et al. [4] later
extended the results of Lin er al. [3] to higher-order
and multiple-input systems under a restrictive assumption
on the system. However, both Lin et al. [3] and Turner
et al. [4] only considered the state feedback case.
Recently, Chen et al. [5] developed a CNF control to a
more general class of systems with measurement feedback
and successfully applied the technique to solve a hard
disk drive servo problem. The discrete-time counterpart of
such a technique was reported in Venkataramanan et al. [6].

The CNF control consists of a linear feedback law and
a nonlinear feedback law without any switching element.
The linear feedback part is designed to yield a closed-loop
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system with a small damping ratio for a quick response,
whereas at the same time not exceeding the actuator
limits for desired command input levels. The nonlinear
feedback law is used to increase the damping ratio of
the closed-loop system as the system output approaches
the target reference to reduce the overshoot caused by the
linear part. Basically, the CNF control design philosophy
is to combine the good properties associated with larger-
and smaller-damped systems.

All the above-mentioned results are not capable of
tackling systems with external disturbances. In a recent
work [7], an enhanced CNF technique that involved
augmenting an integrator to the control system design was
proposed for solving the tracking control problem for
continuous-time systems with external disturbances. The
enhanced procedure has proved to be capable of removing
steady-state bias due to constant disturbances. This article
is a counterpart to the one of Peng er al. [7], tackling
a similar problem for discrete-time systems and is a
natural extension of the conventional CNF design for
discrete-time systems reported in Venkataramanan et al.
[6]. The proposed technique has been applied to the
design of a servo system for a micro hard disk drive.
The design has been successfully implemented onto the
actual hardware.

2 Enhanced CNF control

We considered a linear discrete-time system with actuator
saturation and disturbances characterised by
x(k + 1) = Ax(k) + B sat(u(k)) + Ew, x(0) = x

y(k) = Cix(k) (1)
h(k) = Cyx(k)

where xER", u€R, yER’, h€R and w ER are,
respectively, the state, control input, measurement output,
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controlled output and disturbance input of the system. 4, B,
C1, C; and E are appropriate dimensional constant matrices.
The function sat: R — R represents the actuator saturation
defined as

sat(u(k)) = sgn(u(k)) min{umay, |u(k)|} )

with u,,« being the input saturation level. The following
assumptions on the given system can be made:

(4, B) is stabilisable;

(A4, C)) is detectable;

(4, B, C») is invertible and has no invariant zero atz = 1;
w is bounded unknown constant disturbance; and finally,
h(k) is a subset of y(k), this is A(k) is also measurable.

DAL=

Note that all these assumptions are fairly standard for track-
ing control.

It was our aim to design a discrete enhanced CNF control
law for the system with input saturation and disturbances to
track a step reference, say r, neither violating the input
saturation nor having steady state bias. An equivalent
discrete integration, which eventually becomes part of the
final control law, is defined as follows

xi(k + 1) = xi(k) + kie(k) = xi(k) + ki Cox(k) — «ir - (3)

where the tracking error e(k) := h(k) — r is available for
feedback as A(k) is assumed to be measurable and k; is a
positive scalar to be selected to yield an appropriate inte-
gration speed. By integrating (3) into the given system,
we obtained the following augmented system

%(k + 1) = A%(k) + B sat(u(k)) + B,r + Ew
(k) = C1x(k) 4)
h(k) = Cx(k)

B-p] a=lp &) -0 @ o

Note that under Assumptions 1 and 3, it is straightforward to
verify that the pair (4, B) is stabilisable.

An account of the design of the enhanced CNF control
laws for the given system now follows for two different
cases — the state feedback case and the reduced-order
measurement feedback case. The full-order measurement
feedback case can be solved in a straightforward manner
once the result for the reduced-order case is established.

2.1 State feedback case

Consider the situation when all the state variables of the
given system (1) are measurable, that is, y = x. The pro-
cedure that generates an enhanced CNF state feedback
law can be completed in three steps. In the first step, a
linear feedback control law with appropriate properties is
designed and in the second step, the design of a nonlinear
feedback portion will be carried out. Finally, in the last
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step, the linear and nonlinear feedback laws are combined
to form an enhanced CNF control law.

