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SUMMARY

This paper develops an adaptive estimation method to estimate unknown disturbances in a class of non-
minimum phase non-linear MIMO systems. The unknown disturbances are generated by an unknown
linear exosystem. The frequencies, phases and amplitudes of the disturbances are unknown, the only
available information of the disturbances is the number of distinctive frequencies. The system considered in
this paper is a class of MIMO non-linear systems in the output feedback form which can be non-minimum
phase. The proposed estimation algorithm provides exponentially convergent estimates of system states,
unknown disturbances in the system and frequencies of the disturbances characterized by the eigenvalues
of the exosystem. Moreover, based on the stabilization controller for the disturbance free system, the
estimates of the disturbances are used to solve the disturbance rejection problem. The unknown
disturbances are compensated completely with the stability of the whole closed-loop system. Copyright
# 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Disturbance rejection problem has attracted great research interests in control theory and
applications because there are various deterministic and random disturbances in engineering
systems. In many disturbance rejection problems, especially for deterministic disturbance
rejection, the disturbances are assumed to be known. For example, in non-linear output
regulation problem [1], the disturbances to be rejected are assumed to be generated by a known
linear exosystem. However, in most practical engineering systems, the disturbances may be
unknown to us, that is, the frequencies, phases and amplitudes of the disturbances are unknown.
The unknown disturbances make the disturbance rejection problem more challenging and thus
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more interesting. A series of results have been published on the sinusoidal disturbance rejection
problem for disturbances with unknown frequencies, see, for example, References [2–6], etc.
Two algorithms, a direct and an indirect one, are presented in Reference [2] for disturbance
compensation for stable linear time invariant systems. The indirect one estimates the
disturbance frequency first and then compensates it. Only the direct one ensures the complete
compensation or asymptotic rejection of disturbances with unknown frequencies. The algorithm
proposed in Reference [4] ensures robust compensation of unknown disturbances for linear
systems. For non-linear systems, a result for strict feedback non-linear system is reported in
Reference [5] based on full state feedback. With adaptive internal model, semi-global non-linear
output regulation problem is solved in Reference [6] using output feedback. More recently,
global disturbance rejection with stabilization is reported in Reference [7] for non-linear systems
in output feedback form. We noted that both References [6, 7] consider the minimum phase non-
linear systems. For non-minimum phase non-linear systems, an adaptive estimation algorithm is
proposed in Reference [8] to estimate the unknown sinusoidal disturbances for single-input and
single-output (SISO) systems.

In this paper, we extend the results of Reference [8] to a class of non-minimum phase non-
linear multi-input and multi-output (MIMO) systems. Our disturbance rejection scheme is an
indirect one, the unknown disturbances are estimated separately, and then the estimates of the
disturbances are used to solve the disturbance rejection problem. In the estimation stage, a new
filter and adaptive law is designed to extract the contribution of the disturbances to the states
and to estimate the disturbances and their frequencies. The estimation starts from the
contribution to the output of the system, from which the disturbance characterization such as
frequencies can be obtained. Based on this estimation and by transforming the given system into
a so-called special co-ordinate basis (SCB) (see e.g., References [9, 10]), the contributions to
other states can then be calculated. Finally, the unknown disturbances are reconstructed. To
extract the contribution of the disturbances to the state from all output channels of the system,
different from the SISO case, the filter is designed to a multi-input one. In the proposed
estimation algorithm, only the number of distinct frequencies in the disturbances is required to
be known. But, there is no restriction on the number or the range of disturbance frequencies.
The estimates of the disturbance and frequencies converge to their ideal value exponentially. It is
interesting that, after transforming the given non-linear system into special co-ordinate basis,
the non-linear system is in the so-called output feedback form which has been extensively
studied in the literature. The geometric conditions for transforming an affine non-linear system
into a non-linear system in output feedback form are given in References [11, 12]. In the past two
decades, various control problems have been investigated for the non-linear system in output
feedback form, such as, global stabilization [11], adaptive output feedback control [13], non-
linear output regulation [6, 14], unknown disturbance rejection [7, 15], and so on.

Stabilization of non-minimum phase non-linear systems is itself a very challenging
problem. Until now, there is no general control design method to achieve global stabilization
for the systems considered in this paper even when the systems are disturbance free. In the
SISO cases, only a few results are available. For example, a global stabilization result is
reported in Reference [16], and a semi-global stabilization result in Reference [17]. Therefore,
to solve the disturbance rejection with stabilization problem, it is reasonable to assume that
the stabilization problem for the non-minimum phase non-linear system is solvable for
the corresponding disturbance free system. Thus, as an application of our adaptive estimation
algorithm, we show that the estimates of the disturbances can be used to reject the disturbance
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effectively under the assumption that the disturbance free system is stabilizable (Assumption
A4). It should be noted that, apart from disturbance rejection, estimation and reconstruction of
unknown disturbances have their own importance for detection and monitoring. It was until
fairly recently that a global convergent estimation algorithm was proposed for estimation of a
single frequency of the stand alone sinusoidal signal [18]. And, more recently, an algorithm
was proposed to estimate multiple frequencies from a sinusoidal signal using adaptive
observers [19].

