International Journal of Control
Vol. 79, No. 11, November 2006, 1471-1484

Taylor & Francis
Taylor & Francis Group

Symbolic realization of asymptotic time-scale and eigenstructure
assignment design method in multivariable control

X. LIU*t, Z. LINt and B. CHEN?

fTCharles L. Brown Department of Electrical & Computer Engineering, University of Virginia,

P.O. Box 400743, Charlottesville, VA 22904-4743, USA
iDepartment of Electrical & Computer Engineering, National University of Singapore,
Singapore 117576

(Received 4 September 2005, revised 14 February 2006, in final form 22 March 2006)

This paper reports on a symbolic realization of the asymptotic time-scale and eigenstructure
assignment (ATEA) state feedback design technique for multivariable control. The resulting
state feedback laws are parameterized in a scalar e. Under these state feedback laws,
the closed-loop system possesses a pre-specified time-scale and its eigenstructure approaches
a pre-specified one, as the value of the parameter € approaches zero. By appropriately specify-
ing the time-scale and the eigenstructure, the feedback laws can be obtained to solve various
control problems, such as the H, and H,, suboptimal control, and almost disturbance
decoupling problems. We present, in this paper, the software implementation of the ATEA
design algorithm using the MATLAB symbolic programming technique. Our m-functions are
capable of returning a result, which is explicitly expressed in terms of a symbolic variable
epsilon, which represents €. The controller design for a piezoelectric bimorph actuator is

used to illustrate how the symbolic realization works.

1. Introduction

The asymptotic time-scale and eigenstructure assign-
ment (ATEA) is one of the major applications of the
structural decomposition approach in linear systems
theory (Chen et al. 2004). The concept of ATEA was
originally proposed in Saberi and Sannuti (1989,
1990b) and was further developed in Chen (1991),
Saberi et al. (1993), Lin (1998) and Chen et al. (2004).
The ATEA algorithm is decentralized in nature and is
in fact rooted in the concept of singular perturbation
methods (Kokotovic et al. 1986).

More specifically, the main idea behind the ATEA
algorithm can be described as follows. The given
linear system characterized by a matrix quadruple
(4,B,C, D) is first transformed into the form of the
special coordinate basis (SCB) (Sannuti and Saberi
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1987, Saberi and Sannuti 1989). On the SCB, the
system is decomposed into a networked of subsystems,
each of which captures some inherent structure of the
original system. By exploring the intricate structures of
each of these subsystems and the interconnections that
exist among them, feedback gain matrices, explicitly
parameterized in a scalar, say e, are constructed for
each of these subsystems in such a way that, when com-
posed together to form an overall state feedback gain for
the system, they result in a closed-loop system with a
pre-specified time-scale and engenstructure. The proce-
dure can also been utilized to construct observer gains,
which lead to appropriate time-scale and eigenstructure
of the resulting error dynamics. By appropriately speci-
fying the time-scale and the eigenstructre, the feedback
laws of both state feedback type and output feedback
type can be obtained that solve a wide variety of control
problems, such as the H, and H,, suboptimal control
problems (Lin et al. 1998a, b, Chen 2000, Saberi et al.
1995), LTR (Chen 1991, Saberi et al. 1993), almost
disturbance decoupling problems (Ozcetin et al.
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1993a, b, Chen 2000, Lin and Chen 2000), and
constrained control problems (Lin 1998).

Among the many distinct features of the ATEA
algorithm based control design methods is the ease of
the symbolic computation of the feedback laws. The
feedback gains for the subsystems are parameterized in
a scalar € and given in the form of polynomial matrices
in 1/e. The construction of these gain matrices only
involves the computation of the coefficients of the
polynomials and thus, in essence avoiding the direct
symbolic computation. The direct symbolic computa-
tion is necessary only in the last steps of the algorithm
when various feedback gains, polynomial matrices, are
composed together to form the overall feedback gain
for the original system.

The objective of this paper is to describe the AETA
algorithm and its software implementation in detail
and to show how the ATEA algorithm has been
developed in such a way that facilitates the symbolic
computation of the resulting feedback gains. We will
also use simple applications to illustrate how the
symbolic computation of ATEA based state feedback
laws leads to feedback laws that are explicitly param-
eterized in the design parameter. We will however not
describe in detail the wide variety of applications
of the ATEA algorithm that have been reported in the
literature.

The ATEA algorithm is implemented by using
the Symbolic Math toolboxes on the MATLAB
platform. The Symbolic Math Toolboxes
incorporate symbolic computation into the numeric
environment of MATLAB. These toolboxes supplement
MATLAB numeric and graphical facilities with
several other types of mathematical computation,
such as calculus, linear algebra, simplification,
solution of equations, special mathematical function,
variable-precision arithmetic and transforms. The
computational engine underlying the toolboxes is the
kernel of Maple, a system developed primarily at
the University of Waterloo, Canada and, more

recently, at the Eidgendssiche Technische
Hochschule, Ziirich, Switzerland (The Math Work
Inc. 2004).

