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Abstract

The problem of assigning structural properties of a linear system through sensor selection is, for a given pair (A, B), to find an output pair
(C, D) such that the resulting system (A, B, C, D) has the pre-specified structural properties, such as the finite and infinite zero structures and
the invertibility properties. In this paper, by introducing the notion of infinite zero assignable sets for the pair (A, B), we establish necessary
and sufficient conditions for the assignability of a given set of infinite zeros and a set of structural properties which includes the left invertibility
property. In establishing these conditions, we develop a numerical algorithm for the construction of the required (C, D).
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural properties of linear systems, such as the finite and
infinite zero structures and the invertibility properties, have
played a very important role in many linear systems and con-
trol areas, including robust and H∞ control (see, e.g., Chen,
2000; Lin, 1998), H2 optimal control (e.g., Saberi, Sannuti, &
Chen, 1995), and control with saturation (e.g., Lin, 1998). One
of the major obstacles to successful applications of multivari-
able control synthesis techniques to practical control problems
is the lack of adequate understanding of the linkage between
achievable control performances and hardware implementation
such as the selection and location of sensors and actuators.
Indeed, this linkage provides a foundation upon which trade-
offs can be incorporated in the preliminary design stage of an
engineering system. For example, it is well understood in the
literature that nonminimum-phase zeros are troublesome to deal
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with. However, simple examples show that such zeros can be
removed by properly adding, removing or relocating sensors
and actuators. This is exactly what motivated the interest in the
problem of structural assignment. This problem is, for a linear
system, ẋ = Ax + Bu, x ∈ Rn, u ∈ Rm, to find an output
y = Cx + Du, such that the resulting system (A, B, C, D) has
the pre-specified structural properties, such as the finite and
infinite zero structures and the invertibility properties.

Most results on structural assignment in the literature pertain
to the assignment of finite zero (invariant zero or transmission
zero) structures (see, e.g., Emami-Naeini & Dooren, 1982;
Karcanias & Giannakopoulos, 1989; Karcanias, Laios, & Gin-
nakopoulos, 1988; Kouvariatkis & MacFarlane, 1976; Patel,
1978; Patel, Geniele, & Khorasani, 1994; Rosenbrock, 1970;
Smagina, 2002; Sorokin, 1998; Syrmos, 1993; Syrmos &
Lewis, 1993; Vardulakis, 1980). Chen and Zheng (1995) pro-
posed a technique which is capable of simultaneously assign-
ing finite and infinite zero structures. Recently, we successfully
attempted to deal with the assignment of complete system
structures, including finite and infinite zero structures and in-
vertibility structures in Liu, Chen, and Lin (2003). In particular,
in Liu et al. (2003), we identified a set of sufficient conditions,
and under these conditions, an algorithm that leads to the as-
signment of a set of complete structural properties is developed.
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By using the similar technique of Rosenbrock (1970) and
Amparan, Marcaida, and Zaballa (2004) presented the nec-
essary and sufficient conditions under which an infinite zero
structure can be assigned. Other structural properties, such
as finite zero structure and invertibility properties were not
considered. Moreover, the tool they used to establish these
necessary and sufficient conditions is the rational function ma-
trix, which, though mathematically elegant, does not lead to
computational algorithms to construct the required (C, D).

In this paper, we will first introduce the notion of infinite
zero assignable sets. With this notion, we establish necessary
and sufficient conditions for the assignability of a given set of
infinite zeros and a set of structural properties which includes
left invertibility property. These conditions indicate the conser-
vativeness of the existing conditions. In establishing these con-
ditions, we develop a numerical algorithm for the construction
of (C, D).

Throughout the paper, � denotes a submatrix of less interest

in the context. For an integer k, �k =[1 0] ∈ R1×k , ϑk =
[

0
1

]
∈

Rk , ℵk =
[

0
0

Ik−1
0

]
∈ Rk×k .