Step 1. To design a linear feedback control law:
ur (k) = Fx(k) + Gr ®)

where F is chosen such that: (i) 4+ BF is asymptoti-
cally stable; and (i) the closed-loop system
Cy(zI— A — BF)"'B has certain desired properties.
F =[F; F,] is partitioned in conformity with x;(k) and
x(k). A general guideline in designing such a state feedback
gain F is to place the closed-loop pole of 4 + BF corre-
sponding to x;(k) to be sufficiently closer to z= 1 when
compared with the other eigenvalues, which implies that
F is a relatively small scalar. The remaining closed-loop
poles of 4 + BF should be placed to have a dominating
pair with a small damping ratio, which in turn yields a
fast rise time in the closed-loop system response. Finally,
G is chosen as

G = [Cy(I — A — BFy) 'B]™! )

which is well defined as (4, B, C,) is assumed to have no
invariant zeros at z= 1 and I — A4 — BF is non-singular
whenever 4 + BF is stable and Fj is relatively small.

Step 2. Given an appropriate positive definite constant
matrix, W € R"+FD*0HD the following Lyapunov equation

P=(4+BFYP(A+BF)+W (10)

is solved for P > 0. Such a solution is always existent as
A + BF is asymptotically stable. Next, we define

0 _
Ge = [(I_A_BF )—IBG}v Xe = Ger (11)

The nonlinear feedback portion of the enhanced CNF control
law, un(k), is then given by

un(k) = ple(k)B'P(A + BF)[x(k) — %] (12

where p(e(k)), with e = h — r, is a non-positive function of
le| and tends to a finite scalar as k — 0. It is used to gradu-
ally change the system closed-loop damping ratio to yield
a better tracking performance. The choice of the design
parameters, p(e(k)) and W, will be discussed later.

Step 3. The linear and nonlinear feedback control laws
derived in the previous steps are now combined to form
an enhanced CNF control law

u(k) = Fx(k) + Gr + p(e(k))B'P(4 + BF)[x(k) — X.]
(13)

Thus, we have the following result.

Theorem 1: Consider the given system (1) with y = x and
the disturbance w bounded by a non-negative scalar 7,
that is, |[w| < 7,. Let

yi=[1 = (1 = Aais(WP~) I (E'PE) *7,  (14)

Then, for any p(e(k)) € [—2(B'PB)"", 0], which is a non-
positive function of |e| and tends to a constant, p, as
k — oo, the enhanced CNF control law (13) will drive the
system controlled output A(k) to track the step reference
of amplitude r from an initial state X, asymptotically
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without steady-state error, provided that the following
conditions are satisfied:

1. There exist scalars 8 € (0, 1), ¢5 > y* and cp > v? such
that

Vi(k) € X(F, c5) = {x(k): ¥ (k) PX(k) < cs}

= |F-)_C(k)| = (1 - 5)umax (15)
and

Vx(k) € X(F, P, c,) = {x(k): X (k)Px(k) < c,}
= |(F + pB' P(4 + BF))x(k)|
= (l - 6)umax (16)

Note that (16) implies that the control signal does not
exceed the saturation level in the face of disturbances
when the controlled output approaches the target.

2. The initial condition, X, satisfies

X0 — Xe € X(F, cs) a7
3. The level of the target reference, r, satisfies
[Hr| < Sumax (18)
where H = FG, + G. Note that A,.(WP™') € (0, 1).
Proof: For simplicity, we will drop e(k) in the nonlinear

function p throughout the following proof. First of all, it
is straightforward to verify that

A%, + BHr + B,r = X, (19)