The paper is organized as follows. Section 2 gives the problem formulation and preliminary
analysis. Section 3 deals with the disturbance estimation and rejection. We first focus on
estimating the unknown disturbances using some adaptive schemes and then following with an
application of disturbance estimation to the disturbance rejection problem. An example on a
benchmark problem is given in Section 4 to illustrate our adaptive estimation algorithm and
rejection scheme. Finally, we draw some concluding remarks in Section 5.

2. PROBLEM FORMULATION AND PRELIMINARIES

We consider a MIMO non-linear system characterized by

’%z ¼ %A%zþ %fð%yÞ þ %B%uþ %Ew ð1Þ

%y ¼ %C%z ð2Þ

%z 2 Rn is the state vector, %u 2 Rm the control input, %y 2 Rm the system output. %f is a known non-
linear smooth vector field in Rn with %fð0Þ ¼ 0: w 2 Rs is the disturbance generated by an
unknown exosystem

’w ¼ Sw; wð0Þ ¼ w0 ð3Þ

with unknown S 2 Rs�s: In this work, we propose to solve the following two problems.
Disturbance Estimation Problem: Estimate the disturbance w; the state %z and the unknown

disturbance frequencies characterized by the eigenvalues of S:
Disturbance Rejection Problem: Use the estimates obtained in the disturbance estimation

problem to design a feedback control such that the closed-loop system is stable and the output
of the system converges to zero, i.e. limt!1 yðtÞ ¼ 0:

To solve the above disturbance estimation problem and disturbance rejection problem, we
make the following assumptions.

Assumption A1: ð %A; %B; %CÞ is invertiblez and having no invariant zeros on the imaginary
axis.

Assumption A2: The eigenvalues of S are distinct and located on the imaginary axis. The
initial state w0 is such that all the frequency components in the disturbance system are fully
excited. Furthermore, the state w of the exosystem is observable for the output %y:

Assumption A3: ð %A; %CÞ is detectable.

z ð %A; %B; %CÞ is said to be invertible if there exist two rational matrix functions of s; say LðsÞ and RðsÞ; such that
LðsÞHðsÞ ¼ Im and HðsÞRðsÞ ¼ Im where HðsÞ ¼ %CðsI � %AÞ�1 %B:
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Assumption A4: Consider the disturbance free system

’%z ¼ %A%zþ %fð%yÞ þ %B%u ð4Þ

%y ¼ %C%z ð5Þ

there exists a control law of the form

’v ¼ f ðv; %yÞ ð6Þ

%u ¼ hðv; %yÞ ð7Þ

such that the closed-loop system (4)–(7) is asymptotically stable. Moreover, there exists a
Lyapunov function Vð %xÞ with %x ¼ colð%z; vÞ such that

a1ðjj %xjjÞ4Vð %xÞ4a2ðjj %xjjÞ ð8Þ

@Vð %xÞ
@%z
ð %A%zþ %fð%yÞ þ %Bhðv; %yÞÞ þ

@Vð %xÞ
@v

f ðv; %yÞ4� a3ðjj %xjjÞ ð9Þ

c1
@Vð %xÞ
@ %x

����
����

����
����
c2

4a3ðjj %xjjÞ ð10Þ

where ai; i ¼ 1; 2; 3; are class K1 functions} and ci; i ¼ 1; 2; are positive reals with c2 > 1:
Since ð %A; %B; %CÞ is invertible, it follows from the result of the special co-ordinate basis

(see, e.g. Reference [9]) that, there exist non-singular state, output and input transforma-
tions

%z ¼ Gsz; %y ¼ Goy; %u ¼ Giu ð11Þ

which transform system (1)–(2) into

’z ¼ Azþ fðyÞ þ Buþ Ew ð12Þ

y ¼ Cz ð13Þ

where fðyÞ ¼ G�1s
%fðGoyÞ and E ¼ G�1s

%E; and

A ¼ G�1s
%AGs ¼

Ad BdEz

LzCd Az

" #
ð14Þ

B ¼ G�1s
%BGi ¼

Bd

0

" #
ð15Þ

C ¼ G�1o
%CGs ¼ ½Cd 0� ð16Þ

}A continuous function a : ½0; aÞ ! ½0;1Þ is said to belong to the classK if it is strictly increasing and að0Þ ¼ 0: If a ¼ 1
and limr!1aðrÞ ¼ 1; the function is said to belong to the class K1:
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where
Ad ¼ blkdiagfA1; . . . ;Amg þ BdEd þ LdCd

Bd ¼ blkdiagfB1; . . . ;Bmg

Cd ¼ blkdiagfC1; . . . ;Cmg

with

Ai ¼
0 Iri�1

0 0

" #
ri�ri

; Bi ¼
0

1

" #
ri�1

; Ci ¼ ½1 0�1�ri

for i ¼ 1; . . . ;m; where r1; . . . ; rm are some positive integers with r1 þ � � � þ rm ¼ r: Az; Ez; Ed ; Lz

and Ld are known matrices with proper dimensions.
Moreover, under Assumptions A1 and A2, there exist X and U such that (see, e.g.

