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SUMMARY

This paper develops an adaptive estimation method to estimate unknown disturbances in a class of non-
minimum phase non-linear MIMO systems. The unknown disturbances are generated by an unknown
linear exosystem. The frequencies, phases and amplitudes of the disturbances are unknown, the only
available information of the disturbances is the number of distinctive frequencies. The system considered in
this paper is a class of MIMO non-linear systems in the output feedback form which can be non-minimum
phase. The proposed estimation algorithm provides exponentially convergent estimates of system states,
unknown disturbances in the system and frequencies of the disturbances characterized by the eigenvalues
of the exosystem. Moreover, based on the stabilization controller for the disturbance free system, the
estimates of the disturbances are used to solve the disturbance rejection problem. The unknown
disturbances are compensated completely with the stability of the whole closed-loop system. Copyright
© 2006 John Wiley & Sons, Ltd.

KEY WORDS: adaptive estimation; disturbance estimation; disturbance rejection; non-minimum-phase
systems; non-linear systems

1. INTRODUCTION

Disturbance rejection problem has attracted great research interests in control theory and
applications because there are various deterministic and random disturbances in engineering
systems. In many disturbance rejection problems, especially for deterministic disturbance
rejection, the disturbances are assumed to be known. For example, in non-linear output
regulation problem [1], the disturbances to be rejected are assumed to be generated by a known
linear exosystem. However, in most practical engineering systems, the disturbances may be
unknown to us, that is, the frequencies, phases and amplitudes of the disturbances are unknown.
The unknown disturbances make the disturbance rejection problem more challenging and thus
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more interesting. A series of results have been published on the sinusoidal disturbance rejection
problem for disturbances with unknown frequencies, see, for example, References [2-6], etc.
Two algorithms, a direct and an indirect one, are presented in Reference [2] for disturbance
compensation for stable linear time invariant systems. The indirect one estimates the
disturbance frequency first and then compensates it. Only the direct one ensures the complete
compensation or asymptotic rejection of disturbances with unknown frequencies. The algorithm
proposed in Reference [4] ensures robust compensation of unknown disturbances for linear
systems. For non-linear systems, a result for strict feedback non-linear system is reported in
Reference [5] based on full state feedback. With adaptive internal model, semi-global non-linear
output regulation problem is solved in Reference [6] using output feedback. More recently,
global disturbance rejection with stabilization is reported in Reference [7] for non-linear systems
in output feedback form. We noted that both References [6, 7] consider the minimum phase non-
linear systems. For non-minimum phase non-linear systems, an adaptive estimation algorithm is
proposed in Reference [8] to estimate the unknown sinusoidal disturbances for single-input and
single-output (SISO) systems.

In this paper, we extend the results of Reference [8] to a class of non-minimum phase non-
linear multi-input and multi-output (MIMO) systems. Our disturbance rejection scheme is an
indirect one, the unknown disturbances are estimated separately, and then the estimates of the
disturbances are used to solve the disturbance rejection problem. In the estimation stage, a new
filter and adaptive law is designed to extract the contribution of the disturbances to the states
and to estimate the disturbances and their frequencies. The estimation starts from the
contribution to the output of the system, from which the disturbance characterization such as
frequencies can be obtained. Based on this estimation and by transforming the given system into
a so-called special co-ordinate basis (SCB) (see e.g., References [9, 10]), the contributions to
other states can then be calculated. Finally, the unknown disturbances are reconstructed. To
extract the contribution of the disturbances to the state from all output channels of the system,
different from the SISO case, the filter is designed to a multi-input one. In the proposed
estimation algorithm, only the number of distinct frequencies in the disturbances is required to
be known. But, there is no restriction on the number or the range of disturbance frequencies.
The estimates of the disturbance and frequencies converge to their ideal value exponentially. It is
interesting that, after transforming the given non-linear system into special co-ordinate basis,
the non-linear system is in the so-called output feedback form which has been extensively
studied in the literature. The geometric conditions for transforming an affine non-linear system
into a non-linear system in output feedback form are given in References [11, 12]. In the past two
decades, various control problems have been investigated for the non-linear system in output
feedback form, such as, global stabilization [11], adaptive output feedback control [13], non-
linear output regulation [6, 14], unknown disturbance rejection [7, 15], and so on.