The remainder of this paper is organized as follows.
In §2, we describe in detail the ATEA algorithm
and show how it is utilized to solve the H, and H., sub-
optimal control problems as well as the problem of
almost disturbances decoupling. In §3, we describe the
symbolic implementation of the ATEA algorithm,
which the algorithm itself renders very straightforward.
Section 4 contains a simple numerical example and the
feedback design for a piezoelectric bimorph actuator

to demonstrate the ATEA based approach to control
design. Section 5 concludes the paper.

Throughout this paper, the following notation will be
used: X’ denotes the transpose of matrix X; 0 denotes
a scalar zero or a zero matrix of appropriate
dimensions; [/ denotes an identity matrix of
appropriate dimensions; R is the set of all real numbers;
C and C denote the entire complex plane and the
open left-half complex plane respectively; and
finally, A(X) denotes the set of eigenvalues of a real
square matrix X.

2. The ATEA algorithm

In this section, we describe the technique of the ATEA
design for continuous-time systems. We will also
describe, as examples of its application, how the
ATEA algorithm can be utilized in solving the H, and
H_, suboptimal control problems as well as the almost
disturbance decoupling problem.

Consider a continuous-time linear system

x = A Bu,
E:{x X+ Bu )

y = Cx+ Du,

where x € R", u € R" and y € R? are the state, input
and output of the system, respectively. Without loss
of generality, we assume that (4, B) is stabilizable,
and both [BT,D7] and [C,D] are of row full rank.
For simplicity, we also assume that the given system
has no invariant zeros on the imaginary axis.
Detailed treatments of systems with imaginary invar-
iant zeros involve the concept of low gain feedback
and slow time-scale it induces, which can be found
in (Chen 1991, Saberi et al. 1993).

2.1 The ATEA algorithm

What follows is a step-by-step presentation of the ATEA
algorithm. The properties of ATEA algorithm will be
summarized in a theorem after the presentation of the
algorithm itself.

Step 1 Transform ¥ into the structural decomposition
or the special coordinate basis form (Sannuti and Saberi
1987, Saberi and Sannuti 1989). That is, compute non-
singular state, input and output transformations I,
I'; and I', that transform the given system X into the
special coordinate basis, which can be put in the
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following compact form:

A=r7'4r,
A, 0 L, Cy 0 L Cq
0 AL LEC, 0 LGy
= 0 0 App 0 LpaCy
B.E, B.E,, LoCob Ae LeCa
B4E;, B4E}, BiEsq BaEse  Aad
Baa
B,
+| Bov |[Coa Ciqn Cob Coc Cod]. 2
Boc
Bog
By, 0 0
Bf 0 0
B=T_'Bli=|Byp 0 0 |, (3)
By 0 B,
Byg Bg O

0
01, (5)
0
where (App, Cp) is observable, (A, B.) is controllable,
and in particular,

Aga = Ay + BaEaq + LaaCa,

for some constant matrices Lyq and Egq of appropriate
dimensions, and

5 :blkdiag{Aql,A 2,...,Aq,,,d}, (6)
By = blkdiag{Bql, RN A }
Cy= blkdiag{C,,l, Cgrr- 2 Cy, } ™)

with (4, B,,, C,,) being defined as

0 7,- 0

Next, we define

A+ LT G B LT
Ass:|: . ab bj|, BOs:|: Od]a Lsd:|: ad:|’

0 Abb Boy Lyq
®)
and
By =[Bys L] 9
Step 2 Let F; be chosen such that
M(AS) = MAgs + BF) CC™, (10)

and partition Fy in conformity with (8) and (9) as

Fy Fh Fuo
Fy = =" . 11
[Fsl] |:F;1 Fbl:| (n

It follows from the property of the special coordinate
basis that the pair (Ag, Bs) is controllable provided
that the pair (4, B) is stabilizable. Then, we further
partition Fy = [ Fj; Fy ] as

Fh,  Fon

Fl,  Fon
Fg=[F, Fu]= _ B

P‘z_:lmd Fblmd

where F;U and Fy,; are of dimensions 1 x n} and 1 x ny,
respectively.

Step 3 Let F. be any arbitrary m. X n. matrix subject
to the constraint that

AS, = Aec + B.F. (12)

is a stable matrix. Note that the existence of such an F; is
guaranteed by the property that (A, B.) is controllable.