2. Background materials

Consider a linear system �:

ẋ = Ax + Bu, y = Cx + Du, (1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp. Without loss of gener-
ality, we assume that both [B ′ D′] and [C D] are of full row
rank. In what follows, we give a compact form of the special
coordinate basis, which was introduced in Sannuti and Saberi
(1987) and Saberi and Sannuti (1990). A toolkit (Lin, Chen,
& Liu, 2004) in the Matlab environment is available online at
http://linearsystemskit.net. This canonical form, implemented
in the toolkit, is based on a numerically stable algorithm re-
cently reported in Chu, Liu, and Tan (2002), together with
an enhanced procedure reported in Chen, Lin, and Shamash
(2004).

Theorem 2.1. Given (1), there exist state, output and input
transformations �S, �O and �I, such that

Ã = �−1
S A�S

= As + B0C0

=

⎡
⎢⎢⎢⎢⎣

Aaa LabCb 0 LadCd

0 Abb 0 LbdCd

BcEca LcbCb Acc LcdCd

BdEda BdEdb BdEdc Add

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

B0a

B0b

B0c

B0d

⎤
⎥⎥⎥⎥⎦ [C0a C0b C0c C0d], (2)

B̃ = �−1
S B�I = [B0 Bs] =

⎡
⎢⎢⎢⎢⎣

B0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0

⎤
⎥⎥⎥⎥⎦ , (3)

C̃ = �−1
O C�S =

[
C0

Cs

]
=

⎡
⎢⎣

C0a C0b C0c C0d

0 0 0 Cd

0 Cb 0 0

⎤
⎥⎦ , (4)

D̃ = �−1
O D�I = Ds =

⎡
⎢⎣

Im0 0 0

0 0 0

0 0 0

⎤
⎥⎦ , (5)

where (Acc, Bc) is controllable, (Abb, Cb) is observable and
Add =A∗

dd +BdEdd +LddCd with A∗
dd =blkdiag {ℵq1 , ℵq2 , . . . ,ℵqmd

}, Bd=blkdiag {ϑq1 , ϑq2 , . . . ,ϑqmd
}, and Cd=blkdiag {�q1

,

�q2
, . . . , �qmd

}.

Proposition 1. The structural decomposition of (2)–(5) shows
explicitly the finite zero and infinite zero structures, as well as
left and right invertibility structures.

(1) The finite zero structure of � is characterized by the eigen-
structure of Aaa.

(2) Left invertibility structure S�
L(�) is the observability in-

dices of (Abb, Cb), and right invertibility structure S�
R(�)

is the controllability indices of (Acc, Bc).
(3) � has m0 = rank(D) infinite zeros of order 0. The in-

finite zeros (of order greater than 0) of � is given by
S�∞(�) = {q1, q2, . . . , qmd }. That is, each qi corresponds
to an infinite zero of � of order qi .

(4) The finite zero structure, S�
R, S�

L and S�∞ correspond to
Morse index lists I1, I2, I3 and I4 (Morse, 1973),
respectively. Also, � is left invertible if S�

R is empty, right
invertible if S�

L is empty, invertible if both S�
R and S�

L are
empty, and degenerate if both S�

R and S�
L are present.

Lemma 2.1 (Chen et al., 2004). The pair (A, B) is controllable
if and only if (Acon, Bcon) is controllable, where

Acon =
[
Aaa LabCb

0 Abb

]
, Bcon =

[
B0a Lad

B0b Lbd

]
.

If (A, B) is uncontrollable, its uncontrollable eigenvalues are
included in �(Acon).

3. Preliminary results

Consider a pair (A, B) with A ∈ Rn×n and B ∈ Rn×m, and
a vector of positive integers �= (�1, �2, . . . , ��). Let bk be the
kth column of B. Define

�(A, B, �) = {b1Ab1 · · · A�1−1b1|b2Ab2 · · · A�2−1b2|
· · · |b�Ab� · · · A��−1b�}.

http://linearsystemskit.net
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Definition 3.1. A set of positive integers � = (�1, �2, . . . , ��)

is called an infinite zero assignable set of (A, B), if there exist
a state feedback K and an input transformation TI such that
�(A − BT IK, BT I, �) is of full column rank.