Letting (k) = X(k) — X., the augmented system (4) can be
expressed as

%k +1) = (4 + BF)i(k) + Bv(k) + Ew  (20)
where
v(k) = sat(u(k)) — Fx(k) — Hr (21)
and the control law (13) can be rewritten as
u(k) = Fi(k) + Hr + pB'P(4 + BF)i(k)  (22)
Next, for X(k) € X(F, cs) and |Hr| < dupmax, We have
|Fx(k) + Hr| < |[FX(k)| + |H7| < thax (23)
which implies
v(k) = pB'P(A + BF)x(k) (24)
if |u(k)| < Umax, OT
0 < v(k) < pB'P(4 + BF)x(k) (25)
if u(k) > Upax, OF
pB'P(4 + BF)x(k) < v(k) < 0 (26)

if u(k) < —umax. Obviously, for all possible situations, v(k)
can be written as

v(k) = qpB P(4 + BF)i(k) 27)

with some appropriate ¢ € [0, 1]. Thus, for (k) € X(F, cs)
and |Hr| < dupax, the closed-loop system comprising the
augmented system (4) and the CNF control law (13) can
be expressed as follows

%(k + 1) = [4 + BF + qpBB P(4 + BF))i(k) + Ew (28)
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Defining a Lyapunov function, WV(k) = ¥ (k)Px(k), and
factoring P > 0 as P=S'S, the increment of V(k) along
the trajectory of the system (28) can be calculated as

AV (k) = =% (k)Pi(k) + ¥ (k)(A + BF) P(4 + BF)x(k)
+ X (k)(A + BFY PB(2qp + ¢*p*B' PB)
x B'P(4 + BF)i(k) + wE PEw
+ 2% (k)(A + BF) (I + qpBB'P) PEw
< —X(k)Pi(k) + % (k)(P — W)i(k) + E PET
+ 2||¥(k)(A + BF) (I + qpBB'P)'S'|| x ||SE||,,

Noting that
I¥(k)(4 + BFY (I + gpBB PY'S'|
< [¥(k)(A + BF) P(4 + BF)x(k)]'? (29)

for p € [2(B'PB) "', 0], we have
AV (k) < =% (k)Pi(k) + % (k)(P — W)i(k) + E PE7,
+ 2[¥(k)(A + BF) P(4 + BF)x(k)]'/*(E PE)"*r,,
= —{F(R)Px(k)' + [¥' (k)P — W)x (k)]
+ (E'PE)' 1, | (h)Px(k))'
—[F (k)P — W)%(k)]'* — (E'PE)' ", )
= —{F()Px(k)'? + [¥ (k)P — W)x(k)]'?

+(E'PE)r, ) { — (E'PE)' 7, + (¥ (W)Pi(k))'

5 [1 - (1 _x/(k)Wx(k))l/ZH
¥ (k)Px(k)
< —{F0)P(k)* + [¥ ()P — W)x(k)]"/?
+(E'PE)'*1,} x [—(E'PE)'"*1,

+ @ (PR [1 = (1 = Amin(WP~1)' 2]}
= —{F(R)PE(k)" + [F (k)P — W)x(K)]"
+(EPE) 1, }[1 = (1 = Apin(WP™ )]
x [ (k)Px(k))'* — 7]

Note that we have used the following properties

/
_1 . X Wx
Amin(WP )=§gg ~Px

(30)

as both W and P are positive definite matrices. Clearly, the
closed-loop system in the absence of the disturbance, w, has
AV(k) < 0 and thus is asymptotically stable.

With the presence of the disturbance, w, and with
X(0) =Xy — X, € X(F, cs), where c5 > yz, the correspond-
ing trajectory of (28) will remain in X(F, cs) and converge
to a ball characterised by {%: ¥ Px < ¥} with ¥ < .

Note that p is chosen such that it tends to a constant as
k — 0. Also, for large k, the control signal u(k) will be
under its saturation level because of the second portion of
condition 1. Thus, the closed-loop system (28) becomes
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an almost linear time-invariant system. We concluded that
the corresponding trajectory of (28) converged asymptoti-
cally to a point; that is, ¥(k) will tend to a constant. Thus

1
klim e(k) = klim —[xi(k+1) —xi(k)] =0 (31)
— 00 — 00 Ki
This completes the proof of Theorem 1 d