Step 4 This step makes use of the fast subsystems,
i=1,2,...,mq, represented by (Aqq, Bg, Cq). Let

Ai:{)"ila)"iZa-“,)"iq[}a i:1a29~--amda
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be the sets of ¢; elements, all in C™, which are closed
under complex conjugation, where ¢; and myq are given
in (6) and (7). Then, we let Aq ;= AjUAyU---UA,,.
Fori=1,2,...,mq, we define

qi
pi(s) == H(S — ki) =T+ Fus ' 4+ Fy s+ Fy,
j=1

(13)

and a sub-gain matrix parameterized by tuning
parameter, ¢,

~ 1 -
Fi©) = [Fue eFymrs oo™ Fa] (9)

Step 5 In this step, various gains calculated in
Steps 24 are put together to form a composite state
feedback gain for the given system . Let

FyiFig /e
.t Fjl_lezt]z/eqz
F,(e): = : ,
L F:lmd E77dq:7:d /Eqmd _ (1 5)
For1Fig, /€
N Fo12F>y, /€
Fri(e) : = : ,
_Fblmd Fmdqmd /eqmd _
and
Fai(e) = [F;(e) Fbl(e)]-
Then, the ATEA state feedback gain is given by
Fe) =T, (F(e) — ﬁo) rol, (16)

where

0 FEYy Fo 0 0

Fey=|0 F (e Fule 0
0 0 0 F 0

Cow Cia Coo Coc Cod
Fo=|E;, Ej Ewn Eaw Eaw |
E. E- 0 0 0

and where

Fae) = diag{ﬁl(e), Be), ..., Fmd(e)}.

This completes the ATEA algorithm.

The following theorem, recapitulated from Chen
(2000), captures some key properties of the closed-loop
system under an ATEA based state feedback law.

Theorem 1: Consider the given system X of (1). The
ATEA state feedback law u = F(e)x with F(e) given
by (16) has the following properties:

1. There exists a scalar € >0 such that for every
€ € (0,€*), the closed-loop system is asymptotically
stable. Moreover, as € — 0, the closed-loop poles are
given by

MAD), MAD, A +0, L oq,

There are a total number of ngq closed-loop poles,
which have infinite negative real parts as € — 0.
2. Let

0 0 Ly O
Ci=T5|0 01, Dy=T, 0 Imd
0 Gy 0 0

Then, we have

H(s, €) := [C+DF(¢)][s]— A— BF ()]
— [0 Hys) 0 o]ry',

pointwise in s as € — 0, where

Hy(s) = (Cs+DsFy)(sI— Ass— BsFy) ™.

2.2 H, suboptimal control, H,, control and almost
disturbance decoupling

In what follows, we will demonstrate how, by appropri-
ately choosing the sub-feedback gain matrix F; in Step 2,
the ATEA algorithm can be utilized to solve the H, and
H, suboptimal control problems as well as the almost
disturbance decoupling problem.

To be specific, we consider a continuous-time system
> with a state-space description

X =Ax+ Bu+ Ew,
Yiiy=x, (17)
h = Cx + Du,

where x € R" is the state, u € R™ is the control input,
w € R? is the external disturbance input, y=x is the
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measurement output, and /4 € R’ is the controlled
output of X. We assume that (4, B) is stabilizable and
(4, B,C, D) has no invariant zeros on the imaginary
axis. Then, the standard optimization problem is to
find a control law

u = Fx,

such that when it is applied to the given system (17),
the resulting closed-loop system is internally stable,
ie., M(A+BF)cC™, and a certain norm of the resulting
closed-loop transfer function from the disturbance input
w to the controlled output £, i.c.,

Hyn(s) = (C + DF)(sI — A — BF)"'E,

is minimized. The optimization problems do not always
possess a solution. A practical approach is to address
the so-called suboptimal control problem, where the
goal of control design is to meet a pre-specified norm
requirement on the closed-loop transfer function. Let

y5 =inf {||th||2 ‘u = Fx internally stabilizes & }

Then, the H, suboptimal control problem with state
feedback is, for any given y > y5, to design a stabilizing
feedback law u = F(y)x, under which the H, norm of
the closed-loop transfer function Hj,(s) is less than or
equal to y.

Similarly, let

Voo = inf{ | Hpoll oo ‘ u = Fx internally stabilizes E}.

Then, the H., suboptimal control problem with state
feedback is, for any given y >y, to design a stabilizing
feedback law u = F(y)x, under which the H,, norm of
the closed-loop transfer function Hj,,(s) is less than or
equal to y.

Finally, the almost disturbance decoupling problem
(either in H, sense or in H,, sense) is, for any a priori
given arbitrarily small y > 0, to find a stabilizing feed-
back control law u = F(y)x such that the H, or Hy,
norm of the closed-loop system transfer function
Hy,,(s) is less than or equal to y.