Stabilization of non-minimum phase non-linear systems is itself a very challenging
problem. Until now, there is no general control design method to achieve global stabilization
for the systems considered in this paper even when the systems are disturbance free. In the
SISO cases, only a few results are available. For example, a global stabilization result is
reported in Reference [16], and a semi-global stabilization result in Reference [17]. Therefore,
to solve the disturbance rejection with stabilization problem, it is reasonable to assume that
the stabilization problem for the non-minimum phase non-linear system is solvable for
the corresponding disturbance free system. Thus, as an application of our adaptive estimation
algorithm, we show that the estimates of the disturbances can be used to reject the disturbance
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effectively under the assumption that the disturbance free system is stabilizable (Assumption
A4). 1t should be noted that, apart from disturbance rejection, estimation and reconstruction of
unknown disturbances have their own importance for detection and monitoring. It was until
fairly recently that a global convergent estimation algorithm was proposed for estimation of a
single frequency of the stand alone sinusoidal signal [18]. And, more recently, an algorithm
was proposed to estimate multiple frequencies from a sinusoidal signal using adaptive
observers [19].

The paper is organized as follows. Section 2 gives the problem formulation and preliminary
analysis. Section 3 deals with the disturbance estimation and rejection. We first focus on
estimating the unknown disturbances using some adaptive schemes and then following with an
application of disturbance estimation to the disturbance rejection problem. An example on a
benchmark problem is given in Section 4 to illustrate our adaptive estimation algorithm and
rejection scheme. Finally, we draw some concluding remarks in Section 5.

2. PROBLEM FORMULATION AND PRELIMINARIES

We consider a MIMO non-linear system characterized by

Z=Az+ ¢(h) + Bia+ Ew (1)

y=Cz 2

7 e R" is the state vector, i € R” the control input, 7 € R” the system output. ¢ is a known non-
linear smooth vector field in R" with ¢(0) = 0. w e R’ is the disturbance generated by an
unknown exosystem

w=Sw, w)=w 3)

with unknown S € R***. In this work, we propose to solve the following two problems.

Disturbance Estimation Problem: Estimate the disturbance w, the state Z and the unknown
disturbance frequencies characterized by the eigenvalues of S.

Disturbance Rejection Problem: Use the estimates obtained in the disturbance estimation
problem to design a feedback control such that the closed-loop system is stable and the output
of the system converges to zero, i.e. lim;_,, y(f) = 0.

To solve the above disturbance estimation problem and disturbance rejection problem, we
make the following assumptions.

Assumption Al: (4, B,C) is invertible* and having no invariant zeros on the imaginary
axis.

Assumption A2: The eigenvalues of S are distinct and located on the imaginary axis. The
initial state wy is such that all the frequency components in the disturbance system are fully
excited. Furthermore, the state w of the exosystem is observable for the output j.

Assumption A3: (4, C) is detectable.

$(4,B,C) is said to be invertible if there exist two rational matrix functions of s, say L(s) and R(s), such that
L(s)H(s) = I,, and H(s)R(s) = I,, where H(s) = C(sI — A) ' B.
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Assumption A4: Consider the disturbance free system

Z= Az + $(y) + Ba 4)
y=0Cz Q)
there exists a control law of the form
v=f(7) (6)
i = h(v,7) (7

such that the closed-loop system (4)—(7) is asymptotically stable. Moreover, there exists a
Lyapunov function V(x) with ¥ = col(Z, v) such that

(51D < V(5) <o) ®
DDz + g+ Br 7 + 0,97 < (i ©)
|2 <o (10)

X

where o, i = 1,2, 3, are class # ~, functions® and ¢;, i = 1,2, are positive reals with ¢; > 1.