Lemma 3.1. For A ∈ Rn×n, B ∈ Rn×m and a set of positive
integers �= (�1, �2, . . . , ��) with �(A, B, �) being of full col-
umn rank, there exists a TS ∈ Rn×n such that (T −1

S AT S, T −1
S B)

is as follows:

where A11 ∈ Rn1×n1 contains the uncontrollable eigenvalues
of A, A22 ∈ Rn2×n2 and B22 ∈ Rn2×(m−�) with n2 = n − n1 −∑�

j=1�j .

Proof. Let TS1 such that

A∗ = T −1
S1 AT S1 =

[
A11 0

� A∗2

]
, B∗ = T −1

S1 B =
[ 0

B∗2

]
,

where (A∗2, B∗2) is controllable. Thus, �(A∗, B∗, �) =
T −1

S1 �(A, B, �). Since the first n1 rows of �(A∗, B∗, �) are
zeros, there exists a T0 = blkdiag {In1 , T22} ∈ Rn×(n1+n2)

such that [T0 �(A∗, B∗, �)] is nonsingular. Let TS :=
[TS1T0 �(A, B, �)], we have

B = [TSeg2 TSeg3 · · · TSen|b�+1 · · · bm]
= TS[eg2 eg3 · · · en|T −1

S b�+1 · · · T −1
S bm], (6)

AT S = [AT 0|A�1b1TSeg1+1 · · · TSeg2 |
· · · |A��b�TSeg�+1 · · · TSen−1]

= TS[T −1
S AT 0|T −1

S A�1b1eg1+1 · · · eg2 |
· · · |T −1

S A��b�eg�+1 · · · en−1], (7)

where gj = n1 + n2 + ∑j−1
i=1 �i , j = 1, 2, . . . ,�, and ei is the

ith column of In. Multiplying both sides of (6) and (7) from the
left by T −1

S , we obtain the result of the lemma. �

Lemma 3.2. Consider a triple (A, B, C) with A ∈ Rn×n, B ∈
Rn×m and C ∈ Rm×n,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 	1 0 · · · 	m 0


1 � I�1−1 · · · � 0

� � 0 · · · � 0

...
...

...
. . .

...
...


m � 0 · · · � I�m−1

� � 0 · · · � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0

0 · · · 0

1 · · · 0

...
. . .

...

0 · · · 0

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =

⎡
⎢⎢⎣

0 1 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 0

⎤
⎥⎥⎦ ,

where A0 ∈ Rno×no and 	i ∈ Rno , 
i ∈ R(�i−1)×no , i =
1, 2, . . . , m, with no = n−∑m

i=1�i . There exists a TS such that

B1 = T −1
S B = B, C1 = CT S = C, (8)

A1 = T −1
S AT S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 	1 0 · · · 	m 0

0 � I�1−1 · · · � 0

� � 0 · · · � 0

...
...

...
. . .

...
...

0 � 0 · · · � I�m−1

� � 0 · · · � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

which reveals that the system (A, B, C) is invertible with finite
zeros �(A0) and infinite zeros {�1, �2, . . . , �m}.

Proof. Let

x =
(

x0

xd

)
, xd =

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...

xm

⎞
⎟⎟⎟⎟⎟⎠

, xi =

⎛
⎜⎜⎜⎜⎜⎝

xi,1

xi,2

...

xi,�i

⎞
⎟⎟⎟⎟⎟⎠

, u =

⎛
⎜⎜⎜⎜⎜⎝

u1

u2

...

um

⎞
⎟⎟⎟⎟⎟⎠

.

Then the system (A, B, C) can be written as

ẋ0 = A0x0 +
m∑

k=1

	kxi,1,

ẋi,j = Ai,j x0 + xi,j+1 +
m∑

k=1

ai,j,kxi,1,
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ẋi,�i
= Ai,�i

x0 +
m∑

k=1

ai,�i ,kxi,1 + ui ,

j = 1, 2, . . . , �i , i = 1, 2, . . . , m.

Define x1
i,2 = Ai,1x0 + xi,2, then,

ẋi,1 = x1
i,2 +

m∑
k=1

ai,1,kxi,1,

ẋ1
i,2 = Ai,1ẋ0 + ẋi,2

= (Ai,2 + Ai,1A0)x0 + xi,3 +
m∑

k=1

(ai,2,k + Ai,1	k)xi,1

:= A1
i,2x0 + xi,3 +

m∑
k=1

a1
i,2,kxi,1.