The following theorem summarizes the ATEA
based solutions to the H, and H,, suboptimal control
problems as well as the almost disturbance decoupling
problem. In the theorem statement, we recall that T,
I; and T, are the nonsingular state, input and output
transformations that transform the matrix quadruple
(4,B,C,D) into the special coordinate basis as in
(2)—(5). Also, let

and

E+
E, = [ a :|
E,

Theorem 2: Consider the continuous-time system %
characterized by (17). The ATEA algorithm leads to the
solution of the H, and H., suboptimal control problems
as well as the almost disturbance decoupling problem

for . More specifically, we have

1. If the sub-feedback gain matrix Fy in step 2 is chosen
to be

Fi= _(D;FDS)_I(B:PS + D;I-CS)’ (18)

where Ps > 0 is a solution of the algebraic Riccati
equation

PsAss + A;I;PS + C;rcs - (PsBs + C;FDS)(D;FDS)_I
(B;FPS + D;rcs) = Oa (19)

then the resulting closed-loop transfer function from
w to h under the corresponding ATEA state feed-
back law has the following property:

[ Hplls = |[C + DF()[s] — A — BF(e)] ' E| ,— v3.

as € — 0, i.e., the corresponding ATEA state feed-
back law solves the H, suboptimal control problem
for X. Furthermore,

Y5 = 4/trace (E;rPSES).

2. Given a scalar y >y, >0, if Fy in step 2 is chosen
to be

F.=—(0Xpy~'BYP, + DI Cy), (20)

where Ps >0 is a solution of the algebraic Riccati
equation

Pidg + AL P+ Y ¢ + PEEY P,y

@1
—(P.B.+ I D)X Dy (BT P+ DI ) = 0,
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then the resulting closed-loop transfer function from
w to h under the corresponding ATEA state feedback
law has the following property:

1Hmwlloo = H[C+ DF(G)][SI_ A— BF(G)]ilE”oo< Vs

for sufficiently small €, i.e., the corresponding ATEA
state feedback law solves the H., suboptimal control
problem for X.

3. If E; =0, which has been shown in Chen et al. (2004)
to be the necessary and sufficient condition for the sol-
vability of the almost disturbance decoupling problem
for X, then the ATEA state feedback law with any
arbitrarily chosen F; (subject to the constraint on the
stability of A) has a resulting closed-loop transfer
function Hy,(s,€) with

Hj,(s,e) = 0, pointwise in s as € — 0,

ie., any ATEA state feedback control law solves the
disturbance decoupling problem for X.

3. Software implementation of the ATEA algorithm

With the Symbolic Math Toolboxes on MATLAB, users
can easily combine numeric and symbolic computation
into a single environment. The Symbolic Toolbox
defines a new MATLAB data type called symbolic
object, by using the command sym, to represent a
symbolic variable, expression, and matrix. Internally,
a symbolic object is a data structure that stores a
string representation of the symbol.

Symbolic computations not only improve the accu-
racy of the results, but also provide explicit expressions.
With the aid of symbolic objects, computations need
only be done once for a class controller. It is useful
for both mathematical analysis and engineering online
tuning (Chetty and Dabke 1999).

In the implementation of the ATEA algorithm, the
state feedback gain of the H,/H,, suboptimal control
problems and almost disturbance decoupling problem
are returned in term of a symbolic object epsilon,
which relates to € in the algorithm in §2.1. Symbolic
expression enables engineers to easily analyse which
state feedback gain is sensitive to the choice of the
time-scale. By tuning epsilon (using the symbolic
substitution command subs) one can specify the
appropriate time-scale, and thus obtain desirable feed-
back laws corresponding to different design methods.

As pointed out earlier, one of the key features of the
ATEA algorithm is the ease in its symbolic implementa-
tion. It is clear from the description of the ATEA
algorithm, the first three steps of ATEA algorithm

involve only numeric operations, symbolic operations
involving the tuning parameter ¢ (epsilon) are con-
ducted only in step 4 and step 5.

The software implementation of the ATEA algorithm
is a part of the beta version of Linear Systems Toolkit
(Lin et al. 2004) that we recently released. This toolkit
is available at http://linearsystemskit.net.

In this toolkit, four ATEA based design algorithms
have been implemented. These are:

e the ATEA algorithm
F = atea(A,B,C,D[, option])
e the ATEA based H, suboptimal control design
F = h2state(A, B, C,D, E[, option])
e the ATEA based H., suboptimal control design
F = h8state(A, B, C,D, E, gamma[, option])

e almost disturbance decoupling by ATEA based
feedback law

F = addps(A, B, C,D, E[, option])

These functions could either produce the numerical
values of the feedback gain matrix for a pre-specified
value of the design parameter € or return the gain
matrix as a polynomial matrix in the design parameter
1/€. One can use the option in the command line to
choose the form of output. In the event of an omission
of the option or a choice of option=0, these
functions will ask the user to enter a value for epsilon
and return a numerical gain matrix. Otherwise, if
option=1, these functions will return the resulting
matrix as a polynomial matrix in 1/€ (i.e., 1/epsilon).
Among these four functions, atea is the core. Other
three functions can be implemented by calling the
atea function.