Since (A4, B,C) is invertible, it follows from the result of the special co-ordinate basis
(see, e.g. Reference [9]) that, there exist non-singular state, output and input transforma-
tions

z=Tyz, y=T,y, a=Tu (11)

which transform system (1)—(2) into
z=Az+ ¢(y)+ Bu+ Ew (12)
y=0Cz (13)

where ¢(y) = ['['¢(,y) and E =T 'E, and

- Aqs  ByE:
A=T'AT, = (14)
‘ L.C; A
_ By
B=T['BT; = (15)
0
C=T,'CT,=[C; 0] (16)

%A continuous function o : [0, a) — [0, 00) is said to belong to the class # if it is strictly increasing and a(0) = 0. If a = 0o
and lim,_,0(r) = 0o, the function is said to belong to the class % .
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where
Ay = blkdiag{A4;,..., A} + BsE; + LsCy

By = blkdiag{Bi, ..., By}

Cq = blkdiag{Cy,...,Cy,}
with

0 I, 0
Ai - 0 O riXr; Bi N 1 7 ><1, Ci B [1 O]IX"[

fori=1,...,m, where ry,...,r, are some positive integers with r| +---+r,, =r. A., E., E;, L.

and L, are known matrices with proper dimensions.
Moreover, under Assumptions Al and A2, there exist X and U such that (see, e.g.

Reference [1]) XS =AX +BU + E (a7

0=CX (18)

Then, the state transformation x = z — Xw for system (12)—(13) yields

X = Ax + ¢p(y) + Bu — 1) (19)
y=Cx (20)
where 4= Uw @
W= Sw (22)

Hence, without loss of generality, we investigate the disturbance estimation problem and the
disturbance rejection problem for system (19)—(22) and assume that the triple (4, B, C) is in the
form of the special co-ordinate basis given in (14)—(16). Note that the transformations in (11) are
all non-singular, and Assumption A4 is free of disturbance w, system (19)—(22) also satisfies
Assumptions A1-A4 if system (1)—(3) does.

Remark 2.1
Assumption A3 is obviously necessary. Assumptions Al and A2 are to avoid the overlap
between the poles of the internal zero dynamics of the given system and those of the exosystem.
It is clear that system (19)—(20) has a vector relative degree (defined in Reference [20])
{ri,...,rpm} with r=ry +---+r,. Splitting x = col(xy, x.) with x; € R" and x, e R"', the
zero dynamics of system (19)—(20) is given by

X; = Azxz

By Assumption Al, 4. has no eigenvalues on the imaginary axis. However, Assumption Al can
be relaxed to that the eigenvalues of A4, are distinct with the ones of S, which can be seen in our
practical example in Section 4.
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Remark 2.2

The restriction on S in Assumption A2 is quite standard in the non-linear output regulation
problem (Reference [1]). However, unlike the neutral stable assumptions on the exosystem in
References [1, 20, 21], the amplitudes, phases and frequencies of the disturbances are unknown.
What we only know is the dimension of S. The dimension of S decides the number of
independent frequencies in the disturbances. In case there is a degeneration of independent
frequencies in the disturbance due to the initial state wy, the exosystem can be reduced in
dimension such that the disturbance is fully excited in the reduced order. Therefore, for a
disturbance with known number of independent frequencies, Assumption A2 does not impose
a restriction on the initial state of the exosystem.

Remark 2.3

Even without disturbance, stabilization problem of non-minimum phase non-linear systems is a
challenging problem itself. To utilize the obtained disturbance estimate in the disturbance
estimation problem to solve the disturbance rejection problem, Assumption A4 is given.
According to the Inverse Lyapunov Theorem [22], (8) and (9) are automatically satisfied if the
closed-loop system is asymptotically stable. (10) is always satisfied if the closed-loop system is
exponentially stable. However, there exist systems that the conditions in Assumption A4 are all
satisfied, but the systems are not exponentially stable [22].