Similarly, defining x1
i,3 = A1

i,2x0 + xi,3, we have

ẋi,2 = x1
i,3 +

m∑
k=1

ai,2,kxi,1,

ẋ1
i,3 = A1

i,2ẋ0 + ẋi,3 := A1
i,3x0 + xi,4 +

m∑
k=1

a1
i,3,kxi,1.

Proceeding recursively, we finally obtain

ẋi,1 = x1
i,2 +

m∑
k=1

ai,1,kxi,1,

ẋ1
i,j = x1

i,j+1 +
m∑

k=1

a1
i,j,kxi,1,

ẋ1
i,�i

= A1
i,�i

x0 +
m∑

k=1

a1
i,�i ,k

xi,1 + ui ,

j = 2, 3, . . . , �i , i = 1, 2, . . . , m.

Thus, there exists a TS,

TS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In0 0 0 · · · 0 0

0 1 0 · · · 0 0

�1 0 I�1−1 · · · 0 0

...
...

...
. . .

...
...

0 0 · · · 1 0

�m 0 0 · · · 0 I�m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with some appropriate matrices �i ∈ R(�i−1)×n0 , i =
1, 2, . . . , m, such that A1 = T −1

S AT S, B1 = T −1
S B = B and

C1 = CT S = C are in the form of (8)–(9), which in turn is in
the form of (2)–(5). �

The following is a simple algorithm that, for a given A, as-
signs B such that (A, B) has the prescribed controllability in-
dices.

Lemma 3.3. Given A ∈ Rn×n with its eigenvalues 
 having
unity geometric multiplicities. Let k ={k1, k2, . . . , km} be a set
of nonnegative integers, and 
1 be a set of n1 complex scalars.
Then, there exists a B ∈ Rn×m such that the pair (A, B) has
controllability indices k and uncontrollable eigenvalues 
1 if
and only if 
1 ⊂ 
 is self-conjugated and n1 + ∑m

i=1 ki = n.

Proof. Necessity: It is obvious since there exists a T such that

T −1AT =
[

A11
A21

0
A22

]
, T −1B =

[
0

B22

]
, where (A22, B22) is con-

trollable.
Sufficiency: Without loss generality, we assume that the ma-

trix A is already in Jordan form, and k1 �k2 � · · · �km. There

exists a T such that T −1AT =
[

A11
A21

0
A22

]
, where �(A11) = 
1,

and �(A22) have unity geometric multiplicities. Hence, there
exists b2 ∈ Rn−n1 such that (A22, b2) is controllable. Let
B = [b Aw2b · · · Awmb], b = [0 b′

2]′, where wj = ∑j−1
i=1 ki ,

j =2, 3, . . . , m. It can be verified that (A, B) has the prescribed
controllability indices. �

4. Main results

We first give necessary and sufficient conditions for the
assignability of a set of infinite zeros.

Lemma 4.1. Consider a pair (A, B) with A ∈ Rn×n and B ∈
Rn×m. Let 
4 = {q1, q2, . . . , qmd } be a set of positive integers.
Then, there exist the matrices C and D such that the infinite
zeros of order greater than 0 of the resulting system
(A, B, C, D) are given by 
4 if and only if 
4 is an infinite
zero assignable set of the pair (A, B).

Proof. Necessity: Let TS ∈ Rn×n and TI ∈ Rm×m be such that
T −1

S AT S and T −1
S BT I are in the forms of (2)–(3). Define

K = TI

⎡
⎣C0a C0b C0c C0d

0 0 0 Edd

0 0 0 0

⎤
⎦ T −1

S ,

TI1 =
⎡
⎣ 0 Im0 0

Imd 0 0

0 0 Imc

⎤
⎦ .

Then,

A−BK = TS

⎡
⎢⎢⎣

Aaa LabCb 0 LadCd

0 Abb 0 LbdCd

BcEca LcbCb Acc LcdCd

BdEda BdEdb BdEdc A∗
dd + LddCd

⎤
⎥⎥⎦ T −1

S .