2.2 Measurement feedback case

Next, we consider the general measurement feedback situ-
ation, in which there is only part of the state variables avail-
able for feedback. As usual, for such a situation, one could
either design a full-order or a reduced-order measurement
feedback control law. In this article, we focused on design-
ing a reduced-order controller. Without loss of generality,
we assumed that C; in the measurement output of the
given plant (1) is in the form: C, = [I, 0]. The augmented
plant (4) can then be partitioned as

X I kiCy kiCop X
x |k+1)=[0 Ay A x1 | (k)
X2 0 Ay  Ax X2
0 —K; 0
+ | By |sat(u(k)+| O |r+| E; (w
Bz 0 E2
(32)
-
_ 1 0 O !
y(k)z[ ] a | (33)
01, 0|7
and
Xi
h(k) =[0 Cy Cx]| xi |(k) (34)
X2
with
xi(O) 0
x1(0) | = x10 | =Xo (35)
xz(O) X20

We only need to estimate x,(k). There are two main steps in
designing a reduced-order measurement feedback control
law: (i) the construction of a full state feedback gain
matrix F, which is identical to that given in the previous
subsection; and (ii) design of the reduced-order observer
gain matrix Ky, such that the poles of 4,, + KrA;, are
placed at appropriate locations inside the unit circle. Next,
given a positive definite matrix W & R"TD*HD et
P > 0 be the solution to the Lyapunov equation

P=(A+BFYP(A+BF)+ W (36)

The reduced-order enhanced CNF control law is then
obtained by

xy(k+1)
= (A2 + KrAp)x,(k) + (B + KrBy) sat(u(k))
+ [421 + KrA1 — (A2 + KrA1)KR]y(k) (37)
68

and

u(k) = Fx.(k) + Gr + p(e(k))B' P(4 + BF)[x.(k) — %]
(38)

where

xi(k)
xe(k) = x1(k)
xy(k) — Kry(k)

G is as defined in (9), X, is as defined in (11) and p(e(k)) is
the non-positive function of |e(k)|, which tends to a constant
as k — oo,

Next, F = [F; F, F,] is partitioned in conformity with
xi(k), x1(k) and x,(k). Let Wy € R"P*"~P) be a positive
definite matrix such that

Wy > F,[B' PB + B'P(A + BF)W~'(4 + BF) PBF,
(39)

and let Qr > 0 be the solution to the Lyapunov equation
Or = (A + KrA12) Qg (A2 + KrApp) + Wr (40)

Note that such a Qg exists as Ay,+KrA, is asymptotically
stable. Next, let

N -
R *— Amin |:O QR:|

X[ A -(21+BF)’PBF2“ @)
—F,B'P(4 + BF)

Wy — F,B PBF,

It is noted that Ag € (0, 1). We have the following result.

Theorem 2: Consider the given system (1) with the disturb-
ance w being bounded by a scalar 7,, > 0, that is, |w| < 7,,.
Let

e = [1 — (1 = \g) /"I '[E'PE + (E; + KrE/)
x Qr(E; + KRE))]'*1, (42)

Then, there exists a p* € (0, 2(B'PB)™'] such that for any
p(e(k)) € [—p*, 0], which is a non-positive function of
le(k)] and tends to a constant, p,, as k — oo, the
reduced-order enhanced CNF control law of (37) and (38)
will drive the system controlled output A(k) to track the
step reference of amplitude » asymptotically without
steady-state error, provided that the following conditions
are satisfied:

1. There exist positive scalars & € (0, 1), crs > y& and
Crp > yzR such that

VE(K) € X(F. cga) = {m f’(k)[g QO ]fe(k)ScRs}

R
(43)
= |[F F(0)] < (1 — dumax  (44)
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and

Vi(k) € X(F, P, cg,)

= Lz #w| £ ° %(k) < cr, (45)
0 Or

= |[F + p B P(4 + BF)F, + p B P(4, + BF»)[x(k)|
=< (1 — O)lmax (46)

where A, is the right hand part of matrix 4 in conformity
with x,(k).
2. The initial conditions, X, and x,o = x,(0), satisfy

X0 — Xe
e X(F, 47
<xv0 — X0 —KRX10> (F. cro) “7)

3. The level of the target reference, r, satisfies
[Hr| < Olmax (48)

where H is the same as that defined in Theorem 1.