Under Assumption A3, there exists K € R such that 4 + KC is Hurwitz. Without
considering the disturbance in (19), we can design a state observer as

p=A+KCp+ ¢(y)+ Bu— Ky (23)
where p e R". Assumption A2 and the design of K imply that 4 + KC and S have exclusive

eigenvalues. Therefore, given S, there exists an unique solution Q € R™* for the following
Sylvester equation:

0S =4+ KC)Q + BU (24)
Then, defining
q(w) = Qw (25)
gives
d=(A+ KC)q+ Bu (26)

Moreover, the state variable x of (19) can be expressed as

XxX=p—q+e 27)

where p and g are generated from the observer (23) and the filter (26), respectively, and e satisfies

¢ =(A+ KC)e (28)

That is, the state estimation is solved if ¢ is available. Unfortunately, since S is unknown, we
cannot obtain Q from Equation (24), also the filer (26) cannot be implemented due to the
unknown disturbance p. To solve the disturbance estimation problem, we will develop an
adaptive estimation algorithm. To this end, we introduce a reformulation of the exosystem (3).
Let {F, G} be any controllable pair with F € R*’ Hurwitz and G € R*". Consider the following
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Sylvester equation:
MS — FM = GCQ (29)

We claim that (29) has a non-singular solution M € R***. In fact, since {F, G} is controllable and

there is no overlap between the eigenvalues of F and S, we just need to prove that {S, CQ} is
observable. Using (3), (23), (25), (27) and (28), we have

p=Ap— KCec+ KCOw + ¢(y) + Bu
€=(4+KC)e
Ww=Sw
y=Cp+Ce— COw

Noting that

A — 4 KC _KCO
0 J—A—KC 0
0 0 -
c c —co
I 0 0 K\[i-A—KC 0 0
070 0 0 d—A—KC 0
“loo 7 0 0 0 -8
000 I c c —co

under Assumption A2, w is observable from y, it is necessary that (S, CQ) is observable.
Now, introducing a state transform of the exosystem

n= M (30)

we have
1= (F+GCOM Yy = Fon (31)

In the new co-ordinate 5, ¢ and u can be expressed, respectively, as
q=0M 'y, pu=UM"y
Let tp_;lieRé‘X], i=1,...,m j=1,...,rp and ;€ R, j=1,...,n—r be the columns of
(OM T, and i e R**! be the columns of (UM ~')T, then
g=0M 'n={" oyl s (32)

p=UM"n=[.....pul"n (33)
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For convenience, in the following we denote:

pr =y v (34)
=] (35)
with w = (36)
=W, (37)
Splitting K, L, E; and E. as follows:
Ky - K
Ly - Ly
K, : : :
K = = ], Ly=
KZ K(&ﬂ'[ T K(’;;ﬂ
L;}’n e L:’;m
Kzl s KM

where Kf,j e R7*! for 1<i<m and 1 <j<m, Kl e R"7! for 1<i<m, Li,j e R7! for 1<i<m,
1<j<m, and

Eg E!
E; = P E. =

where £, e R™" and E! e R for 1 <i<m. Then, substituting (32) and (33) into (26) gives,
fori=1,...,m,

m

W Fo = W)+ > (L5 + KT, j=1,.. -1 (38)
k=1
W Fo = WO+ W) + K@ + Ejp)" + EXp)T (39)
k=1

where LX(j) and KX (j) are the jth item of the vectors LX, and KX, respectively, and

W) Fy = (L + K)CaGh )" + A4:(9)" (40)
Noting that (L. + KZ)Cd(lﬁd)T only involves in w‘{l, ‘1’2, e, ‘ll’”, if Fy is known, we can solve
out ¥, y* and y* from (38) to (40) in terms of y¢',y¢2,...,y¢". In fact, using the notation ®

for the Kronecker product of matrices, and vec(-) for the vector obtained by rolling out the
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column vectors of a matrix, we can obtain from (40) that
vee(y?) = T vee((y ) C (L: + K2)) (41)

where T
z= 117r®F() - 4. ® I

and then “ and y* can be obtained from (38) and (39), respectively. In the next section, we will
propose an adaptive estimation algorithm to solve the disturbance estimation problem, that is,

to estimate #, and x//j”, ‘112, e, ‘llm, and then we can estimate x, p and Fj.