Therefore, �(A − BK, BT ITI1, 
4) = TS[0 
′
d]′, where 
d =

blkdiag {�q1 , �q2 , . . . , �qmd
}, �k ∈ Rk×k with the elements in

the inverse diagonal being 1s, and all the other elements being
0s. Thus, 
4 is an infinite zero assignable set of (A, B).
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Sufficiency: We will give a constructive proof that would
yield the desired (C, D). By Lemma 3.1, there exist TS1 ∈
Rn×n, TI ∈ Rm×m, and K1 ∈ Rm×n such that

A1 = T −1
S1 (A − BT IK1)TS1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 · · · 0 0

A21 A22 �1 0 · · · �md 0


11 
12 � Iq1−1 · · · � 0

� � � 0 · · · � 0
...

...
...

...
. . .

...
...


md1 
md2 � 0 · · · � Iqmd −1

� � � 0 · · · � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)

B1 = T −1
S1 BT I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0

0 · · · 0 B22

0 · · · 0 �

1 · · · 0 �
...

. . .
...

...

0 · · · 0 �

0 · · · 1 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where A11 ∈ Rn1×n1 contains uncontrollable eigenvalues of
A, A22 ∈ Rn2×n2 and B22 ∈ Rn2×m0 with m0 = m − md and
n2 =n−n1 −∑md

i=1qi . Thus, by Lemma 3.2, there exists a TS2
such that

Ã2 = T −1
S2 A1TS2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 · · · 0 0

A21 A22 �1 0 · · · �md 0

0 0 � Iq1−1 · · · � 0

� � � 0 · · · � 0
...

...
...

...
. . .

...
...

0 0 � 0 · · · � Iqmd −1

� � � 0 · · · � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

B̃2 = T −1
S2 B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0

0 · · · 0 B22

0 · · · 0 �

1 · · · 0 �
...

. . .
...

...

0 · · · 0 �

0 · · · 1 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Clearly, A=TS1TS2Ã2T
−1
S2 T −1

S1 +TS1TS2B̃2K1, B=TS1TS2B̃2T
−1
I .

Let us define

C̃2 =

⎡
⎢⎢⎢⎣

0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

0m0×n1 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎦ , D̃2 =

[
0 0

0 Im0

]
,

which is in conformity with the structures of Ã2 and B̃2. The
system (Ã2, B̃2, C̃2, D̃2) is invertible with m0 infinite zeros
of order 0 and infinite zeros (of order greater than 0) 
4.
Assign C = C̃2T

−1
S2 T −1

S1 + D̃2K1, D = D̃2T
−1
I . The systems

(A, B, C, D) and (Ã2, B̃2, C̃2, D̃2) are equivalent under state
and input transformations and state feedback. Thus, they have
the same Morse index lists. �

Remark 4.1. Following the proof of Lemma 4.1, a set of
necessary conditions can be established under which a com-
plete structure can be assigned: consider a pair (A, B) with
A ∈ Rn×n and B ∈ Rn×m. Let na be a nonnegative inte-
ger, 
2 = {�1, �2, . . . , �mc}, 
3 = {�1, �2, . . . , �pb

} and 
4 =
{q1, q2, . . . , qmd } be three sets of positive integers. If there
exist C ∈ R(m+pb−mc)×n and D ∈ R(m+pb−mc)×m such that the
system (A, B, C, D) has na finite zeros, m − md infinite zeros
of order 0, and the Morse index lists I2 = 
2, I3 = 
3 and
I4 = 
4, then na, 
2, 
3 and 
4 must satisfy

(1) {�1, �2, . . . , �mc , q1, q2, . . . , qmd } is an infinite zero
assignable set of the pair (A, B);

(2) na + ∑pb
i=1�i + ∑mc

i=1�i + ∑md
i=1qi = n.

In what follows, we present the necessary and sufficiency
conditions for the assignability of a set of structural properties
which includes the left invertibility property. In the statement of
the theorem, repeated uncontrollable eigenvalues are counted
repeatedly.