3.1 Implementation of atea

The flow chart of the function atea is showed in
figure 1. The implementations of the components in
the flow chart are carried out as follows.

3.1.1. SCB of (A, B, ¢, D). Find nonsingular state,
input and output transformations to transform
3(A, B, C, D) into the SCB form, i.e., (2)—(5). The SCB
algorithm is based on a numerically stable algorithm
recently reported in Chu ez al. 2002, together with an
enhanced procedure reported in Chen et al. (2004).
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( START )

| SCB for (A,B,C,D) |

!

!

Based on H2/H-infinity/Disturbance
decoupling methods, design Fs

Design Fc, such that Acc+Bc Fc is stable

Depending on eigenstructure o)
fast subsystems, compute pi(s

I

|

Option=17?

Syms epsilon

Input epsilon

F(epsilon)

Figure 1. Program flow chart of atea algorithm.

The transformation is conducted by using the
m-function, scb, in the Toolkit (Lin et al. 2004). The
syntax is

[AA, BB, CC, DD, Gs, Go, Gi, dims, 1v, rv, qv, m0]
= scb(A,B,C,D, tol);

The output (AA,BB,CC,DD) corresponds to (&,E, C, 15),
Gs, Go and Gi are I'y, I, and T respectively, and qv is
the vector {my,mo,...,mq}.

3.1.2. Computation of Fs. Define Ass, Bs as in (8) and
(9), then compute Fs in (11) according to different design
methods.

For the general ATEA design approach, if the user
choose to input eigenvalue of Ass+Bs*Fs, the function
place is used to compute an Fs. Otherwise, the code
generates an Fs such that Ass+Bs*Fs is stable.

3.1.3. Computation of Fc. Choose an Fc such that
Acc+BcxFc is stable. The user can input the desired
poles of Acc+Bc*Fc. The m-function place is then
called to find an Fec.

3.1.4. Assignment  of  eigenstructure  of  fast
subsystems. Select the desired eigenvalues of fast sub-
systems in (10), and compute coefficients in pfs) of (13).

3.1.5. Computation of state feedback gain. According
to the value of option, decide whether to compute
state feedback gain Fepsilon of (16) in the symbolic
form or in the numeric form.

If option=1, construct a symbolic object to represent
the tuning parameter €, by using the command

epsilon = sym('epsilon’)

(or equivalently, symsepsilon).

S=sym(A) constructs an object S, of class ’sym’,
from A. If the input argument is a string, the result is
a symbolic number or variable. If the input argument
is a numeric scalar or matrix, the result is a symbolic
representation of the given numeric values. x =
sym(’x’) creates the symbolic variable with name ’x’
and stores the result in x.

Compute various gains Fy(e), ﬁ:l(e) and Fy () in
(14)—(15). Note that all of these gains are polynomial
matrices in symbolic object (1/epsilon). Thus, the
state feedback gain of (16) is a polynomial matrix in
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symbolic object (1/epsilon). The actual code of this
part is given below,

if option==1
syms epsilon
tFd=sym([ 1);
tFal=sym(zeros(md,nap));
tFbl=sym(zeros(md,nb)) ;
tF=sym([ ]);
tFO=sym([ 1);

else
disp(’ ’)

epsilon=input (’Enter the value of epsilon:

epsilon = ’);

tFd=[1;
tFal=zeros (md,nap) ;
tFbl=zeros(md,nb) ;

tF=[1;
tFO=[1];
end
for kk=1:md

for j=1:qv(kk)
tFi(kk, j)=Ft(kk,qv(kk)-j+1)/
epsilon” (qv(kk)-j+1);
end
end

%STEP ATEA-C.5
for kk=1:md
if size(Falp,2)~=0
tFal(kk, :)=Falp(kk, :)*tFi(kk,1);
end
if size(Fb1,2)~"=0
tFbl(kk, :)= Fbl(kk, :)*tFi(kk,1);
end
tFd=blkdiag(tFd,tFi(kk,1:qv(kk)));
end
tFs1=[tFal tFbil];

if m0~=0
tF=[zeros(m0O,nan) ,Fs0,zeros (m0,nc+nd)];
tFO0=CC(1:m0, :);

end
if md~=0
tF=[tF;zeros(md,nan),tFsl,zeros(md,nc),
-tFd] ;
tFO=[tFO;Bd’*AA(n-nd+1:n,:)]1;
end
if mc™=0

tF=[tF;zeros(mc,nan+nap+nb),
Fc,zeros(mc,nd)];
tFO=[tF0;Bc’*AA(n-nc-nd+1:n-nd,
1:nan+nap) ,zeros (mc,nb+nc+nd)];
end

Fepsilon=Gi* (tF-tFO0)*inv(Gs) ;

dig=16;
Fepsilon=vpa(Fepsilon,dig);

The code returns a state feedback gain with tuning
parameter epsilon.