Remark 2.4
Using (29), we have
Fo=F+GCOM ' = MSM™!

that is, the eigenvalues of Fj are the same as those of S. Thus, under Assumptions Al and A2,
all the eigenvalues of Fy are exclusively different from the ones of 4., which guarantees X is
non-singular. Moreover, we can estimate the disturbance frequencies characterized by the
eigenvalues of S through the estimation of Fy.

3. DISTURBANCE ESTIMATION AND REJECTION

From the previous analysis, it is clear that ¢ and u can be estimated or evaluated if #, and Wl“,

‘112, e, M’" are available. In this section, we will develop an adaptive estimation algorithm to

estimate 7, and j“, fz, ... ,M’". To this end, denote
x ~T dl d2 dm
Yy =9 CT = W

and consider the following filters and adaptive law:

E=FE+G(Cp—y) (42)
[=Fl+Gj¢ (43)
Iy =TEE-0TPG (44)

where lﬁp e R*™ is the estimate of y/ , " is a positive definite matrix, and P is the positive definite
solution of

PF+ F'Pp = -2I, (45)
Then, we have the following result.
Lemma 3.1
There exist some positive real constants d¢, dy, Az and 4 such that
lIn(0) = &)l <dze ™! (46)
W = Fp(Dll < dye™" (47)
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Proof
Define e; = — &, (31) and (42) gives

é: = Fe: + GCc (48)
Combining (48) and (28), we have
é; F GC e:
L ¢ 49)
é 0 A+KC)|]| €

Noting that F and 4 + KC are Hurwitz, it is clear that there exist positive reals d: and s such
that (46) is satisfied. i
To establish the convergence of ,, we define

e=¢-¢ (50)

then, we have
é=Fe+ Gyye: — GCe + Gy & (51)

where lﬂp =y, — 1&,,. Denote

Then, by (44), (49) and (51), we can arrange the adaptive system in the following form:

&= A6+ Q1) vec(,) (52)
veo(l,) = —T.Q(1)Pe (53)
where
F Gy, —GC ¢ 00
4,=|0 F Gc |, Q=19 - |G 0 0],
0 0 A+ KC 0 0 ¢
l"e =10 0 and P =10 '))1P 0
0 0 I 0 0 P

where y, and y, are sufficient large positive reals to be selected later and P, is the positive definite
matrix satisfying

P(A+ KC)+ (A + KO)'P, = -2I,

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2006; 20:77-97



DISTURBANCE ESTIMATION AND REJECTION FOR NON-MINIMUM PHASE SYSTEMS 87

Let
21, ~PGY, PGC

O=—(PA,+ATP)= | —y,GTP 21,  —PGC (54)
"GP -y, C"GTP 2,

It is clear that we can make Q positive definite by choosing a sufficient large y, and then a
sufficient large y,. Define

V(@) = &' Pe + (vec(,) Teo(vec(t),)) (55)

then we have . R B
V(e y,) = —eQe (56)
Therefore, ¢ and 1;,, are bounded.
To establish the convergence of xﬁp, we need the consistent excitation condition of Q(7). From
the definition of # in the previous section, it can be seen that # is persistently excited, i.e. there
exist two positive reals 7 and y; such that

t+T
/ n@n) " de=y >0 V=0 (57)
t
With
e 0 07" 0 0
t+T +T
/[ Q(T)Q(T)Td‘c=||G||2/ o - ollo - oldr
t
[0 0 &[0 o £
[(1—e)n—e)" 0 0
t+T
~ 6P [ 0 g 0 &
t
i 0 0 (n—e)n—ed)"

and the fact that n is bounded and e: convergence to zero exponentially, we can conclude that
there exist a 7y > and a y, with 0<7y, <y3||G||2 such that