Proof: The result follows the similar lines of reasoning as
given in Theorem 1 and the similar arguments for the
measurement feedback case reported in Chen et al. [5].

O

2.3 Selection of nonlinear feedback parameters

The key component in designing the CNF controllers was
the selection of p (hereafter, we drop the dependent vari-
ables of p for simplicity) and W. The freedom to choose
the nonlinear function p was used to tune the control laws
so as to improve the performance of the closed-loop
system, as the controlled output / approaches the set
point. As the main purpose of adding the nonlinear part to
the CNF controller was to speed up the settling time and
to reduce the overshoot, or equivalently to contribute a sig-
nificant value to the control input when the tracking error,
r — h, was small, it was appropriate for us to select a non-
linear gain matrix such that the nonlinear part would be in
action when the control signal was far away from its satur-
ation level, and thus it would not cause the control input to
hit its limits. Under such a circumstance, it was straight-
forward to verify that the closed-loop system comprising
the augmented plant in (4) and the CNF control law (13)
could be expressed as

%(k 4+ 1) = (A + BF)i(k) + pBB' P(A + BF)x(k) + Ew
(49)

Clearly, eigenvalues of the closed-loop system in (49) can
be changed by the nonlinear function p. Assuming that %
is available and assuming that A(0) # r (for the trivial
case when /(0) = r, there is no need to add any nonlinear
gain to the control), the following nonlinear gain matrix is
proposed

ple(k)) = —B(I_Z/P].Ti’)f1 2 arctan(a‘le(kﬂ — |h(0) — r|‘>
T
(50)

with 0 < B < 2. p starts from 0 and decreases to a constant
— B(B'PB)~'2 arctan(a|h(0) — r|)/7 > — B(B'PB) " as h
approaches the target reference r. The parameter « is used
to determine the speed of change in p.

To examine the behaviour of the closed-loop system (49)
more explicitly, we defined an auxiliary system G,u(2)
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characterised by

Gaux(2) = Coux(zl — Aaux)_lBaux
=BP(zI —A—BF)"'B (51)

Clearly, G,ux(z) is stable. Note that CyyxBaux = B'PB > 0,
which implies G,.(z) is a square, invertible and uniform
rank system with a relative degree of 1 and with » invariant
zeros. This auxiliary system is in fact of minimum phase,
that is, all its invariant zeros are stable. Note that for such
a system, it follows from the result reported in Chapter 5
of Chen et al. J8] that there exists non-singular transform-
ations 'y € R"TD>#+D T e R and T, € R such that
the transformed system has the following special form

(FglAauxFSv F;lBauxFia 1—‘glcauxl—‘s)

= ([ A Feo 1 o1 52
_<|:Eda Add]’ [1} [ ]> 42

where the eigenvalues of 4,, are the invariant zeros of the
auxiliary system, G,ux(2), L.q, Eqa and A4q are some con-
stant matrices. Next, it can be shown that all the eigenvalues
of A,, are inside the unit circle and thus G,.(z) is of
minimum phase. Note that at the steady state when 4 = r,
the nonlinear function p of (50) with an appropriately
chosen 3 can be set to p= —(B'PB)” " and the closed-loop
system of (49) can be expressed as

%(k + 1) = (4 + BF)i(k) — B(B'PB)"'B'P(4 + BF)x(k)
= [I — B(B'PB)"'B'P|(4 + BF)x(k)

= [I - Baux(CauxBaux)_lCaux]Aauxi:(k)

0. 0T !
= |:I—I‘S|:l}l"i ‘(FO[O 1r; lrs[l}ri 1>

—1 Aaa Lad 1~
x Tof0 107" |1, % (k)
Ey A

— (1A L]z 53
= (n % Sy 3

Clearly, the closed-loop system has n eigenvalues at
AMA,,) and one at 0. Thus, the stability of the closed-loop
system with p= —(B'PB)"" implies the eigenvalues of
A,, are all inside the unit circle. This shows that Gy, (z)
is indeed of minimum phase.