Reference [1])
XS ¼ AX þ BU þ E ð17Þ

0 ¼ CX ð18Þ

Then, the state transformation x ¼ z� Xw for system (12)–(13) yields

’x ¼ Axþ fðyÞ þ Bðu� mÞ ð19Þ

y ¼ Cx ð20Þ

where m ¼ Uw ð21Þ

’w ¼ Sw ð22Þ

Hence, without loss of generality, we investigate the disturbance estimation problem and the
disturbance rejection problem for system (19)–(22) and assume that the triple ðA;B;CÞ is in the
form of the special co-ordinate basis given in (14)–(16). Note that the transformations in (11) are
all non-singular, and Assumption A4 is free of disturbance w; system (19)–(22) also satisfies
Assumptions A1–A4 if system (1)–(3) does.

Remark 2.1
Assumption A3 is obviously necessary. Assumptions A1 and A2 are to avoid the overlap
between the poles of the internal zero dynamics of the given system and those of the exosystem.
It is clear that system (19)–(20) has a vector relative degree (defined in Reference [20])
fr1; . . . ; rmg with r ¼ r1 þ � � � þ rm: Splitting x ¼ colðxd ;xzÞ with xd 2 Rr and xz 2 Rn�r; the
zero dynamics of system (19)–(20) is given by

’xz ¼ Azxz

By Assumption A1, Az has no eigenvalues on the imaginary axis. However, Assumption A1 can
be relaxed to that the eigenvalues of Az are distinct with the ones of S; which can be seen in our
practical example in Section 4.
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Remark 2.2
The restriction on S in Assumption A2 is quite standard in the non-linear output regulation
problem (Reference [1]). However, unlike the neutral stable assumptions on the exosystem in
References [1, 20, 21], the amplitudes, phases and frequencies of the disturbances are unknown.
What we only know is the dimension of S: The dimension of S decides the number of
independent frequencies in the disturbances. In case there is a degeneration of independent
frequencies in the disturbance due to the initial state w0; the exosystem can be reduced in
dimension such that the disturbance is fully excited in the reduced order. Therefore, for a
disturbance with known number of independent frequencies, Assumption A2 does not impose
a restriction on the initial state of the exosystem.

Remark 2.3
Even without disturbance, stabilization problem of non-minimum phase non-linear systems is a
challenging problem itself. To utilize the obtained disturbance estimate in the disturbance
estimation problem to solve the disturbance rejection problem, Assumption A4 is given.
According to the Inverse Lyapunov Theorem [22], (8) and (9) are automatically satisfied if the
closed-loop system is asymptotically stable. (10) is always satisfied if the closed-loop system is
exponentially stable. However, there exist systems that the conditions in Assumption A4 are all
satisfied, but the systems are not exponentially stable [22].

Under Assumption A3, there exists K 2 Rn�m such that Aþ KC is Hurwitz. Without
considering the disturbance in (19), we can design a state observer as

’p ¼ ðAþ KCÞpþ fðyÞ þ Bu� Ky ð23Þ

where p 2 Rn: Assumption A2 and the design of K imply that Aþ KC and S have exclusive
eigenvalues. Therefore, given S; there exists an unique solution Q 2 Rn�s for the following
Sylvester equation:

QS ¼ ðAþ KCÞQþ BU ð24Þ

Then, defining
qðwÞ ¼ Qw ð25Þ

gives
’q ¼ ðAþ KCÞqþ Bm ð26Þ

Moreover, the state variable x of (19) can be expressed as

x ¼ p� qþ E ð27Þ

where p and q are generated from the observer (23) and the filter (26), respectively, and E satisfies

’E ¼ ðAþ KCÞE ð28Þ

That is, the state estimation is solved if q is available. Unfortunately, since S is unknown, we
cannot obtain Q from Equation (24), also the filer (26) cannot be implemented due to the
unknown disturbance m: To solve the disturbance estimation problem, we will develop an
adaptive estimation algorithm. To this end, we introduce a reformulation of the exosystem (3).
Let fF ;Gg be any controllable pair with F 2 Rs�s Hurwitz and G 2 Rs�m: Consider the following
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Sylvester equation:

MS � FM ¼ GCQ ð29Þ

We claim that (29) has a non-singular solutionM 2 Rs�s: In fact, since fF ;Gg is controllable and
there is no overlap between the eigenvalues of F and S; we just need to prove that fS;CQg is
observable. Using (3), (23), (25), (27) and (28), we have