+T
/ Q) dr=y, I >0 Viz1>0
t
Since &(1) and Y(¢o) are bounded, we apply Lemma B.2.3 [23] to obtain that col(, VGC(l;p)) =0

is a globally exponentially stable equilibrium point for the adaptive system (52)—(53), which
implies (47). O

Remark 3.1
In the proof of Lemma 3.1, we have argued that the positive real numbers y; and y, can be set to
large enough values, for the convenience of establishing the positive define matrix Q. It should
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be noted that even though they appear in P, they do not affect the choice of I in the adaptive
law in (44).
With the estimates of ¢, and 7 ready, we can obtain the estimate of Fy by using
Fy=F+GCOM ' =F +GCW" )" =F + Gy,

and then of w;{i, i=1,...,mj=2,...,r;, ¥ and y" from (38), (41) and (39), respectively, and
finally of the state x and the disturbance p. Specifically,

Fo=F+ Gy} (58)
Denote
‘/;x = [Aélll" L] A;llla‘ LR A‘llma° L A;{Talﬁia' .. 7‘&;71—r]
=]
then using (38) and (41), we have, fori=1,...,m,
m
Uit = Eggt = (LG — D+ K5G— D, j=2....r (59)
k=1
and
. > . .
vee(f) = —adi(Evectfy(L. + K)") (60)
o+ %]
with

ZA":Infr(@ﬁ()_r_!‘lz(@ls

6 =—4:0, a(0)=oay

for some positive reals 4, and o, where |- | and adj(-) denote the determinant and the adjoint
matrix of a matrix, respectively.
Then, by (39), we have, fori=1,...,m

m

P = Foy = (L) + K — g ED" — (DT (61)
k=1
Finally, the state and disturbance estimation are given by
f=p-(M'E (62)
=T (63)

Moreover, the properties of the estimation of (58), (62) and (63) are described by the following
theorem.

Theorem 3.1
Under Assumptions A1-A3, the disturbance estimation problem is solved by (58), (62) and (63)
based on the filter and adaptive law (42), (43) and(44). Moreover, there exist positive real

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2006; 20:77-97



DISTURBANCE ESTIMATION AND REJECTION FOR NON-MINIMUM PHASE SYSTEMS 89

constants Ay, dy, Ay, dy, Ar and dr such that

Ix(0) — Xl < dye™ (64)
lu(t) = QD) < e (65)
1Fo — Fon)l| < dgpe ™" (66)

Proof

From the previous description, we have shown that, under Assumptions AI-A3, we can
estimate F, x and p by (58), (62) and (63), respectively, based on the filter and adaptive law (42),
(43) and (44). We say that an estimate is an exponentially convergent estimate if the estimation
error is bounded by a decaying exponential function. Thus, we need to show that X, i and F are
exponentially convergent estimates. Let £y = Fy — F,, we have

1Eoll = IGY, I <IIGHIN S || <|IGlldye "
That is, Fy is an exponentially convergent estimate. Let i = y — ;&, and denote

T
.. d O L TR

1 1 d i P

[‘Vl o lp;ll . ;1]1, o 1m . :lbn’ o ’w;:ln o zr:a’

!// lrbla"' l//n riwzfr]
then we have, fori=1,...,m,

I IVFO I I+ I 1 Foll + Z(IlLd,(J) + KD (67)

Note that 1//,, and F are exponentlally convergent estimates, and ‘Pp is bounded, by using (67)
recursively for j=2,...,r; and repeat for i=1,...,m, we can conclude that d’, for
i=1,...,myand j = 2, ...,r;, are exponentially convergent estimates.