It should be noted that there is a freedom in pre-selecting
the locations of these invariant zeros by choosing an
appropriate W in (10). In general, invariant zeros of
G,.x(z) should be selected, which correspond to the
closed-loop poles of (49) for the steady-state nonlinear
gain matrix, with the dominating ones having a large
damping ratio. This, in turn, generally yields a smaller
overshoot. The following procedure might be used for
such a purpose.

1. Given a set of n self-conjugated complex scalars, which
should include all the uncontrollable modes, if any, of
(A, B), we were able to determine an appropriate W > 0
such that the resulting auxiliary system G,u(z) had
its invariant zeros placed exactly at the locations given in
the set.
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First, the singular value decomposition technique was used
to find a unitary matrix U € R"*” and a non-singular matrix
T; € R"™™™ such that

Buw = U'BunT; = UBT; = m

and partitioned accordingly

Agx = U'AgxU = U'(4 + BF)U = [A“ A”}
Ay Ax
It was straightforward to verify that the stabilisability of
(A, B) implies the stabilisability of (4;;, 4;»). In fact,
their uncontrollable modes, if any, are identical. Next, for
determining an appropriate matrix P = P’ > 0, we parti-
tioned it accordingly as follows

/ P, P
=UPU = 21 54
|:P21 Pzz] (54)

Then, C,,x can be expressed as

Cax = BP = (T7)[0 I]U’U[Pn P,ZI}U’
we S Py Py

= (T") [Py Pp]U
=[(T7"Y PullPy, Py 1U
= To[Py, Py 1]U’

Using the results of Chen et al. [8] (see, for example,
Chapters 8 and 9), we showed that the invariant zeros of
the auxiliary system G,,x(z) were given by the eigenvalues
of Ay — Ay, P55 Py, . As (4,1, A,,) was stabilisable and the
given set of complex scalars included all its uncontrollable
modes, there exists a constant matrix, say F,, such that
Ay, — AoF, has its eigenvalues placed exactly at the
locations given in the set. Obviously, we can select P,,
and P, such that P>,'P,; = F,.

2. Selecting an appropriate Py, = P5, > 0, Py = Py,F,,
and an appropriate Py, = P}, > P21P22 P, ensures that

Py
P=U U >0 55
|:P21 P22:| (53)
3. Compute
W =P — (A + BF)P(4 + BF) (56)

If W is not a positive definite, go back to Step 2 and choose
another solution of P or go to the first step to re-select
another set of desired invariant zeros.

Another method for selecting W is based on a
trial-and-error approach by limiting the choice of W to be
in a diagonal matrix and adjusting its diagonal weights
through simulation. Generally, such an approach would
yield a satisfactory result as well.

2.4 lllustrative example

We illustrate the enhanced CNF control technique with the
following example. We considered a discrete-time system
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of the form (1) with

C =1,

and u,,x = 1. The disturbance w is unknown. For simulation
purposes, we assume w = —0.1. Our goal was to design a
CNF state feedback control law that would yield a good tran-
sient performance in tracking a target reference » = 2.
Following the procedure given in the previous section, to
obtain an appropriate augmented system, an integration
gain k; = 0.3 was selected. After a few tries, we found
that the following state feedback gain to the augmented
system would yield a good performance for our problem

F=[-0.1 -085 2.14 —1.7] (57)

This placed the poles of A + BF at 0.9, 0.4, 0.5 + j0.5. Note
that the first one corresponds to the integrator. Both the
linear state feedback control and enhanced CNF control
share the same integration dynamics:

xi(k + 1) = xi(k) + 0.3[A(k) — 7] (58)
The linear state feedback control law is given by

u(k)=[—0.85 2.14 —1.7]x(k)—0.1x;(k) +0.41r (59)
Letting W = diag{0.1, 1, 1, 1}, a positive definite solution P
for (10) is obtained, which is given by

2.6201  0.7258 0.6543 1.1678
0.7258 1.6414 —1.4825 2.1586
P= (60)
0.6543 —1.4825 8.8061 —7.3158
1.1678  2.1586 —7.3158 13.3551

and a CNF state feedback law
u(k)=[—0.85 2.14 —1.7]x(k)—0.1xi(k)+0.41r
+ p(e(k))[—0.1678 2.3536 —9.3268 10.0458]
0
(k 2
<x1( )) _ (61)
x(k)

2

[\

where p is as given in (50) with « = 20 and 8= 1.5. The
simulation results given in Figs. 1 and 2 clearly show that
the CNF control has outperformed the linear control.