If option=0, the user is asked to input a value for
epsilon, then the code returns a numerical gain
directly.

Remark 3.1: In current codes, we only set the tuning
parameter e(epsilon) as a symbolic object. In fact, to
have more freedom in control design, Fs in (11), F. in
(12) and Fii, Fp,...,Fy in (13) can also be set as
symbolic objects. But in this case, the controller design
will become much more complicated.

3.2 Implementation of h2state, h8state and addps

The only difference between the above three functions
and atea is in the selection of Fs.

For the H, design approach (i.e., h2state), Fs is
obtained by (18) through solving algebraic Riccati
equation (19).

For the H., design approach (i.e., h8state), Fs is
obtained by (20) through solving algebraic Riccati
equation (21).

For almost disturbance decoupling problem
(i.e., addps), check the value of Es first. If Es=0,
choose an Fs such that Ass+Bs*Fs is stable. Otherwise,
the almost disturbance decoupling problem is not
solvable.

After the gain matrix, in term of the tuning parameter
€, is returned, the user might use other functions in the
Symbolic Math Toolbox to analyse the closed-loop
system.

The function subs can be used to compute the gain in
numerical form for a given value of epsilon. The com-
mand subs(S,new) replaces the default symbolic vari-
able in S with the numerical value new. The command
subs(8,0ld,new) replaces the symbolic variable old
in the symbolic expression S with a symbolic or numeric
variable or expression new. For example, the command
subs (F,0.5) returns the feedback matrix F(0.5).

In MATLAB, by default, the Symbolic Math Toolboxes
uses variable precision floating point arithmetic with
32 decimal digit accuracy. Computation precision can
be changed by using the function vpa (variable precision
arithmetic) or digits. The command vpa(A) uses
variable-precision arithmetic to compute each element
of A to d decimal digits of accuracy, where d is the
current setting of digits. Each element of the result
is a symbolic expression. The command vpa(A,d) uses
d digits, instead of the current setting of digits.
The function vpa can also be used to display results in
a compact form for ease in debugging the code.
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The Symbolic Math Toolboxes also provides
functions to create graphs from symbolic expressions.
For example, ezmesh (f,domain,n) plots the symbolic
function f over the specified domain divided by an
n-by-n grid, where domain can be either a 4-by-1
vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max].

More details on the use of Symbolic Math Toolboxes
can be found in The Math Work Inc. (2004).

4. Examples

Example 1: Consider a given system (17) with

r0 0 -1 0 —1T7 r—1 07
01 0 2 -1 0 0
A=|11 3 2 1|, B=|1 0],
00 1 0 1 0 0
LO O 0 0 0 L -1 1_
-0 17
00
E=|1 0],
0 1
LO 0]
and
01 010 00
cC=10 01 0 0, D=|0 0
00010 00

By using state, output and input transformations,

T 0 —1 0 07
01 0 —-120 0 0 1
=10 0 1 0 O0f, Ty=|1 0 0],
0 0 O 1 0 01 0
L0 0 -1 0 14
1 0
I = P
0 1

the given system X is transformed into the form of the
special coordinate basis

11 1 1 07 0 07
01110 0 0
A=|1 1 11 1|, B=|1 0],
00 0 0 1 0 0
(11 1 1 1] [0 1]
CLo-
0 1
E=|0 0],
10
[0 1]
0 0 1 00 0 0
C=[0 001 0, D=|0 0
L0 1 0 00 0 0

It is left invertible and has one unstable invariant
zeros at s=1 and two infinite zeros of orders 1 and 2,
respectively. Moreover, we have

A_llB_llE_ll
SS_0198_1195_019

and

Since E # 0, the disturbance decoupling problem for
the given system is not solvable. We will thus focus on
solving the H> and H,, suboptimal control problems
for the system. Following the construction procedures
of the ATEA algorithm in the previous section, we
obtain a state feedback

Finy Fyn Finy +1+ Fy1n

SRyl SR Shog3 2Egn
Fle)=—
2F; 2F; 2F; 2 2F; 2 2
;21-!-1 ;224-1 ;21_'_7_’_3 5222+ 12 24
€ € € € € €
(22)
where
Fa1  Fan
Fo=|7 ; 2
’ |:Fs2] Fon @3)

is to be selected to solve either the H, or H,, control
problem. The closed-loop eigenvalues of 4 + BF are
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asymptotically placed at A(Ag + BFy),
—1/€ £ j/e, respectively.