’p ¼ Ap� KCEþ KCQwþ fðyÞ þ Bu

’E ¼ ðAþ KCÞE

’w ¼ Sw

y ¼ Cpþ CE� CQw

Noting that

lI � A KC �KCQ

0 lI � A� KC 0

0 0 lI � S

C C �CQ

2
666664

3
777775

¼

I 0 0 K

0 I 0 0

0 0 I 0

0 0 0 I

2
666664

3
777775

lI � A� KC 0 0

0 lI � A� KC 0

0 0 lI � S

C C �CQ

2
666664

3
777775

under Assumption A2, w is observable from y; it is necessary that ðS;CQÞ is observable.
Now, introducing a state transform of the exosystem

Z ¼Mw ð30Þ

we have
’Z ¼ ðF þ GCQM�1ÞZ :¼ F0Z ð31Þ

In the new co-ordinate Z; q and m can be expressed, respectively, as

q ¼ QM�1Z; m ¼ UM�1Z

Let cdi
j 2 Rs�1; i ¼ 1; . . . ;m; j ¼ 1; . . . ; rm; and cz

j 2 Rs�1; j ¼ 1; . . . ; n� r be the columns of
ðQM�1ÞT; and cu

j 2 Rs�1 be the columns of ðUM�1ÞT; then

q ¼ QM�1Z :¼ ½cd1
1 ; . . . ;c

d1
r1
; . . . ;cdm

1 ; . . . ;cdm
rm
;cz

1; . . . ;c
z
n�r�

TZ ð32Þ

m ¼ UM�1Z :¼ ½cu
1; . . . ;c

u
m�

TZ ð33Þ
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For convenience, in the following we denote:

cx ¼ ½cd cz� ð34Þ

cu ¼ ½cu
1; . . . ;c

u
m� ð35Þ

with cd ¼ ½cd1
1 ; . . . ;c

d1
r1
; . . . ;cdm

1 ; . . . ;cdm
rm
� ð36Þ

cz ¼ ½cz
1; . . . ;c

z
n�r� ð37Þ

Splitting K ; Ld ; Ed and Ez as follows:

K ¼
Kd

Kz

" #
¼

K1
d1 � � � Km

d1

..

. ..
. ..

.

K1
dm � � � Km

dm

K1
z � � � Km

z

2
6666664

3
7777775
; Ld ¼

L1
d1 � � � Lm

d1

..

. ..
. ..

.

L1
dm � � � Lm

dm

2
6664

3
7775

where Ki
dj 2 Rrj�1 for 14i4m and 14j4m; Ki

z 2 Rðn�rÞ�1 for 14i4m; Li
dj 2 Rrj�1 for 14i4m;

14j4m; and

Ed ¼

E1
d

..

.

Em
d

2
6664

3
7775; Ez ¼

E1
z

..

.

Em
z

2
6664

3
7775

where Ei
d 2 R1�r and Ei

z 2 R1�ðn�rÞ for 14i4m: Then, substituting (32) and (33) into (26) gives,
for i ¼ 1; . . . ;m;

ðcdi
j Þ

TF0 ¼ ðc
di
jþ1Þ

T þ
Xm
k¼1

ðLk
diðjÞ þ Kk

diðjÞÞðc
dk
1 Þ

T; j ¼ 1; . . . ; ri � 1 ð38Þ

ðcdi
ri
ÞTF0 ¼ ðc

u
i Þ

T þ
Xm
k¼1

ðLk
diðriÞ þ Kk

diðriÞÞðc
dk
1 Þ

T þ Ei
d ðc

dÞT þ Ei
zðc

zÞT ð39Þ

where Lk
diðjÞ and Kk

diðjÞ are the jth item of the vectors Lk
di and Kk

di; respectively, and

ðczÞTF0 ¼ ðLz þ KzÞCdðc
dÞT þ Azðc

zÞT ð40Þ

Noting that ðLz þ KzÞCdðc
dÞT only involves in cd1

1 ; c
d2
1 ; . . . ;c

dm
1 ; if F0 is known, we can solve

out cd ; cz and cu from (38) to (40) in terms of cd1
1 ;c

d2
1 ; . . . ;c

dm
1 : In fact, using the notation �

for the Kronecker product of matrices, and vecð�Þ for the vector obtained by rolling out the
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column vectors of a matrix, we can obtain from (40) that

vecðczÞ ¼ S�1vecððcd ÞCT
d ðLz þ KzÞ

TÞ ð41Þ

where
S ¼ In�r� FT

0 � Az� Is

and then cd and cu can be obtained from (38) and (39), respectively. In the next section, we will
propose an adaptive estimation algorithm to solve the disturbance estimation problem, that is,
to estimate Z; and cd1

1 ;c
d2
1 ; . . . ;c

dm
1 ; and then we can estimate x; m and F0:

Remark 2.4
Using (29), we have

F0 ¼ F þ GCQM�1 ¼MSM�1

that is, the eigenvalues of F0 are the same as those of S: Thus, under Assumptions A1 and A2,
all the eigenvalues of F0 are exclusively different from the ones of Az; which guarantees S is
non-singular. Moreover, we can estimate the disturbance frequencies characterized by the
eigenvalues of S through the estimation of F0:

3. DISTURBANCE ESTIMATION AND REJECTION

From the previous analysis, it is clear that q and m can be estimated or evaluated if Z; and cd1
1 ;

cd2
1 ; . . . ;c

dm
1 are available. In this section, we will develop an adaptive estimation algorithm to

estimate Z; and cd1
1 ;c

d2
1 ; . . . ;c

dm
1 : To this end, denote

cp ¼ cxCT ¼ ½cd1
1 ;c

d2
1 ; . . . ;c

dm
1 �

and consider the following filters and adaptive law:

’x ¼ Fxþ GðCp� yÞ ð42Þ

’z ¼ Fzþ G #cT
p x ð43Þ

’#cp ¼ Gxðx� zÞTPG ð44Þ

where #cp 2 Rs�m is the estimate of cp; G is a positive definite matrix, and P is the positive definite
solution of

PF þ FTP ¼ �2Is ð45Þ

Then, we have the following result.

Lemma 3.1
There exist some positive real constants dx; dc; lx and lc such that

jjZðtÞ � xðtÞjj4dxe
�lxt ð46Þ

jjcp � #cpðtÞjj4dce
�lct ð47Þ
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Proof
Define ex ¼ Z� x; (31) and (42) gives

’ex ¼ Fex þ GCE ð48Þ

Combining (48) and (28), we have

’ex

’E

" #
¼

F GC

0 ðAþ KCÞ

" #
ex

E

" #
ð49Þ

Noting that F and Aþ KC are Hurwitz, it is clear that there exist positive reals dx and lx such
that (46) is satisfied.

To establish the convergence of #cp; we define

e ¼ x� z ð50Þ

then, we have

’e ¼ Feþ GcT
p ex � GCEþ G *cT

p x ð51Þ

where *cp ¼ cp � #cp: Denote

%e ¼ ½eT eTx ET�T

Then, by (44), (49) and (51), we can arrange the adaptive system in the following form:

’%e ¼ Aa %eþ OðtÞTvecð *cpÞ ð52Þ

vecð ’*cpÞ ¼ �GeOðtÞ %P%e ð53Þ

where

Aa ¼

F GcT
p �GC

0 F GC

0 0 Aþ KC

2
664

3
775; OðtÞ ¼

x 0 0

0 . .
.

0

0 0 x

2
6664

3
7775GT 0 0

2
6664

3
7775;

Ge ¼

G 0 0

0 . .
.

0

0 0 G

2
6664

3
7775 and %P ¼

P 0 0

0 g1P 0

0 0 g2PE

2
664

3
775

where g1 and g2 are sufficient large positive reals to be selected later and PE is the positive definite
matrix satisfying

PEðAþ KCÞ þ ðAþ KCÞTPE ¼ �2In
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Let

%Q ¼ �ð %PAa þ AT
a PÞ ¼

2Is �PGcT
p PGC

�cpG
TP 2g1Is �g1PGC

CTGTP �g1C
TGTP 2g2In

2
6664

3
7775 ð54Þ

It is clear that we can make %Q positive definite by choosing a sufficient large g1 and then a
sufficient large g2: Define

Veð%e; *cpÞ ¼ %eT %P%eþ ðvecð *cpÞÞ
TGeðvecð *cpÞÞ ð55Þ

then we have
’Veð%e; *cpÞ ¼ �%e %Q%e ð56Þ

Therefore, %e and *cp are bounded.
To establish the convergence of *cp; we need the consistent excitation condition of OðtÞ: From

the definition of Z in the previous section, it can be seen that Z is persistently excited, i.e. there
exist two positive reals T and g3 such thatZ tþT

t

ZðtÞZðtÞT dt5g3Is > 0 8t50 ð57Þ

With

Z tþT

t

OðtÞOðtÞT dt ¼ jjGjj2
Z tþT

t

x 0 0

0 . .
.

0

0 0 x

2
6664

3
7775

xT 0 0

0 . .
.

0

0 0 xT

2
66664

3
77775 dt

¼ jjGjj2
Z tþT

t

ðZ� exÞðZ� exÞ
T 0 0

0 . .
.

0

0 0 ðZ� exÞðZ� exÞ
T

2
66664

3
77775 dt

and the fact that Z is bounded and ex convergence to zero exponentially, we can conclude that
there exist a t0 > and a g4 with 05g45g3jjGjj

2 such thatZ tþT

t

OðtÞOðtÞT dt5g4I > 0 8t5t0 > 0

Since %eðt0Þ and *cðt0Þ are bounded, we apply Lemma B.2.3 [23] to obtain that colð%e; vecð *cpÞÞ ¼ 0
is a globally exponentially stable equilibrium point for the adaptive system (52)–(53), which
implies (47). &

Remark 3.1
In the proof of Lemma 3.1, we have argued that the positive real numbers g1 and g2 can be set to
large enough values, for the convenience of establishing the positive define matrix %Q: It should
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be noted that even though they appear in %P; they do not affect the choice of G in the adaptive
law in (44).