3 Design of a micro hard disk drive servo system

In this section, we apply the proposed technique given in the
previous section to design a servo system for an IBM
microdrive (DMDM-10340). The dynamic model of the
voice-coil-motor (VCM) actuator of the microdrive has
been fully identified in Peng et al. [7] and is given by

y = G(s)(u+w) (62)
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Output Responses

1
Time (k)

Fig. 1 Output responses of the enhanced CNF control and linear
control

where y is in pm, the relative displacement of the read/
write (R/W) head, u, is in Volts, the input signal to the
VCM actuator, which has a saturation level u#,, =3V
and w is the input disturbances including friction and bias
torque, which is around —0.008 V. The transfer function
G(s) is given as

2.35 x 108
G(S) = TGrAm.(S) (63)
where
0.8709s% + 17265 + 1.369 x 10°
Gr.m.(s) =

52 + 1480s 4 1.369 x 10°

0.9332s% — 805.85 4+ 1.739 x 10°
s2 4+ 12515 4+ 1.739 x 10°

1.072s% 4+ 925.1s5 + 1.997 x 10°
52 4+ 536.25 + 1.997 x 10°

0.95945% + 98.22s +2.514 x 10°
52 4+ 1805s +2.514 x 10°

. 7.877 x 10°
s2 + 62125+ 7.877 x 10°

(64)

Control Signals
(=3

1
Time {k)

Fig. 2 Control signals of the enhanced CNF control and linear
control
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represents the resonant modes of the VCM actuator of the
microdrive. The transfer function is identified by matching
the measured frequency response (Fig. 3). The discretised
counterpart of the simplified (nominal) model of the HDD
system is given by

x(k+1)—|:1 T] (k)+[05“ i|[sat(u(k))+w] (65)

and
(k) =h(k)=[1 0]x(k) (66)

where 7T=10"*s is the sampling period and
a=2.35x 10°. The initial state was assumed to be
x(0) = 0. The task was to design a track following controller
for the drive using the proposed technique. More specifi-
cally, the aim was to design a controller that was capable
of moving the actuator to a target track as fast as possible
with limited control amplitude, and maintaining the tip of
the actuator, that is, the R/W head, as close as possible to
the track centre while data was being read or written. A
target reference r = 1 was the focus of the design, which
corresponds to one or two tracks for a disk drive with a
track density of 40 000 tracks per inch (TPI). The design
specifications were: (1) that the control signal did not
exceed the saturation level; (2) that the gain margin was
not less than 6 dB and the phase margin was not less than
45° (equivalent to about 60° in the continuous-time
domain, if we considered the phase lag caused by the
zero-order hold in discrete domain); and (3) that there was
no steady state bias and fast settling time. Here settling
time is defined as the time it takes for the R/W head to
reach and remain in the 0.03 pwm neighbourhood of the
target track.

Following the procedure given in Section 2, an inte-
gration term is introduced

xi(k +1) = xi(k) + [a(k) — 1] (67)

The corresponding augmented plant is then given by

1 1 0 —1
Xk+1)=]0 1 T |xtk)+| 0 |r
00 1] 0
0
OSaT2 satfu(k)] + | 0.5aT* |w (68)
aT
(k) = 0 { X(k)
W) =10 1 0K