Now consider

vee?) — vee(dr?) = 2 (adj(Z)vec(y, (L + K2)") — adi(E)vec(f,(L: + K)")

=l(o + [22])
IZI(Z] — [Z)adj(E)vec, (L. + K-)")
IZl(o + [22])
sadj(Z)vec(s,(L: + K-)")

< 68

IZI(o + 122)) "
It is clear that [%| and adJ(Z)VGC(lp,,(L— + K.)1) are exponentially convergent estimates of |2| and
adj(Z)vec(,(L: + K.)"), respectively, because they are functions of the elements of lp,, obtained
by multlphcatlons and additions. Moreover, o is a decaying exponential function. Thus, by (68),
we can show that tﬁz is an exponentially convergent estimate of yy°. Therefore, we have shown
that Y~ is an exponentially convergent estimate.
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Furthermore, we have, fori=1,...,m,
W= = Rl + Fo = (L) + KRt — §UEDT — JF(EDT (69)
k=1

Using the similar reasoning as that of (67), we can conclude that /* is also an exponentially
convergent estimate.
Finally, from

b = & = lle — )+ @< Nell + 1 Wl — &I+ 11 = gl
e — ll = 1160 — QP TEll< Il — €I+ I =

we can conclude that X and g are also exponentially convergent estimates of x and u. O

Next, based on the control law designed without considering the disturbance, we can solve the
disturbance rejection problem by using the disturbance estimate obtained above.

Theorem 3.2
Under Assumptions A1-A4, the control law

u=h(v,y)+ i (70)
v=f(») (71)
solves the disturbance rejection problem.
Proof
Under Assumptions A1-A3, by Theorem 3.1, we can obtain the estimate £ of the disturbance u
such that 5 3 iy
1A = lu(r) — Al < dye ™
for some real constants d,, and A,. Thus, we can construct a first-order system
fi = —2al,  f1(0) = fo
such that |a(f)| = ||d||. Let X = col(x, v), and define a Lyapunov function candidate
W(x, @) = V(%) + cslal®

where ¢3 and ¢4 are positive real constants with ¢4 = ¢;/(c; — 1). Then

. oV(x . ov(x e
W = 8>(c )(Ax+ d(y) + B(h(v,y) + fi — ) + 65} )f(,,’y) — eyeadall®
. oV(x N
< — ) ~ cxcaigar® + [ 222 stz
- X||) — gl 4 EL V(%) “ Bl 117164
< — oD = escalalil® + 5| =52 -(wﬁwamn
C4 )
Let 2B
=
c1C2 6’4/02
4 (5)
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and using (10), we have )
W< — 3(ea(IXI]) + escal @)

that is, the extended system with state (X,j) is asymptotically stable, which implies
lim,_~, x(¢) = 0. Moreover, lim,_, y(f) = lim,_ o, Cx(¢) = 0. O

4. A BENCHMARK PROBLEM

In this section, we will consider a benchmark problem, i.e. disturbance rejection problem of the
rotational/translational Actuator (RTAC) system. The model of the RTAC system, as shown in
Figure 1, consists of a translation cart of mass M connected to a wall by a spring of stiffness k,
and a rotational actuator mounted on the cart. The rotational actuator consists of a proof mass
of mass m and centroidal moment of inertia / mounted at a fixed distance d from its centre of
rotation. The control torque N is applied to the rotational proof mass, while the disturbance f
is applied to the translational cart. The normalized motion equation of the RTAC system is
given by [1, 24, 25]

&4 c=g0?sin0 — Ocos0) +w (72)

0= —efcosl+v (73)

where ¢ is the normalized displacement of the cart, 6 the angular position of the eccentric mass,
w the normalized disturbance, v the normalized control input. The coupling between the
translational and rotational motion is captured by the parameter ¢ which is defined by

. md
© T+ md®)(M + m)

Let y =60 and

21=0, zp=0, z3=c+esinb, z;=c+edcosbh

the state space representation of (72) and (73) is given by
i1=12 (74)

Figure 1. Model of the RTAC system.
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. £COS Z]