With the estimates of cp and Z ready, we can obtain the estimate of F0 by using

F0 ¼ F þ GCQM�1 ¼ F þ GCðcxÞT ¼ F þ GcT
p

and then of cdi
j ; i ¼ 1; . . . ;m; j ¼ 2; . . . ; ri; c

z and cu from (38), (41) and (39), respectively, and
finally of the state x and the disturbance m: Specifically,

#F0 ¼ F þ G #cT
p ð58Þ

Denote

#cx ¼ ½ #cd1
1 ; . . . ;

#cd1
r1
; . . . ; #cdm

1 ; . . . ; #cdm
rm
; #cz

1; . . . ;
#cz
n�r�

#cu ¼ ½ #cu
1; . . . ;

#cu
m�

then using (38) and (41), we have, for i ¼ 1; . . . ;m;

#cdi
j ¼ #FT

0
#cdi
j�1 �

Xm
k¼1

ðLk
diðj � 1Þ þ Kk

diðj � 1ÞÞ #cdk
1 ; j ¼ 2; . . . ; ri ð59Þ

and

vecð #czÞ ¼
j #Sj

sþ j #Sj2
adjð #SÞvecð #cpðLz þ KzÞ

TÞ ð60Þ

with
#S ¼ In�r� #FT

0 � Az� Is

’s ¼ �lss; sð0Þ ¼ s0

for some positive reals ls and s0; where j � j and adjð�Þ denote the determinant and the adjoint
matrix of a matrix, respectively.

Then, by (39), we have, for i ¼ 1; . . . ;m

#cu
i ¼ #FT

0
#cdi
ri
�
Xm
k¼1

ðLk
diðriÞ þ Kk

diðriÞÞ #c
dk
1 � #cd ðEi

dÞ
T � #czðEi

zÞ
T ð61Þ

Finally, the state and disturbance estimation are given by

#x ¼ p� ð #cxÞTx ð62Þ

#m ¼ ð #cuÞTx ð63Þ

Moreover, the properties of the estimation of (58), (62) and (63) are described by the following
theorem.

Theorem 3.1
Under Assumptions A1–A3, the disturbance estimation problem is solved by (58), (62) and (63)
based on the filter and adaptive law (42), (43) and(44). Moreover, there exist positive real
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constants lx; dx; lm; dm; lF and dF such that

jjxðtÞ � #xðtÞjj4dxe
�lxt ð64Þ

jjmðtÞ � #mðtÞjj4dme
�lmt ð65Þ

jjF0 � #F0ðtÞjj4dFe
�lF t ð66Þ

Proof
From the previous description, we have shown that, under Assumptions A1–A3, we can
estimate F ; x and m by (58), (62) and (63), respectively, based on the filter and adaptive law (42),
(43) and (44). We say that an estimate is an exponentially convergent estimate if the estimation
error is bounded by a decaying exponential function. Thus, we need to show that #x; #m and #F0 are
exponentially convergent estimates. Let *F0 ¼ F0 � #F0; we have

jj *F0jj ¼ jjG *cT
p jj4jjGjjjj *c

T
p jj4jjGjjdce

�lct

That is, #F0 is an exponentially convergent estimate. Let *c ¼ c� #c; and denote

½ *cd1
1 ; . . . ;

*cd1
r1
; . . . ; *cdm

1 ; . . . ; *cdm
rm
; *cz

1; . . . ;
*cz
n�r�

¼ ½cd1
1 � #cd1

1 ; . . . ;c
d1
r1
� #cd1

r1
; . . . ;cdm

1 � #cdm
1 ; . . . ;cdm

rm
� #cdm

rm
;

cz
1 � #cz

1; . . . ;c
z
n�r � #cz

n�r�

then we have, for i ¼ 1; . . . ;m;

jj *cdi
j jj4jjF0jjjj *cdi

j�1jj þ jj #c
di
j�1jjjj *F0jj þ

Xm
k¼1

ðjjLk
diðjÞ þ Kk

diðjÞjjÞjj *c
dk
1 jj ð67Þ

Note that #cp and #F0 are exponentially convergent estimates, and #cp is bounded, by using (67)
recursively for j ¼ 2; . . . ; ri and repeat for i ¼ 1; . . . ;m; we can conclude that #cdi

j ; for
i ¼ 1; . . . ;m; and j ¼ 2; . . . ; ri; are exponentially convergent estimates.