Theorem 4.1. Let A ∈ Rn×n and B ∈ Rn×m. Assume that
A has n1 uncontrollable eigenvalues 
, all of which have
unity geometric multiplicities. Let 
1 be a set of na self-
conjugated complex scalars, and 
3 = {�1, �2, . . . , �pb

} and

4 = {q1, q2, . . . , qmd } be two sets of positive integers. Then,
there exist C and D such that the resulting system (A, B, C, D)

is left invertible (I2 = ∅), and has finite zeros 
1, m − md
infinite zeros of order 0, and the Morse index lists I3 = 
3
and I4 = 
4 if and only if

(1) 
1 = �1 ∪ 
1, where 
1 ⊂ 
, and �1 is a set of ne self-
conjugated complex scalars, ne �n − n1 − ∑md

i=1qi ;
(2) 
4 is an infinite zero assignable set of (A, B);
(3) na + ∑pb

i=1�i + ∑md
i=1qi = n.

Proof. Necessity: Condition (2) follows from Lemma 4.1. Con-
dition (3) is obvious since Acc is an empty matrix. By Lemma
2.1, �(Aaa) contains na − ne self-conjugated uncontrollable
eigenvalues, and �(Abb) contains

∑pb
i=1�i −n∗ self-conjugated

uncontrollable eigenvalues, where n∗ �0. Thus, na − ne +∑pb
i=1�i − n∗ = n1. Hence, we have Condition (1).
Sufficiency: We will give a constructive proof. Follow-

ing the proof of Lemma 4.1, there exist TS1, TS2 ∈ Rn×n,
TI ∈ Rm×m and K1 ∈ Rm×n, such that (A1, B1) :=
(T −1

S1 (A − BT IK1)TS1, T
−1
S1 BT I) is in the form of (10)–(11)

and (Ã2, B̃2) := (T −1
S2 A1TS2, T

−1
S2 B1) is in the form of
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(12)–(13). Obviously, there exists K� ∈ Rm×n such that

Ã2 − B̃2K� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 · · · 0 0

A21 A22 �1 0 · · · �md 0

0 0 � Iq1−1 · · · � 0

0 0 � 0 · · · � 0
...

...
...

...
. . .

...
...

0 0 � 0 · · · � Iqmd −1

0 0 � 0 · · · � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let L� = [�1 �2 · · · �md B22]. By the PBH test, rank[A22 −
sI L�] = n2, s ∈ C, thus (A22, L�) is controllable. Define
A	 = A22 − L�K� = A22 − B22K22 − ∑md

i=1�i�i , where
K� = [�′

1 �′
2 · · · �′

md
K ′

22]′ with �1, �2, . . . , �md
∈ R1×n2

and K22 ∈ Rm0×n2 . �(A	) can be freely relocated by K�. We
select K� such that �(A	) includes �1 and some other distinct
eigenvalues. Consider

A∗1 =
[

A11 0

A21 − B22K21 − ∑md
i=1�i�i A	

]
,

where �1, �2, . . . , �md ∈ R1×n1 and K21 ∈ Rm0×n1 . Note that
�1, �2, . . . , �md and K21 will not change �(A∗1), but can change
the Jordan form of A∗1. Let T∗2 be such that

A∗2 = T −1
∗2 A∗1T∗2 =

[
Aaa Mab

0 Abb

]
,

where �(Aaa) are given by 
1, and �(Abb) have unity geomet-
ric multiplicities. Thus, by the proof of Lemma 3.3, we can
construct a Cb such that (Abb, Cb) is observable and has ob-
servability indices 
3. And thus, there exists an Lb such that
�(Abb −LbCb)∩�(Aaa)=∅. Consequently, the Sylvester equa-
tion −AaaN+N(Abb−LbCb)=Mab has a unique solution N ∈
Rn1×n2 . Let C∗1 = [C21 C22] := [0 Cb]T −1

∗2 , C21 ∈ Rpb×n1

and

T∗ = T∗2

[
I N

0 I

]
.

We have

T −1∗ A∗1T∗ =
[
Aaa NLbCb
0 Abb

]
, C∗1T∗ = [0 Cb].