—1/e and

1. H, Control. Solving the H, algebraic Riccati
equation of (19), we get

P — [ 7.4641

—4.7321
—4.7321 ’

4.3660

which gives a sub-feedback gain,

B [—2.7321

0.3660
—2.7321 ’

0.3660

and y; = /trace (E.PsE;) = 3.1353. Thus, it follows
from (22) and (23) that the H, suboptimal control law

is given by u = F(e)x, with

o— 2.7321 +1
€= 51:;;41_‘_1

03660 3.7321
o+ 1 2=+3

—0.7321 .4641 2 1.2679 2
S0l el 243 LB 24

The diary of the execution of the function h2state is
shown below:

F = h2state(A,B,C,D,E, 1);

This program will guide your through the step-
by-step procedure of the Asymptotic Time-scale
and Eigenstructure Assignment (ATEA) Design...

gamma_2_star =
3.1353

Eigenstructure assignment for fast subsystems,
x_{d}, ......

1) . Specify your own structures; or

2). Let me do it for you.

Select your option (1 or 2): 1

Enter desired eigenvalues for each fast sub-
system. The actual closed-loop eigenvalues will
be placed at [the given eigenvalues/epsilon]...

Fast Subsystem No: 1, q_1 =1

Enter 1 eigenvalues in row vector: -1

Fast Subsystem No: 2, q_2 =2

Enter 2 eigenvalues in row vector: [-1+4j -1-j]

Fepsilon=vpa(F,5)

0.3660
_060 4y }

f=subs(F,0.1)

—28.3205 2.6603 —40.3205 1.6603 —1.0000

5474102 72.2051 —569.4102 —128.7949 —21.0000

Figure 2 shows the values of the H,-norm of the
resulting closed-loop system versus €. Clearly, it shows
that the H,-norm of the resulting closed-loop system
tends to y5 as € — 0.

2. H,, Control. It follows from Chen (2002) that
Ve, = 2.0090,

and for any y > y%, we can find the sub-feedback
gain F,. For example, let Y5 = 3,

1.7210

_ [—5.0036
* 7 [ =5.0036

1.72101|

thus,

5.033() +1 _ I.7310 +1 6.0?36 +3

_l.73|0+2 1 :|

Fle) = 7|:
ERFHENE R

QB 240 100B 243
is an H, y-suboptimal controller for sufficiently small e.
For illustration, we plot the maximum singular values of
the transfer function of the resulting closed-loop system
for a few different pairs of y and € in figure 3. The results
indeed confirm our claim.

The diary of the execution of the function h8state is
shown below.

F = h8state(A,B,C,D,E, 0.5,1);

This program will guide your through the step-
by-step procedure of the Asymptotic Time-scale
and Eigenstructure Assignment (ATEA) Design ...

gm8_star =
2.0090

gamma =
0.5000

Enter the value of gamma, which has to be larger
than gm8_star; gamma =3

Eigenstructure assignment for fast subsystems,
x_{d}, ......

1) . Specify your own structures; or

_ 27321 0.36603 3.7321 0.36603 .
21 _ g 086603 4 2L _3 603 _ o 1
Fepsilon — epsilon epsilon epsilon epsilon
P — | _ sa46a1 0.73205 54641 o 2 12679 . _
epsilon? epsilon? epsilon® epsilon epsilon? epsilon
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3.7 ; T

H2 norm of the closed loop system

3.1 . i
epsilon

Figure 2. The H>-norm of the closed-loop system transfer function.

3 T T T
Gamma =3, epsilon=0.01

25t N , .
. Gamma=2.5, epsilon=0.01

Magnitude (dB)
&

0.5

—

0 L L L
102 100 102 10*
Frequency (rad/sec)

1073 1072 101

Figure 3. The maximum singular values of the closed-loop system transfer function.

2) . Let me do it for you.

Select your option (1 or 2): 1
Enter desired eigenvalues for each fast sub-
system. The actual closed-loop eigenvalues will

be placed at [ the given eigenvalues/epsilon ]... Fepsilon=vpa(F,5)
_ 50036 _ 4 L7210 _ 4 _ 60036 _ 3 17210 _
F i1 _ epsilon epsilon epsilon epsilon
epsiion =1 10007 _ { 84419 _ 4 _ 10007 _ 2 14419 _ o

epsilon? epsilon? epsilon? " epsilon epsilon?

Fast Subsystem No: 1, q_1 =1
Enter 1 eigenvalues in row vector: -1
Fast Subsystem No: 2, q_ 2 =2
Enter 2 eigenvalues in row vector: [-1+j -1-j]

-1

- epsilon -

1

1481
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0_
o =50
L=
m 5 i
o e
= iy S i i (L,
S 100 e
g-100 = ;
-150
=1
T T i 10
-2 T 2
10 100 102 1045 10

Frequency (rad/sec)

Epsilon

Figure 4. The maximum singular values of the closed-loop system transfer function.