Now consider

vecðczÞ � vecð #czÞ ¼
j #Sj2ðadjðSÞvecðcpðLz þ KzÞ

TÞ � adjð #SÞvecð #cpðLz þ KzÞ
TÞÞ

jSjðsþ j #S2jÞ

þ
j #Sjðj #Sj � jSjÞadjð #SÞvecð #cpðLz þ KzÞ

TÞ

jSjðsþ j #S2jÞ

þ
sadjðSÞvecðcpðLz þ KzÞ

TÞ

jSjðsþ j #S2jÞ
ð68Þ

It is clear that j #Sj and adjð #SÞvecð #cpðLz þ KzÞ
TÞ are exponentially convergent estimates of jSj and

adjðSÞvecðcpðLz þ KzÞ
TÞ; respectively, because they are functions of the elements of #cp obtained

by multiplications and additions. Moreover, s is a decaying exponential function. Thus, by (68),
we can show that #cz is an exponentially convergent estimate of cz: Therefore, we have shown
that #cx is an exponentially convergent estimate.
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Furthermore, we have, for i ¼ 1; . . . ;m;

cu
i � #cu

i ¼ F0
*cdi
ri
þ *F0

#cdi
ri
�
Xm
k¼1

ðLk
diðriÞ þ Kk

diðriÞÞ *c
dk
1 � *cdðEi

dÞ
T � *czðEi

zÞ
T ð69Þ

Using the similar reasoning as that of (67), we can conclude that #cu is also an exponentially
convergent estimate.

Finally, from

jjx� #xjj ¼ jjE� ðcxÞTZþ ð #cxÞTxjj4jjEjj þ jjcxjjjjZ� xjj þ jj #cx � cxjjjjZjj

jjm� #mjj ¼ jjðcuÞTZ� ð #cuÞTxjj4jjcujjjjZ� xjj þ jjcu � #cujjjjxjj

we can conclude that #x and #m are also exponentially convergent estimates of x and m: &

Next, based on the control law designed without considering the disturbance, we can solve the
disturbance rejection problem by using the disturbance estimate obtained above.

Theorem 3.2
Under Assumptions A1–A4, the control law

u ¼ hðv; yÞ þ #m ð70Þ

’v ¼ f ðv; yÞ ð71Þ

solves the disturbance rejection problem.

Proof
Under Assumptions A1–A3, by Theorem 3.1, we can obtain the estimate #m of the disturbance m
such that

jj *mðtÞjj ¼ jjmðtÞ � #mðtÞjj4dme
�lmt

for some real constants dm and lm: Thus, we can construct a first-order system

’%m ¼ �l %m %m; %mð0Þ ¼ %m0

such that j %mðtÞj5jj *mjj: Let %x ¼ colðx; vÞ; and define a Lyapunov function candidate

Wð %x; %mÞ ¼ Vð %xÞ þ c3j %mjc4

where c3 and c4 are positive real constants with c4 ¼ c2=ðc2 � 1Þ. Then

’W ¼
@Vð %xÞ
@x
ðAxþ fðyÞ þ Bðhðv; yÞ þ #m� mÞ þ

@Vð %xÞ
@v

f ðv; yÞ � c3c4l %mj %mj
c4

4� a3ðjj %xjjÞ � c3c4l %mj %mj
c4 þ

@Vð %xÞ
@ %x

����
����

����
����jjBjjjj *mjj

4� a3ðjj %xjjÞ � c3c4l %mj %mj
c4 þ

c1

2

@Vð %xÞ
@ %x

����
����

����
����
c2

þ
jjBjjc4

c4
c1c2

2

� �c4=c2 jj %mjjc4
Let

c3 ¼
2jjBjjc4

l %mc
2
4

c1c2

2

� �c4=c2
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and using (10), we have
’W4� 1

2
ða3ðjj %xjjÞ þ c3c4j %mjc4Þ

that is, the extended system with state ð %x; %mÞ is asymptotically stable, which implies
limt!1 xðtÞ ¼ 0: Moreover, limt!1 yðtÞ ¼ limt!1 CxðtÞ ¼ 0: &

4. A BENCHMARK PROBLEM

In this section, we will consider a benchmark problem, i.e. disturbance rejection problem of the
rotational/translational Actuator (RTAC) system. The model of the RTAC system, as shown in
Figure 1, consists of a translation cart of mass M connected to a wall by a spring of stiffness k;
and a rotational actuator mounted on the cart. The rotational actuator consists of a proof mass
of mass m and centroidal moment of inertia I mounted at a fixed distance d from its centre of
rotation. The control torque N is applied to the rotational proof mass, while the disturbance f
is applied to the translational cart. The normalized motion equation of the RTAC system is
given by [1, 24, 25]

.Bþ B ¼ eð’y2 sin y� .y cos yÞ þ w ð72Þ

.y ¼ �e.B cos yþ u ð73Þ

where B is the normalized displacement of the cart, y the angular position of the eccentric mass,
w the normalized disturbance, u the normalized control input. The coupling between the
translational and rotational motion is captured by the parameter e which is defined by

e ¼
mdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI þmd2ÞðM þmÞ
p

Let y ¼ y and

z1 ¼ y; z2 ¼ ’y; z3 ¼ Bþ e sin y; z4 ¼ ’Bþ e’y cos y

the state space representation of (72) and (73) is given by

’z1 ¼ z2 ð74Þ

M N

I

m

θ

k

f

d

Figure 1. Model of the RTAC system.
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’z2 ¼ z3 �
e cos z1