Denote

K2 =
[ 0 0 0

K21 K22 0

]
∈ Rm×n,

and let B2 = B1 and

A2 = A1 − B1K2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 · · · 0 0

A21 − B22K21 A22 − B22K22 �1 0 · · · �md 0


11 
12 � Iq1−1 · · · � 0

� � � 0 · · · � 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.


md1 
md2 � 0 · · · � Iqmd −1

� � � 0 · · · � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We assign (C2, D2) as follows:

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 �1 1 0 · · · 0 0

...
...

...
...

. . .
...

...

�md �md
0 0 · · · 1 0

C21 C22 0 0 · · · 0 0

0m0×n1 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D2 =
[0 0

0 Im0

]
,

which are in conformity with the structures of A2 and B2. It
can be verified that A = TS1A2T

−1
S1 + TS1B2(K1 + K2T

−1
S1 ),

B = TS1B2T
−1
I . Let

C = C2T
−1
S1 + D2(K1 + K2T

−1
S1 ), D = D2T

−1
I .

In what follows, we will show that the system (A, B, C, D) has
the desired structural properties. It is obvious that the systems
(A, B, C, D) and (A2, B2, C2, D2) are equivalent under state
and input transformations and state feedback. We further define
TS3 as

TS3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In1 0 0 0 · · · 0 0

0 In2 0 0 · · · 0 0

−�1 −�1 1 0 · · · 0 0

0 0 0 Iq1−1 · · · 0 0

...
...

...
...

. . .
...

...

−�md −�md
0 0 · · · 1 0

0 0 0 0 · · · 0 Iqmd −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consequently,

A3 = TS3A2T
−1
S3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗1 � 0 · · · � 0


1 � Iq1−1 · · · � 0

� � 0 · · · � 0

...
...

...
. . .

...
...


md � 0 · · · � Iqmd −1

� � 0 · · · � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C3 = TS3C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1 0

C21 C22 0 0 · · · 0 0

0m0×n1 0m0×n2 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B3 = TS3B2 = B2, D3 = D2.
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By Lemma 3.2, we can find a TS4 such that

A4 = TS4A3T
−1
S4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗1 � 0 · · · � 0

0 � Iq1−1 · · · � 0

� � 0 · · · � 0

...
...

...
. . .

...
...

0 � 0 · · · � Iqmd −1

� � 0 · · · � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C4 = TS4C3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 0

C∗1 0 0 · · · 0 0

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B4 = TS4B3 = B3, D4 = D3.

Define TS5 = blkdiag {T∗, I } ∈ Rn×n. The quadruple
(T −1

S5 A4TS5, T
−1
S5 B4, C4TS5, D4) is in the form of (2)–(5),

having finite zeros 
1, m − md infinite zeros of order 0, and
the Morse index lists I2 = ∅, I3 = 
3 and I4 = 
4. And so
are the systems (A2, B2, C2, D2) and (A, B, C, D). In conclu-
sion, we have obtained a set of the desired (C, D) as given by
� = {(�OC, �OD)|�O ∈ R(pb+m)×(pb+m) is nonsingular}. �

Remark 4.2. For the given (A, B), if the uncontrollable eigen-
values are not of unity geometric multiplicities, then the assign-
ment of I3 will be subject to more constraints and thus will
be slightly more complicated. We also note that the selection
of �1 is free as long as it satisfies conditions in Theorem 4.1,
but the eigenstructure of finite zeros corresponding to �1 are
not necessarily freely assignable.

Remark 4.3. In our earlier algorithm (Liu et al., 2003), in or-
der to be assignable, each desired order of infinite zeros must
be equal to or less than a corresponding element in the con-
trollability indices of (A, B). In our current algorithm, no such
a constraint is imposed. We, however, note that according to
Commault and Dion (1982) and Amparan et al. (2004), the ma-
jorization relation between the controllability indices and the
assignable infinite zero orders still need to be satisfied.

The following corollary deals with the assignment of struc-
tural properties of invertible systems.