For the above augmented system, a state feedback gain
matrix

F=—[17911 x 107> 0.0598 1.4857 x 107>] (69)

was designed which placed the poles of 4 + BF at 0.9997
and 0.7905 + j0.3105. Note that the conjugate pair have a
damping ratio of 0.4 and a natural frequency of 650 Hz,
which is the working frequency of the actuator. Next, a
reduced-order observer gain matrix Kz = —4511.9 to
place the observer pole at 0. 5488 was designed, and the
matrix W = diag{l.1 x 107, 0.01, 2.6 x 107°} was
chosen, which lead to a reduced—order CNF controller
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Fig. 4 Open-loop frequency response of the HDD servo systems

characterised by where
(xi(k+l)>_[l 0 ](xi(k))_[l]r xi(k)
xwk+1)) [0 0.5488 [\ x,(k) 0 xi(k) = (k) —r (72)
0 | xy(k) + 4511.99(k)
t(u(k k
+ [18199}% w®) + [—2035.7}( )

(70) Table 1: Stability margins of the HDD servo systems
and Controller Classical Conventional Enhanced
u(k) = (p(e(k))[0.0307 0.0462 13398 x 10~] FID CNF CNF

—[1.7911 x 10> 0.0598 1.4857 x 107> D)x;(k) Gain margin (dB) 9.6 8.4 11.1
Phase margin (°) 46.9 47.5 46

72

(71)
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Fig.5 Simulation results of the HDD servo systems
and the nonlinear gain function was selected as
ple(k)) = —0.191 arctan(‘|e(k)| — 1h(0) — r|’) (73)

For comparison, a conventional reduced-order CNF control-
ler without integration using the method reported in
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Fig. 6 Experimental results of the HDD servo systems
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Table 2: Settling time (ms): enhanced CNF against PID

Classical Enhanced Improvement

PID CNF (%)
Simulation 45 1.2 73
Implementation 2.8 1.1 61
and
u(k) = (p(e(k))[0.0372  3.5584 x 107°]

k)—r
—[0.0629 2.0598 x 107 ])( y) )
xy(k) + 4511.99(k)
(75)

where
ple(k)) = —0.6366 arctan(‘ le(k)| — h(0) — r| )) (76)

We also compared the servo performance of the above
design with a best-tuned PID controller

kd(Z— 1) kiTZ
=k +———+—
u(k) ( p Tz +z—1

)[r —y®] (7
where T=10"*s is the sampling period, ky, = 0.023,
kg =2.2512 x 10> and k; = 30.

The gain margin and phase margin for the conventional
CNF and the enhanced CNF control were computed at
steady state when p(e(k)) or p(e(k)) converged to a constant.
Fig. 4 shows the frequency domain properties of the
designed servo systems. The resulting gain and phase
margins are listed in Table 1, which clearly indicate that
all the designed controllers satisfy the design specifications.

For simulation, we used the actuator model given in (62),
which includes all its resonance modes. The simulations
were done in a mix setting where the plant was in
continuous-time and the controller was in discrete-time
with a zero-order hold operator being utilised. For experi-
ment, we used an actual IBM microdrive with its cover
removed. The only measurable output is the relative dis-
placement of the R/W head and was measured by a laser
Doppler vibrometer. The controllers were implemented
with a sampling frequency of 10 kHz on a dSpace DSP
board installed on a personal computer.
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The simulation and experimental results are respectively
shown in Figs. 5 and 6. Clearly, the conventional CNF con-
troller failed to bring the R/W head into the desired target
neighbourhood and the PID controller resulted in a large
overshoot and undershoot. The enhanced CNF controller
was able to move the R/W head to the target fast and
smoothly. The tracking performances (in terms of settling
time) are summarised in Table 2. Obviously, the perform-
ance of the enhanced CNF control is much better than
that of the PID control. It effectively removes the
steady-state bias without sacrificing transient performance.

4 Concluding remarks

We have presented a nonlinear control technique, that is,
enhanced CNF control, for a class of discrete-time
systems with input saturation and with unknown disturb-
ances. The new technique is capable of yielding better per-
formance (i.e. faster settling time and smaller overshoot)
compared with that of linear control. The enhanced CNF
control is also capable of eliminating steady-state bias
because of the disturbances. A numerical example and a
practical design of a disk drive servo system have been
provided to demonstrate the effectiveness of this control
technique. The result can be generalised to more general
discrete-time MIMO systems.
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