1� e2 cos2 z1
wþ u ð75Þ

’z3 ¼ z4 ð76Þ

’z4 ¼ �z3 þ e sin ðyÞ þ w ð77Þ

y ¼ z1 ð78Þ

where

u ¼
e cos z1

1� e2 cos2 z1
ðz3 � ð1þ z22Þe sin z1Þ þ

1

1� e2 cos2 z1
u� z3 ð79Þ

Assume that the disturbance applied on the RTAC system is generated by the following linear
equation:

’w1 ¼ ow2 ð80Þ

’w2 ¼ �ow1 ð81Þ

w ¼ w1 ð82Þ

where the frequency o of the disturbance is unknown. Then the state transformation

x1 ¼ z1 �
1

1� o2
w1; x2 ¼ z2 �

o
1� o2

w2; x3 ¼ z3; x4 ¼ z4 ð83Þ

transform the system (74)–(78) into the following form:

’x ¼ Axþ Bðu� mÞ þ fðyÞ ð84Þ

y ¼ Cx ð85Þ
where x ¼ colðx1;x2;x3;x4Þ

A ¼

0 1 0 0

0 0 1 0

0 0 0 1

0 0 �1 0

2
666664

3
777775; B ¼

0

1

0

0

2
666664

3
777775; C ¼

1

0

0

0

2
666664

3
777775

T

; fðyÞ ¼

0

0

0

e sin y

2
666664

3
777775

and

m ¼
e

1� e2
�

1

1� o2

� �
w

The zero dynamics of system (84)–(85) is given by

’xz ¼ Azxz ¼
0 1

�1 0

" #
xz

The eigenvalues �1j of Az are on the imaginary axis. However, our algorithm still works
provided that o=1: In fact, the disturbance free system of (84)–(85) is asymptotically
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stabilizable by

’v ¼ ðAþ KCÞvþ fðyÞ � Kyþ Bhðv; yÞ

u ¼ hðv; yÞ

where

hðv; yÞ ¼ � 2v2 � 2ðyþ arctan v4Þ þ
2ðv3 � e sin yÞ þ v4 � ev2 cos y

1þ v24
þ

2v4ðv3 � e sin yÞ2

ð1þ v24Þ
2

eðv4 � v3 þ e sin yÞðsin yþ sin ðarctan v4ÞÞ
yþ arctan v4

�
e v2v4 cos y

yþ arctan v4

and

K ¼ ½�10 � 34 � 40 10�T

Moreover, let #cp 2 R2�1 be the estimate of cp ¼ cd1
1 ; then

#cp can be obtain the following filter
and adaptive law:

’p ¼ ðAþ KCÞpþ fðyÞ � Kyþ Bu ð86Þ

’x ¼ Fxþ GðCp� yÞ ð87Þ

’z ¼ Fzþ G #cT
p x ð88Þ

’#cp ¼ Gxðx� zÞTPG ð89Þ

where

F ¼
0 1

�1 �2

" #
; G ¼

0

1

" #
; G ¼

6000 0

0 6000

" #
; P ¼

3 1

1 1

" #

Furthermore, we can calculate #F0; #cd1
2 ;

#cz and #cu as follows:

#F0 ¼ F þ G #cT
p

#cd1
2 ¼ #FT

0
#cd1
1 þ 10 #cd1

1

vecð #czÞ ¼ colð #cz
1;
#cz
2Þ ¼

j #Sj

sþ jSj2
adjð #SÞvecð #cp½�40 10�Þ

#cu ¼ #FT
0
#cd1
2 þ 34 #cd1

1 � #cz
1

where

#S ¼ I2� #F0 � Az� I2

’s ¼ �3s; sð0Þ ¼ 1
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Figure 2. Estimation of cp for the RTAC system.
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Figure 3. Estimation of m for the RTAC system.
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Figure 4. System output of the RTAC system.
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Figure 5. Control input of the RTAC system.
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Finally, the disturbance rejection problem is solved by

u ¼ hðv; yÞ þ #m ¼ hðv; yÞ þ ð #cuÞTx ð90Þ

The simulation results are shown in Figures 2–5 with e ¼ 0:3; o ¼ 2 and w0 ¼ ½0 1�T: As
shown in Figure 2, cp is estimated by #cp ¼ ½�3 2�T

lðF þ G #cT
p Þ ¼ �2j

Thus, we can know that the estimate frequency of the disturbance is exactly o ¼ 2: The
disturbance estimation of m and their estimation error are shown in Figure 3, which shows that
the estimation error convergence asymptotically to zero. The system output and control input
are shown in Figures 4 and 5, respectively. The control law (90) rejects the disturbance m
effectively.

5. CONCLUSIONS

An indirect disturbance rejection scheme is proposed in this paper. Firstly, an adaptive
estimation algorithm is developed to estimate the unknown disturbances, the system state and
the frequencies of the disturbances. The algorithm can deal with both minimum phase and non-
minimum phase non-linear MIMO systems in output feedback form. Secondly, by combining
the estimates of the disturbances and the stabilization control law designed without considering
the disturbances, the unknown disturbances are asymptotically rejected or completely
compensated.
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