Corollary 4.1. Consider the pair (A, B) with A ∈ Rn×n, B ∈
Rn×m and uncontrollable eigenvalues 
. Let 
1 be a set of na
complex scalars, and 
4 ={q1, q2, . . . , qmd } be a set of positive
integers. Then, there exist C ∈ Rm×n and D ∈ Rm×m such
that (A, B, C, D) is invertible, and has finite zeros 
1, m−md
infinite zeros of order 0, and infinite zeros (of order greater

than 0) 
4 if and only if

(1) 
1 =�1 ∪
, where �1 is a set of self-conjugated complex
scalars;

(2) 
4 is an infinite zero assignable set of (A, B);
(3) na + ∑md

i=1qi = n.

5. An example

We consider a benchmark problem for robust control of a
flexible mechanical system in Wie and Bernstein (1990). The
problem is to control the displacement of the second mass by
applying a force to the first mass as shown in Fig. 1, where x1
and x2 are, respectively, the positions of Mass 1 (m1 = 1) and
Mass 2 (m2=1), k=1 is the spring constant, u is the input force,
and w1 and w2 are the frictions (disturbances). The output to
be controlled is z = x2, the dynamic model is given by

ẋ = Ax + Bu + Ew

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0

−1 0 1 0

0 0 0 1

1 0 −1 0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

x1

ẋ1

x2

ẋ2

⎞
⎟⎟⎟⎟⎠ +

⎡
⎢⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎥⎦ u +

⎡
⎢⎢⎢⎢⎣

0 0

1 0

0 0

0 1

⎤
⎥⎥⎥⎥⎦

(
w1

w2

)
,

z = C2x = [0 0 1 0]x.

It is simple to verify that the subsystem (A, B, C2) is of
minimum-phase and invertible. Hence, the disturbance w can
be totally decoupled from z under the full state feedback. Our
objective is to identify sets of measurement output or the lo-
cations of sensors such that an output feedback could yield
the same performance as the state feedback. It follows from
Chen (2000) that this can be made possible by choosing a
measurement y = C1x, such that (A, E, C1) is left invertible
and of minimum-phase. It can be verified that (A, E) is in
the controllability canonical form, with controllability index
{2, 2}. Following the algorithm given in the previous section,
we obtain the measurement matrices,

�1 =
{
�O

[1 0 0 0

0 0 1 0

]}
,

where �O ∈ R2×2, det(�O) �= 0, such that for any C1 ∈ �1,
(A, E, C1) is square invertible with two infinite zeros of order
2 and no finite zeros. Similarly, we assign

�2 =
{
�O

[1 1 0 0

0 0 1 1

]}
,

such that for any C1 ∈ �2, (A, E, C1) is square invertible with
two infinite zeros of order 1 and two finite zeros at −1. We can
also assign

�3 =
{
�O

[0 1 1 0

1 0 0 0

]}
,

such that for any C1 ∈ �3, (A, E, C1) is square invertible with
two infinite zeros {1, 3} and no finite zeros. For the case of
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Mass 1 Mass 2

k

u
w1 w2

x1 x2

Fig. 1. A two-mass-spring flexible mechanical system.

D1 �= 0, we assign

�4 =
{(

�O

[0 1 4 1

0 1 0 1

]
, �O

[0 0

1 0

])}
,

such that for (C1, D1) ∈ �4, (A, E, C1, D1) is square invert-
ible with two infinite zeros {0, 1} and three finite zeros at −2,
−1 + j and −1 − j .

For any C1 ∈ �1, (A, E, C1) is of minimum-phase, but has
higher order infinite zeros. It is well known that higher orders
of infinite zeros would yield higher controller gains, which is in
general not desirable. Thus, the measurement output C1 ∈ �2
is more desirable. It is straightforward to verify that the H∞
almost disturbance decoupling is achievable by measurement
feedback for any C1 ∈ �1 or C1 ∈ �2.

6. Conclusions

In this paper, we have revisited the problem of structural
assignment for linear systems. By introducing the notion of
infinite zero assignable set for a matrix pair, we established
necessary and sufficient conditions for the assignability of a
set of structural properties which includes the left invertibility
property. These results significantly improve the existing results
on the topic.
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