22:237ﬁw+u
1 — &% cos? z;
Z'3:Z4

Zg=—z3+esin(y)+w

(75)

(76)

(77

(78)

(79)

(80)
(81)

y=2
where
£COS z] .
U=—————z3— (1 +z5)esinz —————VU—z
1—32c05221(3 (1+2) 1)+1—£2cos221 3
Assume that the disturbance applied on the RTAC system is generated by the following linear
equation:
Wi = wwy
Wy = —wwq
w=w

where the frequency o of the disturbance is unknown. Then the state transformation

1 W

X1 =21 —mwl, X2 =22 _mW29 X3 =123, X4=1Z4

transform the system (74)—(78) into the following form:
X=Ax+ Bu—uw) + ¢(»)

y=Cx
where x = col(xy, X2, X3, X4)
01 0 0 0 1" 0
e 00 1 O B 1 Cc- 0 )= 0
0 0 0 1 0 0 0
00 -1 0 0 0 gsiny

and

& 1
=TT o)

The zero dynamics of system (84)—(85) is given by

0 1
X, = A.x, = X
-1 0

(82)

(83)

(84)

(85)

The eigenvalues +1j of 4. are on the imaginary axis. However, our algorithm still works
provided that w##1. In fact, the disturbance free system of (84)—(85) is asymptotically
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stabilizable by
v=(4+ KC)v+ ¢(y) — Ky + Bh(v,y)

u=nh,y)

where
2(v; — &siny) 4+ v4 —evacosy  2v4(v3 — esin y)?

h(v,y) = — 2v, — 2(y + arctan vy4) + T2 (1127
4 4

e(v4 — v3 + esin y)(sin y + sin (arctan v4)) € ¥v4COS Y
y + arctan vgq y + arctan vgq

and
K=[-10 —34 —40 10]"

Moreover, let lﬁp e R**! be the estimate of Y, = ‘1”, then lﬁp can be obtain the following filter
and adaptive law:

p=(A+KCp+ ¢(y)— Ky + Bu (86)
= FE+G(Cp—y) (87)
{=Fl+Gj¢ (88)

by =T~ D'PG (89)

where

F=

0 1 0 6000 0 301
., G=| |, T= , P=
1 2 1 0 6000 11

Furthermore, we can calculate Fy, tﬁé“, 1&2 and lﬁ“ as follows:
F() =F+ Glp;
Agl — ﬁg'ﬁ‘lﬂ 4 10!/;‘1“
Tzy Tz Tzy |2| o i P
vec(y?) = col(Yy, Y3) = ———zadj(X)vec(yy,[—40 10])
o+ |X]
G = PRt 340~ 0
where
S=L®F-4.®5L
6=-30, d0)=1
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Figure 3. Estimation of u for the RTAC system.
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Figure 4. System output of the RTAC system.

Control input: u
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Figure 5. Control input of the RTAC system.
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Finally, the disturbance rejection problem is solved by

u=h(v,y)+ f = h(v,y) + Q"¢ (90)

The simulation results are shown in Figures 2-5 with ¢ = 0.3, o =2 and wo = [0 17, As
shown in Figure 2, y, is estimated by y, = [-3 21"

MF + Gy = +2j

Thus, we can know that the estimate frequency of the disturbance is exactly w = 2. The
disturbance estimation of x and their estimation error are shown in Figure 3, which shows that
the estimation error convergence asymptotically to zero. The system output and control input
are shown in Figures 4 and 5, respectively. The control law (90) rejects the disturbance u
effectively.

5. CONCLUSIONS

An indirect disturbance rejection scheme is proposed in this paper. Firstly, an adaptive
estimation algorithm is developed to estimate the unknown disturbances, the system state and
the frequencies of the disturbances. The algorithm can deal with both minimum phase and non-
minimum phase non-linear MIMO systems in output feedback form. Secondly, by combining
the estimates of the disturbances and the stabilization control law designed without considering
the disturbances, the unknown disturbances are asymptotically rejected or completely
compensated.
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