Example 2: We revisit the state feedback design for
a piezoelectric bimorph actuator (Chen 2000). The
actuator is given by

0 1 0 0 0
—k/m —b/m —k/m 0 0
A= 0 0 ky 0 0],
1 0 0 0 0
. 0 0 0 1 0
i 0 0 0
k(d—ky)/m —k/m 0
B= kiks , E= 0 0 )
0 0 -1
L 0 0 0
—0.96385 —3.8585x 1073
0 0
A= 0 0
0 0
—2.7492x10°  —1.1006 x 10

c=[0 00 0 1], D=0,

with m=0.01595kg, b=1.169 Ns/m, k=4385N/m,
d=18209 x 107" m/V, ki =3.5382 x 1077, ky =
—0.9597. The input u is the voltage that generates
excitation forces to the actuator system. The output to
be controlled y is the displacement of the actuator.
The working range of the displacement of this

actuator is within £1pm. Our objective is to design
a feedback controller that meets the following
specifications:

e The steady state tracking errors of the displacement
is less than 1% for any input reference signal with a
frequency range of 0 to 30 Hz, and

e The control input signal u does not exceed 112.5 volts
because of the physical limitations on the piezoelectric
materials.

The special coordinate basis of (A4,B,C,D) is the
following,

0 0 0
1 0 0
0 1 o |
0 0 1
1.1418x10°  —2.7492x 105 —73.287
0
~ O ~ ~
B=|o|, C=[0 1 0 0 0], D=o.
0
1

It is obvious that the system (A4, B, C, D) is invertible and
of minimum phase with one invariant zero at —0.96385.
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It also has one infinite zero of order 4. Thus, E; is empty.
Following Theorem 2, the disturbance decoupling
problem for the actuator is solvable.

Let Ay={-1, -2, —3, —4}. With the aid of
Symbolic Math Toolboxes, we obtain the state feedback
gain as following,

15.5756

Fe) = [1.2234 x 10° = =272 32,6160 —
€

where € is the tuning parameter that can be adjusted
to achieve disturbance decoupling. Figure 4 shows that
H),,(s,€) does indeed approach zero pointwise in s as €
goes to zero.

Because the feedback controller is explicitly param-
eterized in a tuning parameter e, it can be easily adjusted
to meet other design specifications without repeating the
design process.

15.576

Fepsilon =|1.12234e6 — ——
epsilon?

By tuning the parameter € and simulating the overall
design, we found that the maximum peak values of the
control signal u are independent of the frequencies of
the reference signals. They are only dependent on the
initial error between the displacement y and the refer-
ence. Let us consider the worst case, i.e., the magnitude
of the initial error is 1pm, we are able to obtain a clear
relationship between the tuning parameter € and the
maximum peak of u. We also found that the tracking
error is independent of initial errors. It only depends
on the frequency of the reference signal, the larger the
frequency, the larger the tracking error. Again, we
obtain a simple and linear relationship between the
tuning parameter ¢ and the maximum frequency that
a reference signal such that the corresponding tracking
error is no larger than 1%. With these relationships,
we can obtain a tuning parameter € to meet both the
two control specifications. The interested reader is
referred to (Ozcetin et al. 1993a, b, Chen 2000, Lin
and Chen 2000) for detail.

The diary of the execution of the function addps we
discussed above is shown below:

F = addps(A,B,C,D,E, 1); Fepsilon = vpa(F, 5)
Hs = (C+D*F)*xinv(j * c x eye(5) — A — B * F) % E;
Hs8 = 10 * logl10((abs(Hs(1)) * abs(Hs(1))
+ abs(Hs(2)) * abs(Hs(2))));
ezmesh(Hs8, [0.01, 10000, 0.0010.1], 100);

4.4502

4.4502

epsilon

32.616 —

This program will guide your through the step-
by-step procedure of the Asymptotic Time-scale
and Eigenstructure Assignment (ATEA) Design ...
Eigenstructure assignment for fast subsystems,
x_{d}, ......

1) . Specify your own structures; or

1.2234 x 10°

22.2509 10.6804
a8 o ’

2). Let me do it for you.
Select your option (1 or 2): 1

Enter desired eigenvalues for each fast subsys-
tem. The actual closed-loop eigenvalues will be
placed at [ the given eigenvalues / epsilon] ...

Fast Subsystem No: 1, q_1 =4
Enter 4 eigenvalues in row vector: [-1 -2 -3 -4]

22.251 10.680
0.12234e6 — —= _
epsilon® epsilon?

5. Conclusions

In this paper, we have presented the ATEA algorithm
and shown how the algorithm itself enables a straight-
forward symbolic computation of the resulting feedback
gain matrix as a polynomial matrix in the design
parameter. Two examples are given to demonstrate
how the ATEA algorithm works and how the symbolic
implementation of the ATEA algorithm leads to results
accurately and efficiently.
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